JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Structured reporting in anatomic pathology for coclinical trials: the caELMIR model.
Cold Spring Harb Protoc
PUBLISHED: 08-26-2014
Show Abstract
Hide Abstract
Electronic media, with their tremendous potential for storing, retrieving, and integrating data, are an essential part of modern collaborative multidisciplinary science. Structured reporting is a fundamental aspect of keeping accurate, searchable electronic records. This discussion on structured reporting in anatomic pathology for pre- and coclinical trials in animal models provides background information for scientists who are not familiar with structured reporting. Practical examples are provided using a working database system for preclinical research-caELMIR (Cancer Electronic Laboratory Management Information and Retrieval)-developed by the U.S. National Cancer Institute's (NCI's) Mouse Models of Human Cancers Consortium (MMHCC).
Related JoVE Video
The E2F transcription factors regulate tumor development and metastasis in a mouse model of metastatic breast cancer.
Mol. Cell. Biol.
PUBLISHED: 06-16-2014
Show Abstract
Hide Abstract
While the E2F transcription factors (E2Fs) have a clearly defined role in cell cycle control, recent work has uncovered new functions. Using genomic signature methods, we predicted a role for the activator E2F transcription factors in the mouse mammary tumor virus (MMTV)-polyomavirus middle T oncoprotein (PyMT) mouse model of metastatic breast cancer. To genetically test the hypothesis that the E2Fs function to regulate tumor development and metastasis, we interbred MMTV-PyMT mice with E2F1, E2F2, or E2F3 knockout mice. With the ablation of individual E2Fs, we noted alterations of tumor latency, histology, and vasculature. Interestingly, we noted striking reductions in metastatic capacity and in the number of circulating tumor cells in both the E2F1 and E2F2 knockout backgrounds. Investigating E2F target genes that mediate metastasis, we found that E2F loss led to decreased levels of vascular endothelial growth factor (Vegfa), Bmp4, Cyr61, Nupr1, Plod 2, P4ha1, Adamts1, Lgals3, and Angpt2. These gene expression changes indicate that the E2Fs control the expression of genes critical to angiogenesis, the remodeling of the extracellular matrix, tumor cell survival, and tumor cell interactions with vascular endothelial cells that facilitate metastasis to the lungs. Taken together, these results reveal that the E2F transcription factors play key roles in mediating tumor development and metastasis in addition to their well-characterized roles in cell cycle control.
Related JoVE Video
Analysis of mouse model pathology: a primer for studying the anatomic pathology of genetically engineered mice.
Cold Spring Harb Protoc
PUBLISHED: 06-04-2014
Show Abstract
Hide Abstract
This primer of pathology is intended to introduce investigators to the structure (morphology) of cancer with an emphasis on genetically engineered mouse (GEM) models (GEMMs). We emphasize the necessity of using the entire biological context for the interpretation of anatomic pathology. Because the primary investigator is responsible for almost all of the information and procedures leading up to microscopic examination, they should also be responsible for documentation of experiments so that the microscopic interpretation can be rendered in context of the biology. The steps involved in this process are outlined, discussed, and illustrated. Because GEMMs are unique experimental subjects, some of the more common pitfalls are discussed. Many of these errors can be avoided with attention to detail and continuous quality assurance.
Related JoVE Video
Manual immunohistochemistry staining of mouse tissues using the avidin-biotin complex (ABC) technique.
Cold Spring Harb Protoc
PUBLISHED: 06-04-2014
Show Abstract
Hide Abstract
There are many variations on the immunohistochemistry (IHC) procedure, but all are based on attachment of a primary antibody to a unique epitope on or within the cell. This step is followed by incubation of the cell/primary antibody complex with another, secondary antibody that recognizes the species in which the primary antibody was produced. The secondary antibody has an indicator molecule attached to it. The indicator produces a colored reaction product at the site of original epitope, allowing visualization. This basic two-antibody "sandwich" procedure has many modifications that include other layers of antibodies and numerous indicators, but all variations depend upon the unique ability of antibodies to recognize specific epitopes or antigenic determinants. The procedure described here is called the ABC (avidin-biotin complex) technique. The method utilizes the high avidity of biotin for avidin, which allows formation of a strong bond. The reagents described in this technique produce a gold/brown reaction product that identifies the epitope of interest.
Related JoVE Video
Manual hematoxylin and eosin staining of mouse tissue sections.
Cold Spring Harb Protoc
PUBLISHED: 06-04-2014
Show Abstract
Hide Abstract
The hematoxylin and eosin (H&E) stain is the standard used for microscopic examination of tissues that have been fixed, processed, embedded, and sectioned. It can be performed manually or by automation. For economic reasons, the manual technique is generally the method of choice for facilities with a low sample volume. This protocol describes manual H&E staining of fixed, processed, paraffin-embedded, and sectioned mouse tissues. In H&E-stained tissues, the nucleic acids stain dark blue and the proteins stain red to pink or orange. For accurate phenotyping and delineation of tissue detail, the protocol must be adhered to rigorously. This includes frequent reagent changes as well as the use of "in-date" reagents. Appropriate color in a good H&E stain allows for identification of many tissue subtleties that are necessary for accurate diagnosis.
Related JoVE Video
Mouse tissue fixation.
Cold Spring Harb Protoc
PUBLISHED: 05-03-2014
Show Abstract
Hide Abstract
One of the primary goals of fixation is to stop postmortem changes that degrade the tissue and allow optimal preservation of morphologic and cytological detail as well as nucleic acid integrity. Following death, tissues soon undergo autolysis, and if organisms from the gastrointestinal, urinary, or respiratory tracts are present, their colonization can soon cause putrefaction. Time is of the essence because warmer temperatures accelerate both types of degradation. Placing the tissue into a fixative stops the postmortem changes. Fixatives have their effect on tissue by cross-linking, coagulation, or a combination of both. This article outlines the basic tissue fixation procedure and offers guidance on choosing an appropriate fixative, the timing and duration of fixation, sample storage, and quality issues.
Related JoVE Video
Limited mouse necropsy.
Cold Spring Harb Protoc
PUBLISHED: 05-03-2014
Show Abstract
Hide Abstract
Procurement of mouse tissues or organs is essential for complete verification of almost any phenotype. A proper necropsy can yield information that is difficult to obtain by limited biopsy or surgical intervention. The protocol described here is for a limited autopsy involving the thorax and abdomen only, and does not include all organs.
Related JoVE Video
The use of mouse models of breast cancer and quantitative image analysis to evaluate hormone receptor antigenicity after microwave-assisted formalin fixation.
J. Histochem. Cytochem.
PUBLISHED: 03-28-2014
Show Abstract
Hide Abstract
Microwave methods of fixation can dramatically shorten fixation times while preserving tissue structure; however, it remains unclear if adequate tissue antigenicity is preserved. To assess and validate antigenicity, robust quantitative methods and animal disease models are needed. We used two mouse mammary models of human breast cancer to evaluate microwave-assisted and standard 24-hr formalin fixation. The mouse models expressed four antigens prognostic for breast cancer outcome: estrogen receptor, progesterone receptor, Ki67, and human epidermal growth factor receptor 2. Using pathologist evaluation and novel methods of quantitative image analysis, we measured and compared the quality of antigen preservation, percentage of positive cells, and line plots of cell intensity. Visual evaluations by pathologists established that the amounts and patterns of staining were similar in tissues fixed by the different methods. The results of the quantitative image analysis provided a fine-grained evaluation, demonstrating that tissue antigenicity is preserved in tissues fixed using microwave methods. Evaluation of the results demonstrated that a 1-hr, 150-W fixation is better than a 45-min, 150-W fixation followed by a 15-min, 650-W fixation. The results demonstrated that microwave-assisted formalin fixation can standardize fixation times to 1 hr and produce immunohistochemistry that is in every way commensurate with longer conventional fixation methods.
Related JoVE Video
Mislocalization of the cell polarity protein scribble promotes mammary tumorigenesis and is associated with basal breast cancer.
Cancer Res.
