JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Parallel independent evolution of pathogenicity within the genus Yersinia.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 04-21-2014
Show Abstract
Hide Abstract
The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages. This split demonstrates that contrary to hypotheses that all pathogenic Yersinia species share a recent common pathogenic ancestor, they have evolved independently but followed parallel evolutionary paths in acquiring the same virulence determinants as well as becoming progressively more limited metabolically. Shared virulence determinants are limited to the virulence plasmid pYV and the attachment invasion locus ail. These acquisitions, together with genomic variations in metabolic pathways, have resulted in the parallel emergence of related pathogens displaying an increasingly specialized lifestyle with a spectrum of virulence potential, an emerging theme in the evolution of other important human pathogens.
Related JoVE Video
High prevalence of pathogenic Yersinia enterocolitica in pig cheeks.
Food Microbiol.
PUBLISHED: 03-11-2014
Show Abstract
Hide Abstract
Samples from pork cuts for minced meat and cheeks from processing plants and a slaughterhouse, and modified atmosphere (MA) packaged pork from retail were studied to estimate the prevalence of pathogenic, i.e. virulence plasmid bearing, Yersinia enterocolitica and Yersinia pseudotuberculosis in pork, as well as to quantify pathogenic Y. enterocolitica in pork cuts. Pathogenic (virF-positive) Y. enterocolitica was isolated from 17 pig cheeks (23%) but not from any of the MA-packaged 54 retail pork samples and only from one of the 155 pork cut (0.6%). Most (16/17) of the cheek samples were contaminated with pathogenic Y. enterocolitica 4/O:3 and one with bioserotype 2/O:9. No Y. pseudotuberculosis was isolated. The prevalence of pathogenic Y. enterocolitica was clearly higher (39%) in 155 pork cuts when studied with nested PCR targeting yadA on the virulence plasmid pYV although the contamination level was low varying between 0.1 and 1.6 MPN/g. Raw pork cuts and especially pig cheeks may serve as possible sources for yersiniosis caused by pathogenic Y. enterocolitica.
Related JoVE Video
Population structure of the Yersinia pseudotuberculosis complex according to multilocus sequence typing.
Environ. Microbiol.
PUBLISHED: 09-27-2011
Show Abstract
Hide Abstract
Multilocus sequence analysis of 417 strains of Yersinia pseudotuberculosis revealed that it is a complex of four populations, three of which have been previously assigned species status [Y.?pseudotuberculosis sensu stricto (s.s.), Yersinia pestis and Yersinia similis] and a fourth population, which we refer to as the Korean group, which may be in the process of speciation. We detected clear signs of recombination within Y.?pseudotuberculosis s.s. as well as imports from Y.?similis and the Korean group. The sources of genetic diversification within Y.?pseudotuberculosis s.s. were approximately equally divided between recombination and mutation, whereas recombination has not yet been demonstrated in Y.?pestis, which is also much more genetically monomorphic than is Y.?pseudotuberculosis s.s. Most Y.?pseudotuberculosis s.s. belong to a diffuse group of sequence types lacking clear population structure, although this species contains a melibiose-negative clade that is present globally in domesticated animals. Yersinia? similis corresponds to the previously identified Y.?pseudotuberculosis genetic type G4, which is probably not pathogenic because it lacks the virulence factors that are typical for Y.?pseudotuberculosis s.s. In contrast, Y.?pseudotuberculosis s.s., the Korean group and Y.?pestis can all cause disease in humans.
Related JoVE Video
Listeria monocytogenes contamination in pork can originate from farms.
J. Food Prot.
PUBLISHED: 04-10-2010
Show Abstract
Hide Abstract
The presence of Listeria monocytogenes in the pork production chain was followed from farm to slaughterhouse by examining the farm and slaughterhouse levels in the same 364 pigs, and finally by analyzing the cut meats from the same pig lots. Both organic and conventional farms were included in the study. Altogether, 1,962 samples were collected, and the 424 L. monocytogenes isolates were analyzed by pulsed-field gel electrophoresis. The results from microbial analyses were combined with data from an on-farm observation and a questionnaire to clarify the associations between farm factors and prevalence of L. monocytogenes. The prevalence of L. monocytogenes was 11, 1, 1, 24, 5, 1, and 4% in feed and litter, rectal swabs, intestinal contents, tonsils, pluck sets (including lungs, heart, liver, and kidney), carcasses, and meat cuts, respectively. The prevalence was significantly higher in organic than in conventional pig production at the farm and slaughterhouse level, but not in meat cuts. Similar L. monocytogenes genotypes were recovered in different steps of the production chain in pigs originating from the same farm. Specific farm management factors, i.e., large group size, contact with pet and pest animals, manure treatment, use of coarse feed, access to outdoor area, hygiene practices, and drinking from the trough, influenced the presence of L. monocytogenes in pigs. L. monocytogenes was present in the production chain, and transmission of the pathogen was possible throughout the chain, from the farm to pork. Good farm-level practices can therefore be utilized to reduce the prevalence of this pathogen.
Related JoVE Video
Reduction of enteropathogenic Yersinia in the pig slaughterhouse by using bagging of the rectum.
