JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Manufacturing and characterization of a recombinant adeno-associated virus type 8 reference standard material.
Hum. Gene Ther.
PUBLISHED: 10-03-2014
Show Abstract
Hide Abstract
Abstract Gene therapy approaches using recombinant adeno-associated virus serotype 2 (rAAV2) and serotype 8 (rAAV8) have achieved significant clinical benefits. The generation of rAAV Reference Standard Materials (RSM) is key to providing points of reference for particle titer, vector genome titer, and infectious titer for gene transfer vectors. Following the example of the rAAV2RSM, here we have generated and characterized a novel RSM based on rAAV serotype 8. The rAAV8RSM was produced using transient transfection, and the purification was based on density gradient ultracentrifugation. The rAAV8RSM was distributed for characterization along with standard assay protocols to 16 laboratories worldwide. Mean titers and 95% confidence intervals were determined for capsid particles (mean, 5.50×10(11) pt/ml; CI, 4.26×10(11) to 6.75×10(11) pt/ml), vector genomes (mean, 5.75×10(11) vg/ml; CI, 3.05×10(11) to 1.09×10(12) vg/ml), and infectious units (mean, 1.26×10(9) IU/ml; CI, 6.46×10(8) to 2.51×10(9) IU/ml). Notably, there was a significant degree of variation between institutions for each assay despite the relatively tight correlation of assay results within an institution. This outcome emphasizes the need to use RSMs to calibrate the titers of rAAV vectors in preclinical and clinical studies at a time when the field is maturing rapidly. The rAAV8RSM has been deposited at the American Type Culture Collection (VR-1816) and is available to the scientific community.
Related JoVE Video
Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV.
N. Engl. J. Med.
PUBLISHED: 03-07-2014
Show Abstract
Hide Abstract
CCR5 is the major coreceptor for human immunodeficiency virus (HIV). We investigated whether site-specific modification of the gene ("gene editing")--in this case, the infusion of autologous CD4 T cells in which the CCR5 gene was rendered permanently dysfunctional by a zinc-finger nuclease (ZFN)--is safe.
Related JoVE Video
Delayed administration of a bio-engineered zinc-finger VEGF-A gene therapy is neuroprotective and attenuates allodynia following traumatic spinal cord injury.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Following spinal cord injury (SCI) there are drastic changes that occur in the spinal microvasculature, including ischemia, hemorrhage, endothelial cell death and blood-spinal cord barrier disruption. Vascular endothelial growth factor-A (VEGF-A) is a pleiotropic factor recognized for its pro-angiogenic properties; however, VEGF has recently been shown to provide neuroprotection. We hypothesized that delivery of AdV-ZFP-VEGF--an adenovirally delivered bio-engineered zinc-finger transcription factor that promotes endogenous VEGF-A expression--would result in angiogenesis, neuroprotection and functional recovery following SCI. This novel VEGF gene therapy induces the endogenous production of multiple VEGF-A isoforms; a critical factor for proper vascular development and repair. Briefly, female Wistar rats--under cyclosporin immunosuppression--received a 35 g clip-compression injury and were administered AdV-ZFP-VEGF or AdV-eGFP at 24 hours post-SCI. qRT-PCR and Western Blot analysis of VEGF-A mRNA and protein, showed significant increases in VEGF-A expression in AdV-ZFP-VEGF treated animals (p<0.001 and p<0.05, respectively). Analysis of NF200, TUNEL, and RECA-1 indicated that AdV-ZFP-VEGF increased axonal preservation (p<0.05), reduced cell death (p<0.01), and increased blood vessels (p<0.01), respectively. Moreover, AdV-ZFP-VEGF resulted in a 10% increase in blood vessel proliferation (p<0.001). Catwalk™ analysis showed AdV-ZFP-VEGF treatment dramatically improves hindlimb weight support (p<0.05) and increases hindlimb swing speed (p<0.02) when compared to control animals. Finally, AdV-ZFP-VEGF administration provided a significant reduction in allodynia (p<0.01). Overall, the results of this study indicate that AdV-ZFP-VEGF administration can be delivered in a clinically relevant time-window following SCI (24 hours) and provide significant molecular and functional benefits.