PUBLISHED: 03-24-2014
Show Abstract
Hide Abstract
Scribble (SCRIB) localizes to cell-cell junctions and regulates establishment of epithelial cell polarity. Loss of expression of SCRIB functions as a tumor suppressor in Drosophila and mammals; conversely, overexpression of SCRIB promotes epithelial differentiation in mammals. Here, we report that SCRIB is frequently amplified, mRNA overexpressed, and protein is mislocalized from cell-cell junctions in human breast cancers. High levels of SCRIB mRNA are associated with poor clinical prognosis, identifying an unexpected role for SCRIB in breast cancer. We find that transgenic mice expressing a SCRIB mutant [Pro 305 to Leu (P305L)] that fails to localize to cell-cell junctions, under the control of the mouse mammary tumor virus long terminal repeat promoter, develop multifocal hyperplasia that progresses to highly pleomorphic and poorly differentiated tumors with basal characteristics. SCRIB interacts with phosphatase and tensin homolog (PTEN) and the expression of P305L, but not wild-type SCRIB, promotes an increase in PTEN levels in the cytosol. Overexpression of P305L, but not wild-type SCRIB, activates the Akt/mTOR/S6K signaling pathway. Human breast tumors overexpressing SCRIB have high levels of S6K but do not harbor mutations in PTEN or PIK3CA, identifying SCRIB amplification as a mechanism of activating PI3K signaling in tumors without mutations in PIK3CA or PTEN. Thus, we demonstrate that high levels of mislocalized SCRIB functions as a neomorph to promote mammary tumorigenesis by affecting subcellular localization of PTEN and activating an Akt/mTOR/S6kinase signaling pathway.
Related JoVE Video
At last: classification of human mammary cells elucidates breast cancer origins.
J. Clin. Invest.
PUBLISHED: 01-27-2014
Show Abstract
Hide Abstract
Current breast cancer classification systems are based on molecular evaluation of tumor receptor status and do not account for distinct morphological phenotypes. In other types of cancer, taxonomy based on normal cell phenotypes has been extremely useful for diagnosis and treatment strategies. In this issue of the JCI, Santagata and colleagues developed a breast cancer classification scheme based on characterization of healthy mammary cells. Reclassification of breast cancer cells and breast cancer tissue microarrays with this system correlated with prognosis better than the standard receptor status designation. This scheme provides a major advance toward our understanding of the origin of the cells in the breast and breast cancers.
Related JoVE Video
Accumulation, internalization and therapeutic efficacy of neuropilin-1-targeted liposomes.
J Control Release
PUBLISHED: 01-04-2014
Show Abstract
Hide Abstract
Advancements in liposomal drug delivery have produced long circulating and very stable drug formulations. These formulations minimize systemic exposure; however, unfortunately, therapeutic efficacy has remained limited due to the slow diffusion of liposomal particles within the tumor and limited release or uptake of the encapsulated drug. Here, the carboxyl-terminated CRPPR peptide, with affinity for the receptor neuropilin-1 (NRP), which is expressed on both endothelial and cancer cells, was conjugated to liposomes to enhance the tumor accumulation. Using a pH sensitive probe, liposomes were optimized for specific NRP binding and subsequent cellular internalization using in vitro cellular assays. Liposomes conjugated with the carboxyl-terminated CRPPR peptide (termed C-LPP liposomes) bound to the NRP-positive primary prostatic carcinoma cell line (PPC-1) but did not bind to the NRP-negative PC-3 cell line, and binding was observed with liposomal peptide concentrations as low as 0.16mol%. Binding of the C-LPP liposomes was receptor-limited, with saturation observed at high liposome concentrations. The identical peptide sequence bearing an amide terminus did not bind specifically, accumulating only with a high (2.5mol%) peptide concentration and adhering equally to NRP positive and negative cell lines. The binding of C-LPP liposomes conjugated with 0.63mol% of the peptide was 83-fold greater than liposomes conjugated with the amide version of the peptide. Cellular internalization was also enhanced with C-LPP liposomes, with 80% internalized following 3h incubation. Additionally, fluorescence in the blood pool (~40% of the injected dose) was similar for liposomes conjugated with 0.63mol% of carboxyl-terminated peptide and non-targeted liposomes at 24h after injection, indicating stable circulation. Prior to doxorubicin treatment, in vivo tumor accumulation and vascular targeting were increased for peptide-conjugated liposomes compared to non-targeted liposomes based on confocal imaging of a fluorescent cargo, and the availability of the vascular receptor was confirmed with ultrasound molecular imaging. Finally, over a 4-week course of therapy, tumor knockdown resulting from doxorubicin-loaded, C-LPP liposomes was similar to non-targeted liposomes in syngeneic tumor-bearing FVB mice and C-LPP liposomes reduced doxorubicin accumulation in the skin and heart and eliminated skin toxicity. Taken together, our results demonstrate that a carboxyl-terminated RXXR peptide sequence, conjugated to liposomes at a concentration of 0.63mol%, retains long circulation but enhances binding and internalization, and reduces toxicity.
Related JoVE Video
ETV4 promotes metastasis in response to activation of PI3-kinase and Ras signaling in a mouse model of advanced prostate cancer.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 08-05-2013
Show Abstract
Hide Abstract
Combinatorial activation of PI3-kinase and RAS signaling occurs frequently in advanced prostate cancer and is associated with adverse patient outcome. We now report that the oncogenic Ets variant 4 (Etv4) promotes prostate cancer metastasis in response to coactivation of PI3-kinase and Ras signaling pathways in a genetically engineered mouse model of highly penetrant, metastatic prostate cancer. Using an inducible Cre driver to simultaneously inactivate Pten while activating oncogenic Kras and a fluorescent reporter allele in the prostate epithelium, we performed lineage tracing in vivo to define the temporal and spatial occurrence of prostate tumors, disseminated tumor cells, and metastases. These analyses revealed that though disseminated tumors cells arise early following the initial occurrence of prostate tumors, there is a significant temporal lag in metastasis, which is temporally coincident with the up-regulation of Etv4 expression in primary tumors. Functional studies showed that knockdown of Etv4 in a metastatic cell line derived from the mouse model abrogates the metastatic phenotype but does not affect tumor growth. Notably, expression and activation of ETV4, but not other oncogenic ETS genes, is correlated with activation of both PI3-kinase and Ras signaling in human prostate tumors and metastases. Our findings indicate that ETV4 promotes metastasis in prostate tumors that have activation of PI3-kinase and Ras signaling, and therefore, ETV4 represents a potential target of therapeutic intervention for metastatic prostate cancer.
Related JoVE Video
An integrin binding-defective mutant of insulin-like growth factor-1 (R36E/R37E IGF1) acts as a dominant-negative antagonist of the IGF1 receptor (IGF1R) and suppresses tumorigenesis but still binds to IGF1R.
J. Biol. Chem.
PUBLISHED: 05-21-2013
Show Abstract
Hide Abstract
Insulin-like growth factor-1 (IGF1) is a major therapeutic target for cancer. We recently reported that IGF1 directly binds to integrins (?v?3 and ?6?4) and induces ternary complex formation (integrin-IGF1-IGF1 receptor (IGF1R)) and that the integrin binding-defective mutant of IGF1 (R36E/R37E) is defective in signaling and ternary complex formation. These findings predict that R36E/R37E competes with WT IGF1 for binding to IGF1R and inhibits IGF signaling. Here, we described that excess R36E/R37E suppressed cell viability increased by WT IGF1 in vitro in non-transformed cells. We studied the effect of R36E/R37E on viability and tumorigenesis in cancer cell lines. We did not detect an effect of WT IGF1 or R36E/R37E in cancer cells under anchorage-dependent conditions. However, under anchorage-independent conditions, WT IGF1 enhanced cell viability and induced signals, whereas R36E/R37E did not. Notably, excess R36E/R37E suppressed cell viability and signaling induced by WT IGF1 under anchorage-independent conditions. Using cancer cells stably expressing WT IGF1 or R36E/R37E, we determined that R36E/R37E suppressed tumorigenesis in vivo, whereas WT IGF1 markedly enhanced it. R36E/R37E suppressed the binding of WT IGF1 to the cell surface and the subsequent ternary complex formation induced by WT IGF1. R36E/R37E suppressed activation of IGF1R by insulin. WT IGF1, but not R36E/R37E, induced ternary complex formation with the IGF1R/insulin receptor hybrid. These findings suggest that 1) IGF1 induces signals under anchorage-independent conditions and that 2) R36E/R37E acts as a dominant-negative inhibitor of IGF1R (IGF1 decoy). Our results are consistent with a model in which ternary complex formation is critical for IGF signaling.
Related JoVE Video
Animal models of human prostate cancer: the consensus report of the New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee.
Cancer Res.
