JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Ratiometric Activatable Cell-Penetrating Peptides Label Pancreatic Cancer, Enabling Fluorescence-Guided Surgery, Which Reduces Metastases and Recurrence in Orthotopic Mouse Models.
Ann. Surg. Oncol.
PUBLISHED: 08-11-2014
Show Abstract
Hide Abstract
The aim of this study was to evaluate the efficacy of using matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9)-cleavable ratiometric activatable cell-penetrating peptides (RACPPs) conjugated to Cy5 and Cy7 fluorophores to accurately label pancreatic cancer for fluorescence-guided surgery (FGS) in an orthotopic mouse model.
Related JoVE Video
Matrix-metalloproteinases in head and neck carcinoma-cancer genome atlas analysis and fluorescence imaging in mice.
Otolaryngol Head Neck Surg
PUBLISHED: 08-04-2014
Show Abstract
Hide Abstract
(1) Obtain matrix-metalloproteinase (MMP) expression profiles for head and neck squamous cell carcinoma (HNSCC) specimens from the Cancer Genomic Atlas (TCGA). (2) Demonstrate HNSCC imaging using MMP-cleavable, fluorescently labeled ratiometric activatable cell-penetrating peptide (RACPP).
Related JoVE Video
Dual targeting of integrin ?v?3 and matrix metalloproteinase-2 for optical imaging of tumors and chemotherapeutic delivery.
Mol. Cancer Ther.
PUBLISHED: 04-15-2014
Show Abstract
Hide Abstract
Activatable cell-penetrating peptides (ACPP) provide a general strategy for molecular targeting by exploiting the extracellular protease activities associated with disease. Previous work used a matrix metalloproteinase (MMP-2 and 9)-cleavable sequence in the ACPP to target contrast agents for tumor imaging and fluorescence-guided surgery. To improve specificity and sensitivity for MMP-2, an integrin ?(v)?(3)-binding domain, cyclic-RGD, was covalently linked to the ACPP. This co-targeting strategy relies on the interaction of MMP-2 with integrin ?(v)?(3), which are known to associate via the hemopexin domain of MMP-2. In U87MG glioblastoma cells in culture, dual targeting greatly improved ACPP uptake compared with either MMP or integrin ?(v)?(3) targeting alone. In vivo, dual-targeted ACPP treatment resulted in tumor contrast of 7.8 ± 1.6, a 10-fold higher tumor fluorescence compared with the negative control peptide, and increased probe penetration into the core of MDA-MB-231 tumors. This platform also significantly improved efficacy of the chemotherapeutic monomethylauristatin E (MMAE) in both MDA-MB-231 orthotopic human and syngeneic Py230 murine breast tumors. Treatment with cyclic-RGD-PLGC(Me)AG-MMAE-ACPP resulted in complete tumor regression in one quarter of MDA-MB-231 tumor-bearing mice, compared with no survival in the control groups. This rational mechanism for amplified delivery of imaging and potent chemotherapeutic agents avoids the use of antibodies and may be of considerable generality.
Related JoVE Video
Engineering a memory with LTD and LTP.
Nature
PUBLISHED: 03-27-2014
Show Abstract
Hide Abstract
It has been proposed that memories are encoded by modification of synaptic strengths through cellular mechanisms such as long-term potentiation (LTP) and long-term depression (LTD). However, the causal link between these synaptic processes and memory has been difficult to demonstrate. Here we show that fear conditioning, a type of associative memory, can be inactivated and reactivated by LTD and LTP, respectively. We began by conditioning an animal to associate a foot shock with optogenetic stimulation of auditory inputs targeting the amygdala, a brain region known to be essential for fear conditioning. Subsequent optogenetic delivery of LTD conditioning to the auditory input inactivates memory of the shock. Then subsequent optogenetic delivery of LTP conditioning to the auditory input reactivates memory of the shock. Thus, we have engineered inactivation and reactivation of a memory using LTD and LTP, supporting a causal link between these synaptic processes and memory.
Related JoVE Video
Early detection of thrombin activity in neuroinflammatory disease.
Ann. Neurol.
PUBLISHED: 02-24-2014
Show Abstract
Hide Abstract
Although multiple sclerosis (MS) has been associated with the coagulation system, the temporal and spatial regulation of coagulation activity in neuroinflammatory lesions is unknown. Using a novel molecular probe, we characterized the activity pattern of thrombin, the central protease of the coagulation cascade, in experimental autoimmune encephalomyelitis. Thrombin activity preceded onset of neurological signs, increased at disease peak, and correlated with fibrin deposition, microglial activation, demyelination, axonal damage, and clinical severity. Mice with a genetic deficit in prothrombin confirmed the specificity of the thrombin probe. Thrombin activity might be exploited for developing sensitive probes for preclinical detection and monitoring of neuroinflammation and MS progression.