Related JoVE Video
Gene therapy for traumatic central nervous system injury and stroke using an engineered zinc finger protein that upregulates VEGF-A.
J. Neurotrauma
PUBLISHED: 09-08-2011
Show Abstract
Hide Abstract
Recent studies have identified anti-apoptotic functions for vascular endothelial growth factor (VEGF) in the central nervous system (CNS). However, VEGF therapy has been hampered by a tendency to promote vascular permeability, edema, and inflammation. Recently, engineered zinc finger proteins (ZFPs) that upregulate multiple forms of VEGF in their natural biological ratios, have been developed to overcome these negative side effects. We used retinal trauma and ischemia models, and a cortical pial strip ischemia model to determine if VEGF upregulating ZFPs are neuroprotective in the adult CNS. Optic nerve transection and ophthalmic artery ligation lead to the apoptotic degeneration of retinal ganglion cells (RGCs) and are, respectively, two highly reproducible models for CNS trauma or ischemia. Adeno-associated vectors (AAV) vectors encoding VEGF-ZFPs (AAV-VEGF-ZFP) significantly increased RGC survival by ?twofold at 14 days after optic nerve transection or ophthalmic artery ligation. Furthermore, AAV-VEGF-ZFP enhanced recovery of the pupillary light reflex. RECA-1 immunostaining demonstrated no appreciable differences between retinas treated with AAV-VEGF-ZFP and controls, suggesting that AAV-VEGF-ZFP treatment did not affect retinal vasculature. Following pial strip of the forelimb motor cortex, brains treated with an adenovirus encoding VEGF ZFPs (AdV-ZFP) showed higher neuronal survival, accelerated wound contraction, and reduced lesion volume between 1 and 6 weeks after injury. Behavioral testing using the cylinder test for vertical exploration showed that AdV-VEGF-ZFP treatment enhanced contralateral forelimb function within the first 2 weeks after injury. Our results indicate that VEGF ZFP therapy is neuroprotective following traumatic injury or stroke in the adult mammalian CNS.
Related JoVE Video
Characterization of a recombinant adeno-associated virus type 2 Reference Standard Material.
Hum. Gene Ther.
PUBLISHED: 09-16-2010
Show Abstract
Hide Abstract
A recombinant adeno-associated virus serotype 2 Reference Standard Material (rAAV2 RSM) has been produced and characterized with the purpose of providing a reference standard for particle titer, vector genome titer, and infectious titer for AAV2 gene transfer vectors. Production and purification of the reference material were carried out by helper virus-free transient transfection and chromatographic purification. The purified bulk material was vialed, confirmed negative for microbial contamination, and then distributed for characterization along with standard assay protocols and assay reagents to 16 laboratories worldwide. Using statistical transformation and modeling of the raw data, mean titers and confidence intervals were determined for capsid particles ({X}, 9.18?x?10¹¹ particles/ml; 95% confidence interval [CI], 7.89?x?10¹¹ to 1.05?x?10¹² particles/ml), vector genomes ({X}, 3.28?x?10¹? vector genomes/ml; 95% CI, 2.70?x?10¹? to 4.75?x?10¹? vector genomes/ml), transducing units ({X}, 5.09?x?10? transducing units/ml; 95% CI, 2.00?x?10? to 9.60?x?10? transducing units/ml), and infectious units ({X}, 4.37?x?10? TCID?? IU/ml; 95% CI, 2.06?x?10? to 9.26?x?10? TCID?? IU/ml). Further analysis confirmed the identity of the reference material as AAV2 and the purity relative to nonvector proteins as greater than 94%. One obvious trend in the quantitative data was the degree of variation between institutions for each assay despite the relatively tight correlation of assay results within an institution. This relatively poor degree of interlaboratory precision and accuracy was apparent even though attempts were made to standardize the assays by providing detailed protocols and common reagents. This is the first time that such variation between laboratories has been thoroughly documented and the findings emphasize the need in the field for universal reference standards. The rAAV2 RSM has been deposited with the American Type Culture Collection and is available to the scientific community to calibrate laboratory-specific internal titer standards. Anticipated uses of the rAAV2 RSM are discussed.