PUBLISHED: 04-22-2013
Show Abstract
Hide Abstract
Animal models, particularly mouse models, play a central role in the study of the etiology, prevention, and treatment of human prostate cancer. While tissue culture models are extremely useful in understanding the biology of prostate cancer, they cannot recapitulate the complex cellular interactions within the tumor microenvironment that play a key role in cancer initiation and progression. The National Cancer Institute (NCI) Mouse Models of Human Cancers Consortium convened a group of human and veterinary pathologists to review the current animal models of prostate cancer and make recommendations about the pathologic analysis of these models. More than 40 different models with 439 samples were reviewed, including genetically engineered mouse models, xenograft, rat, and canine models. Numerous relevant models have been developed over the past 15 years, and each approach has strengths and weaknesses. Analysis of multiple genetically engineered models has shown that reactive stroma formation is present in all the models developing invasive carcinomas. In addition, numerous models with multiple genetic alterations display aggressive phenotypes characterized by sarcomatoid carcinomas and metastases, which is presumably a histologic manifestation of epithelial-mesenchymal transition. The significant progress in development of improved models of prostate cancer has already accelerated our understanding of the complex biology of prostate cancer and promises to enhance development of new approaches to prevention, detection, and treatment of this common malignancy.
Related JoVE Video
Met synergizes with p53 loss to induce mammary tumors that possess features of claudin-low breast cancer.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 03-18-2013
Show Abstract
Hide Abstract
Triple-negative breast cancer (TNBC) accounts for ?20% of cases and contributes to basal and claudin-low molecular subclasses of the disease. TNBCs have poor prognosis, display frequent mutations in tumor suppressor gene p53 (TP53), and lack targeted therapies. The MET receptor tyrosine kinase is elevated in TNBC and transgenic Met models (Met(mt)) develop basal-like tumors. To investigate collaborating events in the genesis of TNBC, we generated Met(mt) mice with conditional loss of murine p53 (Trp53) in mammary epithelia. Somatic Trp53 loss, in combination with Met(mt), significantly increased tumor penetrance over Met(mt) or Trp53 loss alone. Unlike Met(mt) tumors, which are histologically diverse and enriched in a basal-like molecular signature, the majority of Met(mt) tumors with Trp53 loss displayed a spindloid pathology with a distinct molecular signature that resembles the human claudin-low subtype of TNBC, including diminished claudins, an epithelial-to-mesenchymal transition signature, and decreased expression of the microRNA-200 family. Moreover, although mammary specific loss of Trp53 promotes tumors with diverse pathologies, those with spindloid pathology and claudin-low signature display genomic Met amplification. In both models, MET activity is required for maintenance of the claudin-low morphological phenotype, in which MET inhibitors restore cell-cell junctions, rescue claudin 1 expression, and abrogate growth and dissemination of cells in vivo. Among human breast cancers, elevated levels of MET and stabilized TP53, indicative of mutation, correlate with highly proliferative TNBCs of poor outcome. This work shows synergy between MET and TP53 loss for claudin-low breast cancer, identifies a restricted claudin-low gene signature, and provides a rationale for anti-MET therapies in TNBC.
Related JoVE Video
Quantitation of fixative-induced morphologic and antigenic variation in mouse and human breast cancers.
Lab. Invest.
PUBLISHED: 02-11-2013
Show Abstract
Hide Abstract
Quantitative Image Analysis (QIA) of digitized whole slide images for morphometric parameters and immunohistochemistry of breast cancer antigens was used to evaluate the technical reproducibility, biological variability, and intratumoral heterogeneity in three transplantable mouse mammary tumor models of human breast cancer. The relative preservation of structure and immunogenicity of the three mouse models and three human breast cancers was also compared when fixed with representatives of four distinct classes of fixatives. The three mouse mammary tumor cell models were an ER+/PR+ model (SSM2), a Her2+ model (NDL), and a triple negative model (MET1). The four breast cancer antigens were ER, PR, Her2, and Ki67. The fixatives included examples of (1) strong cross-linkers, (2) weak cross-linkers, (3) coagulants, and (4) combination fixatives. Each parameter was quantitatively analyzed using modified Aperio Technologies ImageScope algorithms. Careful pre-analytical adjustments to the algorithms were required to provide accurate results. The QIA permitted rigorous statistical analysis of results and grading by rank order. The analyses suggested excellent technical reproducibility and confirmed biological heterogeneity within each tumor. The strong cross-linker fixatives, such as formalin, consistently ranked higher than weak cross-linker, coagulant and combination fixatives in both the morphometric and immunohistochemical parameters.
Related JoVE Video
ATG proteins mediate efferocytosis and suppress inflammation in mammary involution.
Autophagy
PUBLISHED: 02-04-2013
Show Abstract
Hide Abstract
Involution is the process of post-lactational mammary gland regression to quiescence and it involves secretory epithelial cell death, stroma remodeling and gland repopulation by adipocytes. Though reportedly accompanying apoptosis, the role of autophagy in involution has not yet been determined. We now report that autophagy-related (ATG) proteins mediate dead cell clearance and suppress inflammation during mammary involution. In vivo, Becn1(+/-) and Atg7-deficient mammary epithelial cells (MECs) produced competent apoptotic bodies, but were defective phagocytes in association with reduced expression of the MERTK and ITGB5 receptors, thus pointing to defective apoptotic body engulfment. Atg-deficient tissues exhibited higher levels of involution-associated inflammation, which could be indicative of a tumor-modulating microenvironment, and developed ductal ectasia, a manifestation of deregulated post-involution gland remodeling. In vitro, ATG (BECN1 or ATG7) knockdown compromised MEC-mediated apoptotic body clearance in association with decreased RAC1 activation, thus confirming that, in addition to the defective phagocytic processing reported by other studies, ATG protein defects also impair dead cell engulfment. Using two different mouse models with mammary gland-associated Atg deficiencies, our studies shed light on the essential role of ATG proteins in MEC-mediated efferocytosis during mammary involution and provide novel insights into this important developmental process. This work also raises the possibility that a regulatory feedback loop exists, by which the efficacy of phagocytic cargo processing in turn regulates the rate of engulfment and ultimately determines the kinetics of phagocytosis and dead cell clearance.
Related JoVE Video
Single unpurified breast tumor-initiating cells from multiple mouse models efficiently elicit tumors in immune-competent hosts.
PLoS ONE
PUBLISHED: 01-31-2013
Show Abstract
Hide Abstract
The tumor-initiating cell (TIC) frequency of bulk tumor cell populations is one of the criteria used to distinguish malignancies that follow the cancer stem cell model from those that do not. However, tumor-initiating cell frequencies may be influenced by experimental conditions and the extent to which tumors have progressed, parameters that are not always addressed in studies of these cells. We employed limiting dilution cell transplantation of minimally manipulated tumor cells from mammary tumors of several transgenic mouse models to determine their tumor-initiating cell frequency. We determined whether the tumors that formed following tumor cell transplantation phenocopied the primary tumors from which they were isolated and whether they could be serially transplanted. Finally we investigated whether propagating primary tumor cells in different tissue culture conditions affected their resident tumor-initiating cell frequency. We found that tumor-initiating cells comprised between 15% and 50% of the bulk tumor cell population in multiple independent mammary tumors from three different transgenic mouse models of breast cancer. Culture of primary mammary tumor cells in chemically-defined, serum-free medium as non-adherent tumorspheres preserved TIC frequency to levels similar to that of the primary tumors from which they were established. By contrast, propagating the primary tumor cells in serum-containing medium as adherent populations resulted in a several thousand-fold reduction in their tumor-initiating cell fraction. Our findings suggest that experimental conditions, including the sensitivity of the transplantation assay, can dramatically affect estimates of tumor initiating cell frequency. Moreover, conditional on cell culture conditions, the tumor-initiating cell fraction of bulk mouse mammary tumor cell preparations can either be maintained at high or low frequency in vitro thus permitting comparative studies of tumorigenic and non-tumorigenic cancer cells.
Related JoVE Video
Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity.
Nat. Cell Biol.
PUBLISHED: 01-21-2013
Show Abstract
Hide Abstract
A key issue in cancer biology is whether oncogenic transformation of different cell types of origin within an adult tissue gives rise to distinct tumour subtypes that differ in their prognosis and/or treatment response. We now show that initiation of prostate tumours in basal or luminal epithelial cells in mouse models results in tumours with distinct molecular signatures that are predictive of human patient outcomes. Furthermore, our analysis of untransformed basal cells reveals an unexpected assay dependence of their stem cell properties in sphere formation and transplantation assays versus genetic lineage tracing during prostate regeneration and adult tissue homeostasis. Although oncogenic transformation of basal cells gives rise to tumours with luminal phenotypes, cross-species bioinformatic analyses indicate that tumours of luminal origin are more aggressive than tumours of basal origin, and identify a molecular signature associated with patient outcome. Our results reveal the inherent plasticity of basal cells, and support a model in which different cells of origin generate distinct molecular subtypes of prostate cancer.