Related JoVE Video
Detection and monitoring of localized matrix metalloproteinase upregulation in a murine model of asthma.
Am. J. Physiol. Lung Cell Mol. Physiol.
PUBLISHED: 02-07-2014
Show Abstract
Hide Abstract
Extracellular proteases including matrix metalloproteinases (MMPs) are speculated to play a significant role in chronic lung diseases, such as asthma. Although increased protease expression has been correlated with lung pathogenesis, the relationship between localized enzyme activity and disease progression remains poorly understood. We report the application of MMP-2/9 activatable cell-penetrating peptides (ACPPs) and their ratiometric analogs (RACPPs) for in vivo measurement of protease activity and distribution in the lungs of mice that were challenged with the allergen ovalbumin. MMP-2/9 activity was increased greater than twofold in whole, dissected lungs from acutely challenged mice compared with control mice (P=1.8×10(-4)). This upregulation of MMP-2/9 activity was localized around inflamed airways with 1.6-fold higher protease-dependent ACPP uptake surrounding diseased airways compared with adjacent, pathologically normal lung parenchyma (P=0.03). MMP-2/9 activity detected by ACPP cleavage colocalized with gelatinase activity measured with in situ dye-quenched gelatin. For comparison, neutrophil elastase activity and thrombin activity, detected with elastase- and thrombin-cleavable RACPPs, respectively, were not significantly elevated in acutely allergen-challenged mouse lungs. The results demonstrate that ACPPs, like the MMP-2/9-activated and related ACPPs, allow for real-time detection of protease activity in a murine asthma model, which should improve our understanding of protease activation in asthma disease progression and help elucidate new therapy targets or act as a mechanism for therapeutic drug delivery.
Related JoVE Video
Dual-porosity hollow nanoparticles for the immunoprotection and delivery of nonhuman enzymes.
Nano Lett.
PUBLISHED: 02-06-2014
Show Abstract
Hide Abstract
Although enzymes of nonhuman origin have been studied for a variety of therapeutic and diagnostic applications, their use has been limited by the immune responses generated against them. The described dual-porosity hollow nanoparticle platform obviates immune attack on nonhuman enzymes paving the way to in vivo applications including enzyme-prodrug therapies and enzymatic depletion of tumor nutrients. This platform is manufactured with a versatile, scalable, and robust fabrication method. It efficiently encapsulates macromolecular cargos filled through mesopores into a hollow interior, shielding them from antibodies and proteases once the mesopores are sealed with nanoporous material. The nanoporous shell allows small molecule diffusion allowing interaction with the large macromolecular payload in the hollow center. The approach has been validated in vivo using l-asparaginase to achieve l-asparagine depletion in the presence of neutralizing antibodies.
Related JoVE Video
An optimized triple modality reporter for quantitative in vivo tumor imaging and therapy evaluation.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
We present an optimized triple modality reporter construct combining a far-red fluorescent protein (E2-Crimson), enhanced firefly luciferase enzyme (Luc2), and truncated wild type herpes simplex virus I thymidine kinase (wttk) that allows for sensitive, long-term tracking of tumor growth in vivo by fluorescence, bioluminescence, and positron emission tomography. Two human cancer cell lines (MDA-MB-231 breast cancer and HT-1080 fibrosarcoma cancer) were successfully transduced to express this triple modality reporter. Fluorescence and bioluminescence imaging of the triple modality reporter were used to accurately quantify the therapeutic responses of MDA-MB-231 tumors to the chemotherapeutic agent monomethyl auristatin E in vivo in athymic nude mice. Positive correlation was observed between the fluorescence and bioluminescence signals, and these signals were also positively correlated with the ex vivo tumor weights. This is the first reported use of both fluorescence and bioluminescence signals from a multi-modality reporter construct to measure drug efficacy in vivo.
Related JoVE Video
Fluorescence-guided surgery with live molecular navigation--a new cutting edge.