J. Food Prot.
PUBLISHED: 03-26-2010
Show Abstract
Hide Abstract
To evaluate the effectiveness of bagging of the rectum in mitigating the contamination of carcasses with enteropathogenic Yersinia at the slaughterhouse and to estimate the hidden prevalences of these pathogens in different farm types and capacities, samples from pigs, carcasses, and slaughterhouse environment were collected, and a Bayesian probability model was constructed. In addition, the contamination routes were studied with molecular typing of the isolated strains. According to the model, bagging of the rectum reduced carcass contamination significantly with pathogenic Yersinia enterocolitica, but not with Yersinia pseudotuberculosis, and alone it was insufficient to completely prevent the carcass contamination with enteropathogenic Yersinia. The hidden prevalence of pathogenic Y. enterocolitica was higher at high production capacity than it was in low production capacity, but the 95 % credible intervals overlapped. Slaughterhouse environments can contaminate carcasses with enteropathogenic Yersinia, but the plausible main contamination source is the pig carrying the pathogen.
Related JoVE Video
Contamination of carcasses with human pathogenic Yersinia enterocolitica 4/O:3 originates from pigs infected on farms.
Foodborne Pathog. Dis.
PUBLISHED: 05-12-2009
Show Abstract
Hide Abstract
Pigs are considered as a major reservoir of human pathogenic Yersinia enterocolitica and a source of human yersiniosis. However, the transmission route of Y. enterocolitica from farm to pork is still unclear. The transmission of pathogenic Y. enterocolitica from pigs to carcasses and pluck sets was investigated by collecting samples from 364 individual ear-tagged pigs on the farm and at the slaughterhouse. In addition, isolated strains were analyzed, using pulsed-field gel electrophoresis. Isolation of similar genotypes of pathogenic Y. enterocolitica 4/O:3 in animals on the farm and at the slaughterhouse and in carcasses shows that carcass contamination originates from the strains a pig carries during the fattening period. Direct contamination from the carrier pig to its subsequent pluck set is also the primary contamination route for pluck sets, but cross-contamination appears to have a larger impact on pluck set contamination than on carcasses. In this study, the within-farm prevalence of pathogenic Y. enterocolitica varied from 0% to 100%, indicating specific farm factors affect the prevalence of Y. enterocolitica in pigs. The association of farm factors with the high prevalence of pathogenic Y. enterocolitica on farms was studied for the first time, using correlation and two-level logistic regression analyses. Specific farm factors, i.e. drinking from a nipple, absence of coarse feed or bedding for slaughter pigs, and no access of pest animals to pig house, were associated with a high prevalence of pathogenic Y. enterocolitica 4/O:3.
Related JoVE Video
Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis.
APMIS
PUBLISHED: 01-24-2009
Show Abstract
Hide Abstract
A multiplex real-time polymerase chain reaction (PCR) assay was developed for the detection of Yersinia pestis and Yersinia pseudotuberculosis. The assay includes four primer pairs, two of which are specific for Y. pestis, one for Y. pestis and Y. pseudotuberculosis and one for bacteriophage lambda; the latter was used as an internal amplification control. The Y. pestis-specific target genes in the assay were ypo2088, a gene coding for a putative methyltransferase, and the pla gene coding for the plasminogen activator. In addition, the wzz gene was used as a target to specifically identify both Y. pestis and the closely related Y. pseudotuberculosis group. The primer and probe sets described for the different genes can be used either in single or in multiplex PCR assays because the individual probes were designed with different fluorochromes. The assays were found to be both sensitive and specific; the lower limit of the detection was 10-100 fg of extracted Y. pestis or Y. pseudotuberculosis total DNA. The sensitivity of the tetraplex assay was determined to be 1 cfu for the ypo2088 and pla probe labelled with FAM and JOE fluorescent dyes, respectively.
Related JoVE Video
Prevalence and genetic diversity of enteropathogenic Yersinia spp. in pigs at farms and slaughter in Lithuania.
Res. Vet. Sci.
Show Abstract
Hide Abstract
The prevalence of enteropathogenic Yersinia spp. in pigs at farms and slaughter in relation to potential farming risk factors in Lithuania was examined. Pig faeces and carcase swab samples from 11 farms were studied at slaughterhouses. Nine of the 11 farms were visited again 3-5 months later, and pooled feacal samples and environmental samples were collected. Pathogenic Yersinia enterocolitica was found in 64% and Yersinia pseudotuberculosis in 45% of the sampled pig farms. All obtained isolates belonged to bioserotypes 4/O:3 and 2/O:3, respectively. Low biosecurity level was associated with a high prevalence of Y. enterocolitica on farms. Characterization with PFGE of 64 Y. enterocolitica and 27 Y. pseudotuberculosis isolates revealed seven and two different genotypes, respectively. Dominant enteropathogenic Yersinia spp. genotypes were obtained in both pig feacal and carcase samples. The high contamination of pig carcases (25%) with enteropathogenic Yersinia spp. may be an important factor contributing to the high incidence of human yersiniosis in Lithuania.
Related JoVE Video
Piglets are a source of pathogenic Yersinia enterocolitica on fattening-pig farms.
Appl. Environ. Microbiol.
Show Abstract
Hide Abstract
To study the origin and spread of Yersinia enterocolitica among pigs, fecal and blood samples were repeatedly taken on a fattening farm. A few piglets were found to be already infected on breeding farms. After the piglets were mixed, the infection spread through the whole unit. Eventually, all the pigs excreted the pathogen.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.