Related JoVE Video
Three interrelated themes in current breast cancer research: gene addiction, phenotypic plasticity, and cancer stem cells.
Breast Cancer Res.
PUBLISHED: 10-25-2011
Show Abstract
Hide Abstract
Recent efforts to understand breast cancer biology involve three interrelated themes that are founded on a combination of clinical and experimental observations. The central concept is gene addiction. The clinical dilemma is the escape from gene addiction, which is mediated, in part, by phenotypic plasticity as exemplified by epithelial-to-mesenchymal transition and mesenchymal-to-epithelial transition. Finally, cancer stem cells are now recognized as the basis for minimal residual disease and malignant progression over time. These themes cooperate in breast cancer, as induction of epithelial-to-mesenchymal transition enhances self-renewal and expression of cancer stem cells, which are believed to facilitate tumor resistance.
Related JoVE Video
A compendium of the mouse mammary tumor biologist: from the initial observations in the house mouse to the development of genetically engineered mice.
Cold Spring Harb Perspect Biol
PUBLISHED: 10-22-2011
Show Abstract
Hide Abstract
For over a century, mouse mammary tumor biology and the associated mouse mammary tumor virus (MMTV) have served as the foundation for experimental cancer research, in general, and, in particular, experimental breast cancer research. Spontaneous mouse mammary tumors were the basis for studies of the natural history of neoplasia, oncogenic viruses, host responses, endocrinology and neoplastic progression. However, lacking formal proof of a human mammary tumor virus, the preeminence of the mouse model faded in the 1980s. Since the late 1980s, genetically engineered mice (GEM) have proven extremely useful for studying breast cancer and have become the animal model for human breast cancer. Hundreds of mouse models of human breast cancer have been developed since the first demonstration in 1984. The GEM have attracted a new generation of molecular and cellular biologists eager to apply their skill sets to these surrogates of the human disease. Newcomers often enter the field without an appreciation of the origins of mouse mammary tumor biology and the basis for many of the prevailing concepts. Our purpose in writing this compendium is to extend an "olive branch" while simultaneously deepen the knowledge of the novice mouse mammary tumor biologist as they journey into a field rich in pathology and genetics spanning several centuries.
Related JoVE Video
An open environment CT-US fusion for tissue segmentation during interventional guidance.
PLoS ONE
PUBLISHED: 05-09-2011
Show Abstract
Hide Abstract
Therapeutic ultrasound (US) can be noninvasively focused to activate drugs, ablate tumors and deliver drugs beyond the blood brain barrier. However, well-controlled guidance of US therapy requires fusion with a navigational modality, such as magnetic resonance imaging (MRI) or X-ray computed tomography (CT). Here, we developed and validated tissue characterization using a fusion between US and CT. The performance of the CT/US fusion was quantified by the calibration error, target registration error and fiducial registration error. Met-1 tumors in the fat pads of 12 female FVB mice provided a model of developing breast cancer with which to evaluate CT-based tissue segmentation. Hounsfield units (HU) within the tumor and surrounding fat pad were quantified, validated with histology and segmented for parametric analysis (fat: -300 to 0 HU, protein-rich: 1 to 300 HU, and bone: HU>300). Our open source CT/US fusion system differentiated soft tissue, bone and fat with a spatial accuracy of ?1 mm. Region of interest (ROI) analysis of the tumor and surrounding fat pad using a 1 mm(2) ROI resulted in mean HU of 68±44 within the tumor and -97±52 within the fat pad adjacent to the tumor (p<0.005). The tumor area measured by CT and histology was correlated (r(2)?=?0.92), while the area designated as fat decreased with increasing tumor size (r(2)?=?0.51). Analysis of CT and histology images of the tumor and surrounding fat pad revealed an average percentage of fat of 65.3% vs. 75.2%, 36.5% vs. 48.4%, and 31.6% vs. 38.5% for tumors <75 mm(3), 75-150 mm(3) and >150 mm(3), respectively. Further, CT mapped bone-soft tissue interfaces near the acoustic beam during real-time imaging. Combined CT/US is a feasible method for guiding interventions by tracking the acoustic focus within a pre-acquired CT image volume and characterizing tissues proximal to and surrounding the acoustic focus.
Related JoVE Video
Luminal expression of PIK3CA mutant H1047R in the mammary gland induces heterogeneous tumors.
Cancer Res.
PUBLISHED: 04-11-2011
Show Abstract
Hide Abstract
The phosphoinositide 3-kinase (PI3K) signaling cascade, a key mediator of cellular survival, growth, and metabolism, is frequently altered in human cancer. Activating mutations in PIK3CA, which encodes the ?-catalytic subunit of PI3K, occur in approximately 30% of breast cancers. These mutations result in constitutive activity of the enzyme and are oncogenic, but it is not known whether they are sufficient to induce mammary carcinomas in mice. In the present study, we show that the expression of mutant PIK3CA H1047R in the luminal mammary epithelium evokes heterogeneous tumors that express luminal and basal markers and are positive for the estrogen receptor. Our results suggest that the PIK3CA H1047R oncogene targets a multipotent progenitor cell and, furthermore, show that this model recapitulates features of human breast tumors with PIK3CA H1047R.
Related JoVE Video
Hunk is required for HER2/neu-induced mammary tumorigenesis.
J. Clin. Invest.
PUBLISHED: 03-12-2011
Show Abstract
Hide Abstract
Understanding the molecular pathways that contribute to the aggressive behavior of human cancers is a critical research priority. The SNF1/AMPK-related protein kinase Hunk is overexpressed in aggressive subsets of human breast, ovarian, and colon cancers. Analysis of Hunk(–/–) mice revealed that this kinase is required for metastasis of c-myc–induced mammary tumors but not c-myc–induced primary tumor formation. Similar to c-myc, amplification of the proto-oncogene HER2/neu occurs in 10%–30% of breast cancers and is associated with aggressive tumor behavior. By crossing Hunk(–/–) mice with transgenic mouse models for HER2/neu-induced mammary tumorigenesis, we report that Hunk is required for primary tumor formation induced by HER2/neu. Knockdown and reconstitution experiments in mouse and human breast cancer cell lines demonstrated that Hunk is required for maintenance of the tumorigenic phenotype in HER2/neu-transformed cells. This requirement is kinase dependent and resulted from the ability of Hunk to suppress apoptosis in association with downregulation of the tumor suppressor p27(kip1). Additionally, we find that Hunk is rapidly upregulated following HER2/neu activation in vivo and in vitro. These findings provide what we believe is the first evidence for a role for Hunk in primary tumorigenesis and cell survival and identify this kinase as an essential effector of the HER2/neu oncogenic pathway.
Related JoVE Video
Longitudinal investigation of permeability and distribution of macromolecules in mouse malignant transformation using PET.
Clin. Cancer Res.
PUBLISHED: 11-24-2010
Show Abstract
Hide Abstract
We apply positron emission tomography (PET) to elucidate changes in nanocarrier extravasation during the transition from premalignant to malignant cancer, providing insight into the use of imaging to characterize early cancerous lesions and the utility of nanoparticles in early disease.
Related JoVE Video
Tuberous sclerosis complex 1: an epithelial tumor suppressor essential to prevent spontaneous prostate cancer in aged mice.
Cancer Res.
PUBLISHED: 10-12-2010
Show Abstract
Hide Abstract
The phosphoinositide 3-kinase (PI3K) pathway regulates mammalian cell growth, survival, and motility and plays a major pathogenetic role in human prostate cancer (PCa). However, the oncogenic contributions downstream of the PI3K pathway made by mammalian target of rapamycin complex 1 (mTORC1)-mediated cell growth signal transduction in PCa have yet to be elucidated in detail. Here, we engineered constitutive mTORC1 activation in prostate epithelium by a conditional genetic deletion of tuberous sclerosis complex 1 (Tsc1), a potent negative regulator of mTORC1 signaling. Epithelial inactivation was not immediately tumorigenic, but Tsc1-deficient mice developed prostatic intraepithelial neoplasia (mPIN) in lateral and anterior prostates by 6 months of age, with increasing disease penetrance over time. Lateral prostate lesions in 16- to 22-month-old mutant mice progressed to two types of more advanced lesions, adenomatous gland forming lesion (Type 1) and atypical glands embedded in massively expanded reactive stroma (Type 2). Both Type 1 and Type 2 lesions contained multiple foci of microinvasive carcinoma. Epithelial neoplastic and atypical stromal lesions persisted despite 4 weeks of RAD001 chemotherapy. Rapalogue resistance was not due to AKT or extracellular signal-regulated kinase 1/2 activation. Expression of the homeobox gene Nkx3.1 was lost in Tsc1-deficient mPIN, and it cooperated with TSC1 loss in mPIN initiation in doubly mutant Tsc1:Nkx3.1 prostatic epithelial knockout mice. Thus, TSC1 inactivation distal to PI3K and AKT activation is sufficient to activate a molecular signaling cascade producing prostatic neoplasia and focal carcinogenesis.