Nat. Rev. Cancer
PUBLISHED: 08-08-2013
Show Abstract
Hide Abstract
A glowing new era in cancer surgery may be dawning. Using fluorescently labelled markers, surgical molecular navigation means that tumours and nerves can be displayed in real time intra-operatively in contrasting pseudocolours, which allows more complete tumour resection while preserving important structures. These advances can potentially cause a paradigm shift in cancer surgery, improving patient outcome and decreasing overall health-care costs.
Related JoVE Video
Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship.
Nat. Methods
PUBLISHED: 08-03-2013
Show Abstract
Hide Abstract
Optogenetics allows the manipulation of neural activity in freely moving animals with millisecond precision, but its application in Drosophila melanogaster has been limited. Here we show that a recently described red activatable channelrhodopsin (ReaChR) permits control of complex behavior in freely moving adult flies, at wavelengths that are not thought to interfere with normal visual function. This tool affords the opportunity to control neural activity over a broad dynamic range of stimulation intensities. Using time-resolved activation, we show that the neural control of male courtship song can be separated into (i) probabilistic, persistent and (ii) deterministic, command-like components. The former, but not the latter, neurons are subject to functional modulation by social experience, which supports the idea that they constitute a locus of state-dependent influence. This separation is not evident using thermogenetic tools, a result underscoring the importance of temporally precise control of neuronal activation in the functional dissection of neural circuits in Drosophila.
Related JoVE Video
Very long-term memories may be stored in the pattern of holes in the perineuronal net.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 07-05-2013
Show Abstract
Hide Abstract
A hypothesis and the experiments to test it propose that very long-term memories, such as fear conditioning, are stored as the pattern of holes in the perineuronal net (PNN), a specialized ECM that envelops mature neurons and restricts synapse formation. The 3D intertwining of PNN and synapses would be imaged by serial-section EM. Lifetimes of PNN vs. intrasynaptic components would be compared with pulse-chase (15)N labeling in mice and (14)C content in human cadaver brains. Genetically encoded indicators and antineoepitope antibodies should improve spatial and temporal resolution of the in vivo activity of proteases that locally erode PNN. Further techniques suggested include genetic KOs, better pharmacological inhibitors, and a genetically encoded snapshot reporter, which will capture the pattern of activity throughout a large ensemble of neurons at a time precisely defined by the triggering illumination, drive expression of effector genes to mark those cells, and allow selective excitation, inhibition, or ablation to test their functional importance. The snapshot reporter should enable more precise inhibition or potentiation of PNN erosion to compare with behavioral consequences. Finally, biosynthesis of PNN components and proteases would be imaged.
Related JoVE Video
ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation.
Nat. Neurosci.
PUBLISHED: 06-03-2013
Show Abstract
Hide Abstract
Channelrhodopsins (ChRs) are used to optogenetically depolarize neurons. We engineered a variant of ChR, denoted red-activatable ChR (ReaChR), that is optimally excited with orange to red light (? ?590-630 nm) and offers improved membrane trafficking, higher photocurrents and faster kinetics compared to existing red-shifted ChRs. Red light is less scattered by tissue and is absorbed less by blood than the blue to green wavelengths that are required by other ChR variants. We used ReaChR expressed in the vibrissa motor cortex to drive spiking and vibrissa motion in awake mice when excited with red light through intact skull. Precise vibrissa movements were evoked by expressing ReaChR in the facial motor nucleus in the brainstem and illumination with red light through the external auditory canal. Thus, ReaChR enables transcranial optical activation of neurons in deep brain structures without the need to surgically thin the skull, form a transcranial window or implant optical fibers.
Related JoVE Video
Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI).
Neuron
PUBLISHED: 05-15-2013
Show Abstract
Hide Abstract
Optogenetic techniques provide effective ways of manipulating the functions of selected neurons with light. In the current study, we engineered an optogenetic technique that directly inhibits neurotransmitter release. We used a genetically encoded singlet oxygen generator, miniSOG, to conduct chromophore assisted light inactivation (CALI) of synaptic proteins. Fusions of miniSOG to VAMP2 and synaptophysin enabled disruption of presynaptic vesicular release upon illumination with blue light. In cultured neurons and hippocampal organotypic slices, synaptic release was reduced up to 100%. Such inhibition lasted >1 hr and had minimal effects on membrane electrical properties. When miniSOG-VAMP2 was expressed panneuronally in Caenorhabditis elegans, movement of the worms was reduced after illumination, and paralysis was often observed. The movement of the worms recovered overnight. We name this technique Inhibition of Synapses with CALI (InSynC). InSynC is a powerful way to silence genetically specified synapses with light in a spatially and temporally precise manner.