Related JoVE Video
Engineered zinc finger protein-mediated VEGF-a activation restores deficient VEGF-a in sensory neurons in experimental diabetes.
Diabetes
PUBLISHED: 11-23-2009
Show Abstract
Hide Abstract
The objectives of the study were to evaluate retrograde axonal transport of vascular endothelial growth factor A (VEGF-A) protein to sensory neurons after intramuscular administration of an engineered zinc finger protein activator of endogenous VEGF-A (VZ+434) in an experimental model of diabetes, and to characterize the VEGF-A target neurons.
Related JoVE Video
An engineered transcription factor which activates VEGF-A enhances recovery after spinal cord injury.
Neurobiol. Dis.
PUBLISHED: 05-08-2009
Show Abstract
Hide Abstract
Spinal cord injury (SCI) leads to local vascular disruption and progressive ischemia, which contribute to secondary degeneration. Enhancing angiogenesis through the induction of vascular endothelial growth factor (VEGF)-A expression therefore constitutes an attractive therapeutic approach. Moreover, emerging evidence suggests that VEGF-A may also exhibit neurotrophic, neuroprotective, and neuroproliferative effects. Building on this previous work, we seek to examine the potential therapeutic benefits of an engineered zinc finger protein (ZFP) transcription factor designed to activate expression of all isoforms of endogenous VEGF-A (ZFP-VEGF). Administration of ZFP-VEGF resulted in increased VEGF-A mRNA and protein levels, an attenuation of axonal degradation, a significant increase in vascularity and decreased levels of apoptosis. Furthermore, ZFP-VEGF treated animals showed significant improvements in tissue preservation and neurobehavioural outcomes. These data suggest that activation of VEGF-A via the administration of an engineered ZFP transcription factor holds promise as a therapy for SCI and potentially other forms of neurotrauma.
Related JoVE Video
Treatment of traumatic brain injury using zinc-finger protein gene therapy targeting VEGF-A.
J. Neurotrauma
Show Abstract
Hide Abstract
Vascular endothelial growth factor (VEGF) plays a role in angiogenesis and has been shown to be neuroprotective following central nervous system trauma. In the present study we evaluated the pro-angiogenic and neuroprotective effects of an engineered zinc-finger protein transcription factor transactivator targeting the vascular endothelial growth factor A (VEGF-ZFP). We used two virus delivery systems, adeno-virus and adeno-associated virus, to examine the effects of early and delayed VEGF-A upregulation after brain trauma, respectively. Male Sprague-Dawley rats were subject to a unilateral fluid percussion injury (FPI) of moderate severity (2.2-2.5?atm) followed by intracerebral microinjection of either adenovirus vector (Adv) or an adeno-associated vector (AAV) carrying the VEGF-ZFP construct. Adv-VEGF-ZFP-treated animals had significantly fewer TUNEL positive cells in the injured penumbra of the cortex (p<0.001) and hippocampus (p=0.001) relative to untreated rats at 72?h post-injury. Adv-VEGF-ZFP treatment significantly improved fEPSP values (p=0.007) in the CA1 region relative to injury alone. Treatment with AAV2-VEGF-ZFP resulted in improved post-injury microvascular diameter and improved functional recovery on the balance beam and rotarod task at 30 days post-injury. Collectively, the results provide supportive evidence for the concept of acute and delayed treatment following TBI using VEGF-ZFP to induce angiogenesis, reduce cell death, and enhance functional recovery.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.