Related JoVE Video
Copper-doxorubicin as a nanoparticle cargo retains efficacy with minimal toxicity.
Mol. Pharm.
PUBLISHED: 10-08-2010
Show Abstract
Hide Abstract
Repeated administration of chemotherapeutics is typically required for the effective treatment of highly aggressive tumors and often results in systemic toxicity. We have created a copper-doxorubicin complex within the core of liposomes and applied the resulting particle in multidose therapy. Copper and doxorubicin concentrations in the blood pool were similar at 24 h (?40% of the injected dose), indicating stable circulation of the complex. Highly quenched doxorubicin fluorescence remained in the blood pool over tens of hours, with fluorescence increasing only with the combination of liposome disruption and copper trans-chelation. At 48 h after injection, doxorubicin fluorescence within the heart and skin was one-fifth and one-half, respectively, of fluorescence observed with ammonium sulfate-loaded doxorubicin liposomes. After 28 days of twice per week doxorubicin administration of 6 mg/kg, systemic toxicity (cardiac hypertrophy and weight and hair loss) was not detected with the copper-doxorubicin liposomes but was substantial with ammonium sulfate-loaded doxorubicin liposomes. We then incorporated two strategies designed to enhance efficacy, mTOR inhibition (rapamycin) to slow proliferation and therapeutic ultrasound to enhance accumulation and local diffusion. Tumor accumulation was ?10% ID/g and was enhanced approximately 2-fold with the addition of therapeutic ultrasound. After the 28-day course of therapy, syngeneic tumors regressed to a premalignant phenotype of ?(1 mm)(3) or could not be detected.
Related JoVE Video
ANCCA/ATAD2 overexpression identifies breast cancer patients with poor prognosis, acting to drive proliferation and survival of triple-negative cells through control of B-Myb and EZH2.
Cancer Res.
PUBLISHED: 09-23-2010
Show Abstract
Hide Abstract
Chromatin coregulators are important factors in tumorigenesis and cancer progression. ANCCA is an AAA+ ATPase and a bromodomain-containing nuclear coactivator for the estrogen and androgen receptors that is crucial for assembly of chromatin-modifying complexes and proliferation of hormone-responsive cancer cells. In this study, we show that ANCCA is overexpressed in >70% of breast tumors and that its high protein level correlates well with tumor histologic grades (P<0.0001), highlighting ANCCA as a prognostic factor for poor overall survival and disease recurrence. Strikingly, high-level ANCCA correlated with triple-negative tumors that represent highly aggressive disease. Analysis of ANCCA transcript levels in multiple expression profiles of breast cancer identified ANCCA as a common signature gene, indicating that elevated transcripts also strongly correlate with tumor metastasis and poor survival. Biological and mechanistic investigations revealed that ANCCA is crucial for proliferation and survival of triple-negative/basal-like cancer cells and that it controls the expression of B-Myb, histone methyltransferase EZH2, and an Rb-E2F core program for proliferation, along with a subset of key mitotic kinesins and cell survival genes (IRS2, VEGF, and Akt1). In particular, ANCCA overexpression correlated strongly with EZH2 in tumors. Our results suggest that ANCCA may integrate multiple oncogenic programs in breast cancer, serving in particular as a prognostic marker and a therapeutic target for triple-negative cancers.
Related JoVE Video
Fibroblast growth factor receptor signaling dramatically accelerates tumorigenesis and enhances oncoprotein translation in the mouse mammary tumor virus-Wnt-1 mouse model of breast cancer.
Cancer Res.
PUBLISHED: 05-25-2010
Show Abstract
Hide Abstract
Fibroblast growth factor (FGF) cooperates with the Wnt/beta-catenin pathway to promote mammary tumorigenesis. To investigate the mechanisms involved in FGF/Wnt cooperation, we genetically engineered a model of inducible FGF receptor (iFGFR) signaling in the context of the well-established mouse mammary tumor virus-Wnt-1 transgenic mouse. In the bigenic mice, iFGFR1 activation dramatically enhanced mammary tumorigenesis. Expression microarray analysis did not show transcriptional enhancement of Wnt/beta-catenin target genes but instead showed a translational gene signature that also correlated with elevated FGFR1 and FGFR2 in human breast cancer data sets. Additionally, iFGFR1 activation enhanced recruitment of RNA to polysomes, resulting in a marked increase in protein expression of several different Wnt/beta-catenin target genes. FGF pathway activation stimulated extracellular signal-regulated kinase and the phosphorylation of key translation regulators both in vivo in the mouse model and in vitro in a human breast cancer cell line. Our results suggest that cooperation of the FGF and Wnt pathways in mammary tumorigenesis is based on the activation of protein translational pathways that result in, but are not limited to, increased expression of Wnt/beta-catenin target genes (at the level of protein translation). Further, they reveal protein translation initiation factors as potential therapeutic targets for human breast cancers with alterations in FGF signaling.
Related JoVE Video
Maternal dioxin exposure combined with a diet high in fat increases mammary cancer incidence in mice.
Environ. Health Perspect.
PUBLISHED: 05-04-2010
Show Abstract
Hide Abstract
Results from previous studies have suggested that breast cancer risk correlates with total lifetime exposure to estrogens and that early-life 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure or diets high in fat can also increase cancer risk.
Related JoVE Video
Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors.
Cancer Cell
PUBLISHED: 03-25-2010
Show Abstract
Hide Abstract
Neuroendocrine (NE) phenotype, seen in >30% of prostate adenocarcinomas (PCa), and NE prostate tumors are implicated in aggressive prostate cancer. Formation of NE prostate tumors in the TRAMP mouse model was suppressed in mice lacking the ubiquitin ligase Siah2, which regulates HIF-1alpha availability. Cooperation between HIF-1alpha and FoxA2, a transcription factor expressed in NE tissue, promotes recruitment of p300 to transactivate select HIF-regulated genes, Hes6, Sox9, and Jmjd1a. These HIF-regulated genes are highly expressed in metastatic PCa and required for hypoxia-mediated NE phenotype, metastasis in PCa, and the formation of NE tumors. Tissue-specific expression of FoxA2 combined with Siah2-dependent HIF-1alpha availability enables a transcriptional program required for NE prostate tumor development and NE phenotype in PCa.
Related JoVE Video
The pathology of EMT in mouse mammary tumorigenesis.
J Mammary Gland Biol Neoplasia
PUBLISHED: 02-25-2010
Show Abstract
Hide Abstract
Epithelial-mesenchymal-transition (EMT) tumorigenesis in the mouse was first described over 100 years ago using various terms such as carcinosarcoma and without any comprehension of the underlying mechanisms. Such tumors have been considered artifacts of transplantation and of tissue culture. Recently, EMT tumors have been recognized in mammary glands of genetically engineered mice. This review provides a historical perspective leading to the current status in the context of some of the key molecular biology. The biology of mouse mammary EMT tumorigenesis is discussed with comparisons to human breast cancer.
Related JoVE Video
Precancer: sequentially acquired or predetermined?
Toxicol Pathol
PUBLISHED: 12-17-2009
Show Abstract
Hide Abstract
Recognition of focal morphological intraepithelial lesions associated with the eventual development of invasive cancer has long been the sine qua non of precancer. Empirically, precancers are associated with a morphological continuum from atypia to dysplasia and invasive neoplasia. Such lesions are used as early indicators of cancers and have dramatically reduced mortality from cancers of the colon, uterine cervix, and breast. Progression has been modeled as a linear, stepwise process. Some molecular evidence supports a linear model. However, clinical studies now suggest that preexisting cofactors such as human papilloma virus (HPV) in cervical cancer determines the cell fate. Other clinical studies such as bladder, prostate, and breast suggest that many intraepithelial lesions do not progress to malignancy. The more recent experimental analyses reveal that the key molecular and genetic events even predate the emergence of visible lesions. Thus, a new nonlinear, parallel model is proposed. The parallel model suggests an origin in a putative progenitor cell that expands and invades. The clinical outcome is thus predetermined. If correct, this model suggests that "progression" to malignancy is epigenetic. Further, future assessment of biological potential will involve identification and genetic analysis of the progenitor cell populations.