Related JoVE Video
Fluorescent ligand for human progesterone receptor imaging in live cells.
Bioconjug. Chem.
PUBLISHED: 04-29-2013
Show Abstract
Hide Abstract
We employed molecular modeling to design and then synthesize fluorescent ligands for the human progesterone receptor. Boron dipyrromethene (BODIPY) or tetramethylrhodamine were conjugated to the progesterone receptor antagonist RU486 (Mifepristone) through an extended hydrophilic linker. The fluorescent ligands demonstrated comparable bioactivity to the parent antagonist in live cells and triggered nuclear translocation of the receptor in a specific manner. The BODIPY labeled ligand was applied to investigate the dependency of progesterone receptor nuclear translocation on partner proteins and to show that functional heat shock protein 90 but not immunophilin FKBP52 activity is essential. A tissue distribution study indicated that the fluorescent ligand preferentially accumulates in tissues that express high levels of the receptor in vivo. The design and properties of the BODIPY-labeled RU486 make it a potential candidate for in vivo imaging of PR by positron emission tomography through incorporation of (18)F into the BODIPY core.
Related JoVE Video
In vivo quantitative proteomics of somatosensory cortical synapses shows which protein levels are modulated by sensory deprivation.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-04-2013
Show Abstract
Hide Abstract
Postnatal bilateral whisker trimming was used as a model system to test how synaptic proteomes are altered in barrel cortex by sensory deprivation during synaptogenesis. Using quantitative mass spectrometry, we quantified more than 7,000 synaptic proteins and identified 89 significantly reduced and 161 significantly elevated proteins in sensory-deprived synapses, 22 of which were validated by immunoblotting. More than 95% of quantified proteins, including abundant synaptic proteins such as PSD-95 and gephyrin, exhibited no significant difference under high- and low-activity rearing conditions, suggesting no tissue-wide changes in excitatory or inhibitory synaptic density. In contrast, several proteins that promote mature spine morphology and synaptic strength, such as excitatory glutamate receptors and known accessory factors, were reduced significantly in deprived synapses. Immunohistochemistry revealed that the reduction in SynGAP1, a postsynaptic scaffolding protein, was restricted largely to layer I of barrel cortex in sensory-deprived rats. In addition, protein-degradation machinery such as proteasome subunits, E2 ligases, and E3 ligases, accumulated significantly in deprived synapses, suggesting targeted synaptic protein degradation under sensory deprivation. Importantly, this screen identified synaptic proteins whose levels were affected by sensory deprivation but whose synaptic roles have not yet been characterized in mammalian neurons. These data demonstrate the feasibility of defining synaptic proteomes under different sensory rearing conditions and could be applied to elucidate further molecular mechanisms of sensory development.
Related JoVE Video
Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-04-2013
Show Abstract
Hide Abstract
Plant hormones are small-molecule signaling compounds that are collectively involved in all aspects of plant growth and development. Unlike animals, plants actively regulate the spatial distribution of several of their hormones. For example, auxin transport results in the formation of auxin maxima that have a key role in developmental patterning. However, the spatial distribution of the other plant hormones, including gibberellic acid (GA), is largely unknown. To address this, we generated two bioactive fluorescent GA compounds and studied their distribution in Arabidopsis thaliana roots. The labeled GAs specifically accumulated in the endodermal cells of the root elongation zone. Pharmacological studies, along with examination of mutants affected in endodermal specification, indicate that GA accumulation is an active and highly regulated process. Our results strongly suggest the presence of an active GA transport mechanism that would represent an additional level of GA regulation.
Related JoVE Video
Fluorescence imaging in surgery.
IEEE Rev Biomed Eng
PUBLISHED: 01-15-2013
Show Abstract
Hide Abstract
Although the modern surgical era is highlighted by multiple technological advances and innovations, one area that has remained constant is the dependence of the surgeons vision on white-light reflectance. This renders different body tissues in a limited palette of various shades of pink and red, thereby limiting the visual contrast available to the operating surgeon. Healthy tissue, anatomic variations, and diseased states are seen as slight discolorations relative to each other and differences are inherently limited in dynamic range. In the upcoming years, surgery will undergo a paradigm shift with the use of targeted fluorescence imaging probes aimed at augmenting the surgical armamentarium by expanding the "visible" spectrum available to surgeons. Such fluorescent "smart probes" will provide real-time, intraoperative, pseudo-color, high-contrast delineation of both normal and pathologic tissues. Fluorescent surgical molecular guidance promises another major leap forward to improve patient safety and clinical outcomes, and to reduce overall healthcare costs. This review provides an overview of current and future surgical applications of fluorescence imaging in diseased and nondiseased tissues and focus on the innovative fields of image processing and instrumentation.
