JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The Rst-Neph Family of Cell Adhesion Molecules in Gallus gallus.
J. Neurogenet.
PUBLISHED: 07-08-2014
Show Abstract
Hide Abstract
Abstract The Rst-Neph family comprises an evolutionarily conserved group of single-pass transmembrane glycoproteins that belong to the immunoglobulin superfamily and participate in a wide range of cell adhesion and recognition events in both vertebrates and invertebrates. In mammals and fish, three Rst-Neph members, named Neph1-3, are present. Besides being widely expressed in the embryo, particularly in the developing nervous system, they also contribute to the formation and integrity of the urine filtration apparatus in the slit diaphragm of kidney glomerular podocytes, where they form homodimers, as well as heterodimers with Nephrin, another immunoglobulin-like cell adhesion molecule. In mice, absence of Neph1 causes severe proteinuria, podocyte effacement and perinatal death, while in humans, a mutated form of Nephrin leads to congenital nephrotic syndrome of the Finnish type. Intriguingly, neither Nephrin nor Neph3 are present in birds, which nevertheless have typical vertebrate kidneys with mammalian-like slit diaphragms. These characteristics make, in principle, avian systems very helpful for understanding the evolution and functional significance of the complex interactions displayed by Rst-Neph proteins. To this end we have started a systematic study of chicken Neph embryonic and post-embryonic expression, both at mRNA and protein level. RT-qPCR mRNA quantification of the two Neph paralogues in adult tissues showed that both are expressed in heart, brain, and retina. Neph1 is additionally present in kidney, liver, pancreas, lungs, and testicles, while Neph2 mRNA is barely detected in kidney, testicles, pancreas and absent in liver and lungs. In embryos, mRNA from both genes can already be detected at as early as stage HH14, and remain expressed until at least HH28. Finally, we used a specific antibody to examine the spatial dynamics and subcellular distribution of ggNeph2 between stages HH20-28, particularly in the mesonephros, dermomyotomes, developing heart, and retina.
Related JoVE Video
rst transcriptional activity influences kirre mRNA concentration in the Drosophila pupal retina during the final steps of ommatidial patterning.
PLoS ONE
PUBLISHED: 03-26-2011
Show Abstract
Hide Abstract
Drosophila retinal architecture is laid down between 24-48 hours after puparium formation, when some of the still uncommitted interommatidial cells (IOCs) are recruited to become secondary and tertiary pigment cells while the remaining ones undergo apoptosis. This choice between survival and death requires the product of the roughest (rst) gene, an immunoglobulin superfamily transmembrane glycoprotein involved in a wide range of developmental processes. Both temporal misexpression of Rst and truncation of the protein intracytoplasmic domain, lead to severe defects in which IOCs either remain mostly undifferentiated and die late and erratically or, instead, differentiate into extra pigment cells. Intriguingly, mutants not expressing wild type protein often have normal or very mild rough eyes.
Related JoVE Video
Precise temporal regulation of roughest is required for correct salivary gland autophagic cell death in Drosophila.
Genesis
PUBLISHED: 05-06-2009
Show Abstract
Hide Abstract
The Drosophila roughest (rst) locus encodes an immunoglobulin superfamily transmembrane glycoprotein implicated in a variety of embryonic and postembryonic developmental processes. Here we demonstrate a previously unnoticed role for this gene in the autophagic elimination of larval salivary glands during early pupal stages by showing that overexpression of the Rst protein ectodomain in early pupa leads to persistence of salivary glands up to at least 12 hours after head eversion, although with variable penetrance. The same phenotype is observed in individuals carrying the dominant regulatory allele rst(D), but not in loss of function alleles. Analysis of persistent glands at the ultrastructural level showed that programmed cell death starts at the right time but is arrested at an early stage of the process. Finally we describe the expression pattern and intracellular distribution of Rst in wild type and rst(D) mutants, showing that its downregulation in salivary glands at the beginning of pupal stage is an important factor in the correct implementation of the autophagic program of this tissue in space and time.
Related JoVE Video
Fhos encodes a Drosophila Formin-like protein participating in autophagic programmed cell death.
Genesis
Show Abstract
Hide Abstract
Larval tissues undergo programmed cell death (PCD) during Drosophila metamorphosis. PCD is triggered in a stage and tissue-specific fashion in response to ecdysone pulses. The understanding of how ecdysone induces the stage and tissue-specificity of cell death remains obscure. Several steroid-regulated primary response genes have been shown to act as key regulators of cellular responses to ecdysone by inducing a cascade of transcriptional regulation of late responsive genes. In this article, the authors identify Fhos as a gene that is required for Drosophila larval salivary gland destruction. Animals with a P-element mutation in Fhos possess persistent larval salivary glands, and precise excisions of this P-element insertion resulted in reversion of this salivary gland mutant phenotype. Fhos encodes the Drosophila homolog of mammalian Formin Fhos. Fhos is differentially transcribed during development and responds to ecdysone in a method that is similar to other cell death genes. Similarly to what has been shown for its mammalian counterpart, FHOS protein is translocated to the nucleus at later stages of cell death. Fhos mutants posses disrupted actin cytoskeleton dynamics in persistent salivary glands. Together, our data indicate that Fhos is a new ecdysone-regulated gene that is crucial for changes in the actin cytoskeleton during salivary gland elimination in Drosophila.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.