Related JoVE Video
CrkII transgene induces atypical mammary gland development and tumorigenesis.
Am. J. Pathol.
PUBLISHED: 12-11-2009
Show Abstract
Hide Abstract
The v-Crk protein was originally isolated as the oncogene fusion product of the CT10 chicken retrovirus. Cellular homologues of v-Crk include Crk, which encodes two alternatively spliced proteins (CrkI and CrkII), and CrkL. Though CrkI/II proteins are elevated in several types of cancer, including breast, the question of whether these Crk adaptor proteins can promote breast cancer has not been addressed. We created a transgenic mouse model that allows the expression of CrkII through the hormonally responsive mouse mammary tumor virus promoter. During puberty, transgenic mice were found to have delayed ductal outgrowth, characterized by increased collagen surrounding the terminal end buds. In post-pubertal mice, precocious ductal branching was observed and associated with increased proliferation. Focal mammary tumors appeared in a subset of animals, with a latency of approximately 15 months. Mouse mammary tumor virus/CrkII tumors showed high levels of Crk protein as well as various cytokeratin markers characteristic of their respective tumor pathologies. This study demonstrates that the precise expression of CrkII is critical for integrating signals for ductal outgrowth and branching morphogenesis during mammary gland development. Furthermore, this study provides evidence for a potential role of CrkII in integrating signals for breast cancer progression in vivo, which has important implications for elevated CrkII observed in human cancer.
Related JoVE Video
Epithelial-mesenchymal transition in mouse mammary tumorigenesis.
Future Oncol
PUBLISHED: 10-27-2009
Show Abstract
Hide Abstract
Epithelial-mesenchymal transition tumorigenesis in the mouse has been described for over 100 years using various terms and with little comprehension of the underlying mechanisms. Recently, epithelial-mesenchymal transition tumors have been recognized in mammary glands of genetically engineered mice. This review provides a historical perspective and the current observations in the context of some of the key molecular biology. The biology of mouse mammary epithelial-mesenchymal transition tumorigenesis is discussed with comparisons to human breast cancer.
Related JoVE Video
Isolating the effects of social interactions on cancer biology.
Cancer Prev Res (Phila)
PUBLISHED: 09-29-2009
Show Abstract
Hide Abstract
This perspective on Williams et al. (beginning on p. 850 in this issue of the journal) examines the connections between biological responses activated during psychosocial stress and mammary tumorigenesis. Experiments in mouse models of cancer are identifying aspects of tumor biology that may be regulated by hormones such as glucocorticoids released during psychosocial stress. Our growing understanding of the actions of glucocorticoids on breast tumors could lead to important changes in cancer treatment.
Related JoVE Video
Genetic heterogeneity of Myc-induced mammary tumors reflecting diverse phenotypes including metastatic potential.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 09-04-2009
Show Abstract
Hide Abstract
Human cancers result from a complex series of genetic alterations, resulting in heterogeneous disease states. Dissecting this heterogeneity is critical for understanding underlying mechanisms and providing opportunities for therapeutics matching the complexity. Mouse models of cancer have generally been used to reduce this complexity and focus on the role of single genes. Nevertheless, our analysis of tumors arising in the MMTV-Myc model of mammary carcinogenesis reveals substantial heterogeneity, seen in both histological and expression phenotypes. One contribution to this heterogeneity is the substantial frequency of activating Ras mutations. Additionally, we show that these Myc-induced mammary tumors exhibit even greater heterogeneity, revealed by distinct histological subtypes as well as distinct patterns of gene expression, than many other mouse models of tumorigenesis. Two of the major histological subtypes are characterized by differential patterns of cellular signaling pathways, including beta-catenin and Stat3 activities. We also demonstrate that one of the MMTV-Myc mammary tumor subgroups exhibits metastatic capacity and that the signature derived from the subgroup can predict metastatic potential of human breast cancer. Together, these data reveal that a combination of histological and genomic analyses can uncover substantial heterogeneity in mammary tumor formation and therefore highlight aspects of tumor phenotype not evident in the population as a whole.
Related JoVE Video
The Snf1-related kinase, Hunk, is essential for mammary tumor metastasis.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 08-28-2009
Show Abstract
Hide Abstract
We previously identified a SNF1/AMPK-related protein kinase, Hunk, from a mammary tumor arising in an MMTV-neu transgenic mouse. The function of this kinase is unknown. Using targeted deletion in mice, we now demonstrate that Hunk is required for the metastasis of c-myc-induced mammary tumors, but is dispensable for normal development. Reconstitution experiments revealed that Hunk is sufficient to restore the metastatic potential of Hunk-deficient tumor cells, as well as defects in migration and invasion, and does so in a manner that requires its kinase activity. Consistent with a role for this kinase in the progression of human cancers, the human homologue of Hunk is overexpressed in aggressive subsets of carcinomas of the ovary, colon, and breast. In addition, a murine gene expression signature that distinguishes Hunk-wild type from Hunk-deficient mammary tumors predicts clinical outcome in women with breast cancer in a manner consistent with the pro-metastatic function of Hunk in mice. These findings identify a direct role for Hunk kinase activity in metastasis and establish an in vivo function for this kinase.
Related JoVE Video
Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 07-17-2009
Show Abstract
Hide Abstract
Elevated MET receptor tyrosine kinase correlates with poor outcome in breast cancer, yet the reasons for this are poorly understood. We thus generated a transgenic mouse model targeting expression of an oncogenic Met receptor (Met(mt)) to the mammary epithelium. We show that Met(mt) induces mammary tumors with multiple phenotypes. These reflect tumor subtypes with gene expression and immunostaining profiles sharing similarities to human basal and luminal breast cancers. Within the basal subtype, Met(mt) induces tumors with signatures of WNT and epithelial to mesenchymal transition (EMT). Among human breast cancers, MET is primarily elevated in basal and ERBB2-positive subtypes with poor prognosis, and we show that MET, together with EMT marker, SNAIL, are highly predictive of poor prognosis in lymph node-negative patients. By generating a unique mouse model in which the Met receptor tyrosine kinase is expressed in the mammary epithelium, along with the examination of MET expression in human breast cancer, we have established a specific link between MET and basal breast cancer. This work identifies basal breast cancers and, additionally, poor-outcome breast cancers, as those that may benefit from anti-MET receptor therapies.
Related JoVE Video
The membrane mucin MUC4 is elevated in breast tumor lymph node metastases relative to matched primary tumors and confers aggressive properties to breast cancer cells.
Breast Cancer Res.
PUBLISHED: 07-13-2009
Show Abstract
Hide Abstract
Previous studies indicate that overexpression of the membrane-associated mucin MUC4 is potently anti-adhesive to cultured tumor cells, and suppresses cellular apoptotic response to a variety of insults. Such observations raise the possibility that MUC4 expression could contribute to tumor progression or metastasis, but the potential involvement of MUC4 in breast cancer has not been rigorously assessed. The present study aimed to investigate the expression of the membrane mucin MUC4 in normal breast tissue, primary breast tumors and lymph node metastases, and to evaluate the role of MUC4 in promoting the malignant properties of breast tumor cells.
Related JoVE Video
Enhanced in vivo bioluminescence imaging using liposomal luciferin delivery system.
J Control Release
PUBLISHED: 05-15-2009
Show Abstract
Hide Abstract
To provide a continuous and prolonged delivery of the substrate D-luciferin for bioluminescence imaging in vivo, luciferin was encapsulated into liposomes using either the pH gradient or acetate gradient method. Under optimum loading conditions, 0.17 mg luciferin was loaded per mg of lipid with 90-95% encapsulation efficiency, where active loading was 6 to 18-fold higher than that obtained with passive loading. Liposomal luciferin in a long-circulating formulation had good shelf stability, with 10% release over 3-month storage at 4 degrees C. Pharmacokinetic profiles of free and liposomal luciferin were then evaluated in transgenic mice expressing luciferase. In contrast to rapid in vivo clearance of free luciferin (t(1/2)=3.54 min), luciferin encapsulated into long-circulating liposomes showed a prolonged release over 24h. The first-order release rate constant of luciferin from long-circulating liposomes, as estimated from the best fit of the analytical model to the experimental data, was 0.01 h(-1). Insonation of luciferin-loaded temperature-sensitive liposomes directly injected into one tumor of Met1-luc tumor-bearing mice resulted in immediate emission of light. Systemic injection of luciferin-loaded long-circulating liposomes into Met1-luc tumor-bearing mice, followed by unilateral ultrasound-induced hyperthermia, produced a gradual increase in radiance over time, reaching a peak at 4-7 h post-ultrasound.