Related JoVE Video
Concurrent imaging of synaptic vesicle recycling and calcium dynamics.
Front Mol Neurosci
PUBLISHED: 07-09-2011
Show Abstract
Hide Abstract
Synaptic transmission involves the calcium dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-shifted reporter of vesicle recycling based on a vesicular glutamate transporter, VGLUT1-mOrange2 (VGLUT1-mOr2), and a presynaptically localized green calcium indicator, synaptophysin-GCaMP3 (SyGCaMP3) with a large dynamic range. The fluorescence of VGLUT1-mOr2 is quenched by the low pH of synaptic vesicles. Exocytosis upon electrical stimulation exposes the luminal mOr2 to the neutral extracellular pH and relieves fluorescence quenching. Reacidification of the vesicle upon endocytosis again reduces fluorescence intensity. Changes in fluorescence intensity thus monitor synaptic vesicle exo- and endocytosis, as demonstrated previously for the green VGLUT1-pHluorin. To monitor changes in calcium, we fused the synaptic vesicle protein synaptophysin to the recently improved calcium indicator GCaMP3. SyGCaMP3 is targeted to presynaptic varicosities, and exhibits changes in fluorescence in response to electrical stimulation consistent with changes in calcium concentration. Using real time imaging of both reporters expressed in the same synapses, we determine the time course of changes in VGLUT1 recycling in relation to changes in presynaptic calcium concentration. Inhibition of P/Q- and N-type calcium channels reduces calcium levels, as well as the rate of synaptic vesicle exocytosis and the fraction of vesicles released.
Related JoVE Video
Improved facial nerve identification with novel fluorescently labeled probe.
Laryngoscope
PUBLISHED: 02-16-2011
Show Abstract
Hide Abstract
By phage display, we have developed a novel peptide (NP41) that binds selectively to nerves following systemic administration. We evaluated the pattern of facial nerve labeling with fluorescently-labeled NP41 (F-NP41). We also tested whether F-NP41 highlights facial nerves well enough to identify nerve stumps accurately several weeks after nerve transection.
Related JoVE Video
A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms.
PLoS Biol.
PUBLISHED: 02-14-2011
Show Abstract
Hide Abstract
Electron microscopy (EM) achieves the highest spatial resolution in protein localization, but specific protein EM labeling has lacked generally applicable genetically encoded tags for in situ visualization in cells and tissues. Here we introduce "miniSOG" (for mini Singlet Oxygen Generator), a fluorescent flavoprotein engineered from Arabidopsis phototropin 2. MiniSOG contains 106 amino acids, less than half the size of Green Fluorescent Protein. Illumination of miniSOG generates sufficient singlet oxygen to locally catalyze the polymerization of diaminobenzidine into an osmiophilic reaction product resolvable by EM. MiniSOG fusions to many well-characterized proteins localize correctly in mammalian cells, intact nematodes, and rodents, enabling correlated fluorescence and EM from large volumes of tissue after strong aldehyde fixation, without the need for exogenous ligands, probes, or destructive permeabilizing detergents. MiniSOG permits high quality ultrastructural preservation and 3-dimensional protein localization via electron tomography or serial section block face scanning electron microscopy. EM shows that miniSOG-tagged SynCAM1 is presynaptic in cultured cortical neurons, whereas miniSOG-tagged SynCAM2 is postsynaptic in culture and in intact mice. Thus SynCAM1 and SynCAM2 could be heterophilic partners. MiniSOG may do for EM what Green Fluorescent Protein did for fluorescence microscopy.
Related JoVE Video
Fluorescent peptides highlight peripheral nerves during surgery in mice.
Nat. Biotechnol.
PUBLISHED: 01-04-2011
Show Abstract
Hide Abstract
Nerve preservation is an important goal during surgery because accidental transection or injury leads to significant morbidity, including numbness, pain, weakness or paralysis. Nerves are usually identified by their appearance and relationship to nearby structures or detected by local electrical stimulation (electromyography), but thin or buried nerves are sometimes overlooked. Here, we use phage display to select a peptide that binds preferentially to nerves. After systemic injection of a fluorescently labeled version of the peptide in mice, all peripheral nerves are clearly delineated within 2 h. Contrast between nerve and adjacent tissue is up to tenfold, and useful contrast lasts up to 8 h. No changes in behavior or activity are observed after treatment, indicating a lack of obvious toxicity. The fluorescent probe also labels nerves in human tissue samples. Fluorescence highlighting is independent of axonal integrity, suggesting that the probe could facilitate surgical repair of injured nerves and help prevent accidental transection.