Related JoVE Video
Adiponectin deficiency limits tumor vascularization in the MMTV-PyV-mT mouse model of mammary cancer.
Clin. Cancer Res.
PUBLISHED: 05-15-2009
Show Abstract
Hide Abstract
High levels of the fat-secreted cytokine adiponectin (APN) are present in the circulation of healthy people, whereas low levels correlate with an increased incidence of breast cancer in women. The current study experimentally probes the physiologic functions of APN in mammary cancer in a newly generated genetic mouse model.
Related JoVE Video
PTEN deficiency in a luminal ErbB-2 mouse model results in dramatic acceleration of mammary tumorigenesis and metastasis.
J. Biol. Chem.
PUBLISHED: 05-12-2009
Show Abstract
Hide Abstract
Overexpression and/or amplification of the ErbB-2 oncogene as well as inactivation of the PTEN tumor suppressor are two important genetic events in human breast carcinogenesis. To address the biological impact of conditional inactivation of PTEN on ErbB-2-induced mammary tumorigenesis, we generated a novel transgenic mouse model that utilizes the murine mammary tumor virus (MMTV) promoter to directly couple expression of activated ErbB-2 and Cre recombinase to the same mammary epithelial cell (MMTV-NIC). Disruption of PTEN in the mammary epithelium of the MMTV-NIC model system dramatically accelerated the formation of multifocal and highly metastatic mammary tumors, which exhibited homogenous pathology. PTEN-deficient/NIC-induced tumorigenesis was associated with an increase in angiogenesis. Moreover, inactivation of PTEN in the MMTV-NIC mouse model resulted in hyperactivation of the phosphatidylinositol 3-kinase/Akt signaling pathway. However, like the parental strain, tumors obtained from PTEN-deficient/NIC mice displayed histopathological and molecular features of the luminal subtype of primary human breast cancer. Taken together, our findings provide important implications in understanding the molecular determinants of mammary tumorigenesis driven by PTEN deficiency and ErbB-2 activation and could provide a valuable tool for testing the efficacy of therapeutic strategies that target these critical signaling pathways.
Related JoVE Video
Simultaneous haploinsufficiency of Pten and Trp53 tumor suppressor genes accelerates tumorigenesis in a mouse model of prostate cancer.
Differentiation
PUBLISHED: 03-14-2009
Show Abstract
Hide Abstract
Tumor suppressor gene PTEN is important in the initiation and progression of human prostate carcinoma, whereas the role of TP53 remains controversial. Since Pten/Trp53 double conditional knockout mice show earlier onset and fast progression of prostate cancer when compared to Pten knockout mice, we asked whether heterozygosity of these two tumor suppressor genes was sufficient to accelerate prostatic tumorigenesis. To answer this question we examined prostatic lesion progression of Pten/Trp53 double heterozygous mice and a series of controls such as Pten heterozygous, Pten conditional knockout, Trp53 heterozygous and Trp53 knockout mice. Tissue recombination of adult prostatic epithelium coupled with embryonic rat seminal vesicle mesenchyme was used as a tool to stimulate prostatic epithelial proliferation. In our study, high-grade prostatic intraepithelial neoplasia (PIN) was found with high frequency at 8 weeks post-tissue recombination transplantation. PIN lesions in Pten/Trp53 double heterozygous mice were more severe than those seen in Pten heterozygous alone. Furthermore, morphologic features attributable to Pten or Trp53 loss appeared to be enhanced in double heterozygous tissues. LOH analysis of Pten and Trp53 in genomic DNA collected from high-grade PIN lesions in Pten heterozygous and Pten/Trp53 double heterozygous mice showed an intact wild-type allele for both genes in all samples examined. In conclusion, simultaneous heterozygosity of Pten and Trp53 accelerates prostatic tumorigenesis in this mouse model of prostate cancer independently of loss of heterozygosity of either gene.
Related JoVE Video
Overexpression of progesterone receptor A isoform in mice leads to endometrial hyperproliferation, hyperplasia and atypia.
Mol. Hum. Reprod.
PUBLISHED: 02-18-2009
Show Abstract
Hide Abstract
A delicate balance in estrogen and progesterone signaling through their cognate receptors is characteristic for the physiologic state of the endometrium, and a shift in receptor isotype expression can be frequently found in human endometrial pathology. In this study, using a transgenic mouse model, we examined the mechanisms whereby alterations in progesterone receptor (PR) isotype expression leads to endometrial pathology. For an experimental model, we used transgenic mice (PR-A transgenics) carrying an imbalance in the native ratio of the two PR isoforms A and B (PR-A and PR-B) through the expression of additional A form and examined their uterine phenotype under different hormonal regimens, using various criteria. Uterine epithelial cell proliferation was augmented in PR-A transgenics and was abolished by PR antagonists. In particular, proliferative response to progesterone, independent of signaling through estrogen, was enhanced. Upon continuous exposure to estradiol and progesterone, the uteri in PR-A transgenics displayed gross enlargement, endometrial hyperplasia including atypical lesions, endometritis and pelvic inflammatory disease. Imbalanced expression of the two isoforms of PR in a transgenic model reveals multiple derangements in the regulation of uterine physiology, resulting in various pathologies including hyperplasias.
Related JoVE Video
Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis.
Nat. Genet.
PUBLISHED: 02-06-2009
Show Abstract
Hide Abstract
The TMPRSS2-ERG fusion, present in approximately 50% of prostate cancers, is less common in prostatic intraepithelial neoplasia (PIN), raising questions about whether TMPRSS2-ERG contributes to disease initiation. We identified the translational start site of a common TMPRSS2-ERG fusion and showed that transgenic TMPRSS2-ERG mice develop PIN, but only in the context of PI3-kinase pathway activation. TMPRSS2-ERG-positive human tumors are also enriched for PTEN loss, suggesting cooperation in prostate tumorigenesis.
Related JoVE Video
Ductal carcinoma in situ: state of the science and roadmap to advance the field.
J. Clin. Oncol.
PUBLISHED: 01-17-2009
Show Abstract
Hide Abstract
Ductal carcinoma in situ (DCIS) is the fourth leading cancer for women in the United States. Understanding of the biology and clinical behavior of DCIS is imperfect. This article highlights the current knowledge base and the scientific roadmap needed to advance the field.
Related JoVE Video
Proliferative and nonproliferative lesions of the rat and mouse mammary, Zymbals, preputial, and clitoral glands.
Toxicol Pathol
Show Abstract
Hide Abstract
The mammary gland of laboratory rodents is an important organ for the evaluation of effects of xenobiotics, especially those that perturb hormonal homeostasis or are potentially carcinogenic. Mammary gland cancer is a leading cause of human mortality and morbidity worldwide and is a subject of major research efforts utilizing rodent models. Zymbals, preputial, and clitoral glands are standard tissues that are evaluated in animal models that enable human risk assessment of xenobiotics. A widely accepted and utilized international harmonization of nomenclature for mammary, Zymbals, preputial, and clitoral gland lesions in laboratory animals will improve diagnostic alignment among regulatory and scientific research organizations and enrich international exchanges of information among toxicologists and pathologists.
Related JoVE Video
Evidence for phenotypic plasticity in aggressive triple-negative breast cancer: human biology is recapitulated by a novel model system.
PLoS ONE
Show Abstract
Hide Abstract
Breast cancers with a basal-like gene signature are primarily triple-negative, frequently metastatic, and carry a poor prognosis. Basal-like breast cancers are enriched for markers of breast cancer stem cells as well as markers of epithelial-mesenchymal transition (EMT). While EMT is generally thought to be important in the process of metastasis, in vivo evidence of EMT in human disease remains rare. Here we report a novel model of human triple-negative breast cancer, the DKAT cell line, which was isolated from an aggressive, treatment-resistant triple-negative breast cancer that demonstrated morphological and biochemical evidence suggestive of phenotypic plasticity in the patient. The DKAT cell line displays a basal-like phenotype in vitro when cultured in serum-free media, and undergoes phenotypic changes consistent with EMT/MET in response to serum-containing media, a unique property among the breast cancer cell lines we tested. This EMT is marked by increased expression of the transcription factor Zeb1, and Zeb1 is required for the enhanced migratory ability of DKAT cells in the mesenchymal state. DKAT cells also express progenitor-cell markers, and single DKAT cells are able to generate tumorspheres containing both epithelial and mesenchymal cell types. In vivo, as few as ten DKAT cells are capable of forming xenograft tumors which display a range of epithelial and mesenchymal phenotypes. The DKAT model provides a novel model to study the molecular mechanisms regulating phenotypic plasticity and the aggressive biology of triple-negative breast cancers.
Related JoVE Video
Diet-induced metabolic change induces estrogen-independent allometric mammary growth.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
Lifetime breast cancer risk reflects an unresolved combination of early life factors including diet, body mass index, metabolic syndrome, obesity, and age at first menses. In parallel, the onset of allometric growth by the mammary glands around puberty is widely held to be estrogen (E)-dependent. Here we report that several physiological changes associated with metabolic syndrome in response to a diet supplemented with the trans-10, cis-12 isomer of conjugated linoleic acid lead to ovary-independent allometric growth of the mammary ducts. The E-independence of this diet-induced growth was highlighted by the fact that it occurred both in male mice and with pharmacological inhibition of either E receptor function or E biosynthesis. Reversal of the metabolic phenotype with the peroxisome proliferator-activated receptor-? agonist rosiglitazone abrogated diet-induced mammary growth. A role for hyperinsulinemia and increased insulin-like growth factor-I receptor (IGF-IR) expression during mammary growth induced by the trans-10, cis-12 isomer of conjugated linoleic acid was confirmed by its reversal upon pharmacological inhibition of IGF-IR function. Diet-stimulated ductal growth also increased mammary tumorigenesis in ovariectomized polyomavirus middle T-antigen mice. Our data demonstrate that diet-induced metabolic dysregulation, independently of ovarian function, stimulates allometric growth within the mammary glands via an IGF-IR-dependent mechanism.
Related JoVE Video
B-Raf activation cooperates with PTEN loss to drive c-Myc expression in advanced prostate cancer.
Cancer Res.
Show Abstract
Hide Abstract
Both the PI3K ? Akt ? mTOR and mitogen-activated protein kinase (MAPK) signaling pathways are often deregulated in prostate tumors with poor prognosis. Here we describe a new genetically engineered mouse model of prostate cancer in which PI3K-Akt-mTOR signaling is activated by inducible disruption of PTEN, and extracellular signal-regulated kinase 1/2 (ERK1/2) MAPK signaling is activated by inducible expression of a BRAF(V600E) oncogene. These tissue-specific compound mutant mice develop lethal prostate tumors that are inherently resistant to castration. These tumors bypass cellular senescence and disseminate to lymph nodes, bone marrow, and lungs where they form overt metastases in approximately 30% of the cases. Activation of PI3K ? Akt ? mTOR and MAPK signaling pathways in these prostate tumors cooperate to upregulate c-Myc. Accordingly, therapeutic treatments with rapamycin and PD0325901 to target these pathways, respectively, attenuate c-Myc levels and reduce tumor and metastatic burden. Together, our findings suggest a generalized therapeutic approach to target c-Myc activation in prostate cancer by combinatorial targeting of the PI3K ? Akt ? mTOR and ERK1/2 MAPK signaling pathways.
Related JoVE Video
Dual targeting of the Akt/mTOR signaling pathway inhibits castration-resistant prostate cancer in a genetically engineered mouse model.
Cancer Res.
Show Abstract
Hide Abstract
Although the prognosis for clinically localized prostate cancer is now favorable, there are still no curative treatments for castration-resistant prostate cancer (CRPC) and, therefore, it remains fatal. In this study, we investigate a new therapeutic approach for treatment of CRPC, which involves dual targeting of a major signaling pathway that is frequently deregulated in the disease. We found that dual targeting of the Akt and mTOR signaling pathways with their respective inhibitors, MK-2206 and ridaforolimus (MK-8669), is highly effective for inhibiting CRPC in preclinical studies in vivo using a refined genetically engineered mouse model of the disease. The efficacy of the combination treatment contrasts with their limited efficacy as single agents, since delivery of MK-2206 or MK-8669 individually had a modest impact in vivo on the overall tumor phenotype. In human prostate cancer cell lines, although not in the mouse model, the synergistic actions of MK-2206 and ridaforolimus (MK-8669) are due in part to limiting the mTORC2 feedback activation of Akt. Moreover, the effects of these drugs are mediated by inhibition of cellular proliferation via the retinoblastoma (Rb) pathway. Our findings suggest that dual targeting of the Akt and mTOR signaling pathways using MK-2206 and ridaforolimus (MK-8669) may be effective for treatment of CRPC, particularly for patients with deregulated Rb pathway activity.
Related JoVE Video
Lunatic fringe deficiency cooperates with the Met/Caveolin gene amplicon to induce basal-like breast cancer.
Cancer Cell
Show Abstract
Hide Abstract
Basal-like breast cancers (BLBC) express a luminal progenitor gene signature. Notch receptor signaling promotes luminal cell fate specification in the mammary gland, while suppressing stem cell self-renewal. Here we show that deletion of Lfng, a sugar transferase that prevents Notch activation by Jagged ligands, enhances stem/progenitor cell proliferation. Mammary-specific deletion of Lfng induces basal-like and claudin-low tumors with accumulation of Notch intracellular domain fragments, increased expression of proliferation-associated Notch targets, amplification of the Met/Caveolin locus, and elevated Met and Igf-1R signaling. Human BL breast tumors, commonly associated with JAGGED expression, elevated MET signaling, and CAVEOLIN accumulation, express low levels of LFNG. Thus, reduced LFNG expression facilitates JAG/NOTCH luminal progenitor signaling and cooperates with MET/CAVEOLIN basal-type signaling to promote BLBC.
Related JoVE Video
Early vascular deficits are correlated with delayed mammary tumorigenesis in the MMTV-PyMT transgenic mouse following genetic ablation of the NG2 proteoglycan.
Breast Cancer Res.
Show Abstract
Hide Abstract
The neuron-glial antigen 2 (NG2) proteoglycan promotes pericyte recruitment and mediates pericyte interaction with endothelial cells. In the absence of NG2, blood vessel development is negatively impacted in several pathological models. Our goal in this study was to determine the effect of NG2 ablation on the early development and function of blood vessels in mammary tumors in the mammary tumor virus-driven polyoma middle T (MMTV-PyMT) transgenic mouse, and to correlate these vascular changes with alterations in mammary tumor growth.
Related JoVE Video
Ultrasound increases nanoparticle delivery by reducing intratumoral pressure and increasing transport in epithelial and epithelial-mesenchymal transition tumors.
Cancer Res.
Show Abstract
Hide Abstract
Acquisition of the epithelial-mesenchymal transition (EMT) tumor phenotype is associated with impaired chemotherapeutic delivery and a poor prognosis. In this study, we investigated the application of therapeutic ultrasound methods available in the clinic to increase nanotherapeutic particle accumulation in epithelial and EMT tumors by labeling particles with a positron emission tomography tracer. Epithelial tumors were highly vascularized with tight cell-cell junctions, compared with EMT tumors where cells displayed an irregular, elongated shape with loosened cell-cell adhesions and a reduction in E-cadherin and cytokeratins 8/18 and 19. Without ultrasound, the accumulation of liposomal nanoparticles administered to tumors in vivo was approximately 1.5 times greater in epithelial tumors than EMT tumors. When ultrasound was applied, both nanoaccumulation and apparent tumor permeability were increased in both settings. Notably, ultrasound effects differed with thermal and mechanical indices, such that increasing the thermal ultrasound dose increased nanoaccumulation in EMT tumors. Taken together, our results illustrate how ultrasound can be used to enhance nanoparticle accumulation in tumors by reducing their intratumoral pressure and increasing their vascular permeability.
Related JoVE Video
STAT1-deficient mice spontaneously develop estrogen receptor ?-positive luminal mammary carcinomas.
Breast Cancer Res.
Show Abstract
Hide Abstract
Although breast cancers expressing estrogen receptor-? (ER?) and progesterone receptors (PR) are the most common form of mammary malignancy in humans, it has been difficult to develop a suitable mouse model showing similar steroid hormone responsiveness. STAT transcription factors play critical roles in mammary gland tumorigenesis, but the precise role of STAT1 remains unclear. Herein, we show that a subset of human breast cancers display reduced STAT1 expression and that mice lacking STAT1 surprisingly develop ER?+/PR+ mammary tumors.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.