Related JoVE Video
Fast 18F labeling of a near-infrared fluorophore enables positron emission tomography and optical imaging of sentinel lymph nodes.
Bioconjug. Chem.
PUBLISHED: 09-30-2010
Show Abstract
Hide Abstract
We combine a novel boronate trap for F(-) with a near-infrared fluorophore into a single molecule. Attachment to targeting ligands enables localization by positron emission tomography (PET) and near-infrared fluorescence (NIRF). Our first application of this generic tag is to label Lymphoseek (tilmanocept), an agent designed for receptor-specific sentinel lymph node (SLN) mapping. The new conjugate incorporates (18)F(-) in a single, aqueous step, targets mouse SLN rapidly (1 h) with reduced distal lymph node accumulation, permits PET or scintigraphic imaging of SLN, and enables NIRF-guided excision and histological verification even after (18)F decay. This embodiment is superior to current SLN mapping agents such as nontargeted [(99m)Tc]sulfur colloids and Isosulfan Blue, as well as the phase III targeted ligand [(99m)Tc]SPECT Lymphoseek counterpart, species that are visible by SPECT or visible absorbance separately. Facile incorporation of (18)F into a NIRF probe should promote many synergistic PET and NIRF combinations.
Related JoVE Video
Fluorescent labeling of tetracysteine-tagged proteins in intact cells.
Nat Protoc
PUBLISHED: 09-23-2010
Show Abstract
Hide Abstract
In this paper, we provide a general protocol for labeling proteins with the membrane-permeant fluorogenic biarsenical dye fluorescein arsenical hairpin binder-ethanedithiol (FlAsH-EDT?). Generation of the tetracysteine-tagged protein construct by itself is not described, as this is a protein-specific process. This method allows site-selective labeling of proteins in living cells and has been applied to a wide variety of proteins and biological problems. We provide here a generally applicable labeling procedure and discuss the problems that can occur as well as general considerations that must be taken into account when designing and implementing the procedure. The method can even be applied to proteins with expression below 1 pmol mg?¹ of protein, such as G protein-coupled receptors, and it can be used to study the intracellular localization of proteins as well as functional interactions in fluorescence resonance energy transfer experiments. The labeling procedure using FlAsH-EDT? as described takes 2-3 h, depending on the number of samples to be processed.
Related JoVE Video
Neuroligin trafficking deficiencies arising from mutations in the alpha/beta-hydrolase fold protein family.
J. Biol. Chem.
PUBLISHED: 07-08-2010
Show Abstract
Hide Abstract
Despite great functional diversity, characterization of the alpha/beta-hydrolase fold proteins that encompass a superfamily of hydrolases, heterophilic adhesion proteins, and chaperone domains reveals a common structural motif. By incorporating the R451C mutation found in neuroligin (NLGN) and associated with autism and the thyroglobulin G2320R (G221R in NLGN) mutation responsible for congenital hypothyroidism into NLGN3, we show that mutations in the alpha/beta-hydrolase fold domain influence folding and biosynthetic processing of neuroligin3 as determined by in vitro susceptibility to proteases, glycosylation processing, turnover, and processing rates. We also show altered interactions of the mutant proteins with chaperones in the endoplasmic reticulum and arrest of transport along the secretory pathway with diversion to the proteasome. Time-controlled expression of a fluorescently tagged neuroligin in hippocampal neurons shows that these mutations compromise neuronal trafficking of the protein, with the R451C mutation reducing and the G221R mutation virtually abolishing the export of NLGN3 from the soma to the dendritic spines. Although the R451C mutation causes a local folding defect, the G221R mutation appears responsible for more global misfolding of the protein, reflecting their sequence positions in the structure of the protein. Our results suggest that disease-related mutations in the alpha/beta-hydrolase fold domain share common trafficking deficiencies yet lead to discrete congenital disorders of differing severity in the endocrine and nervous systems.
Related JoVE Video
Parallel in vivo and in vitro selection using phage display identifies protease-dependent tumor-targeting peptides.
J. Biol. Chem.
PUBLISHED: 05-11-2010
Show Abstract
Hide Abstract
We recently developed activatable cell-penetrating peptides (ACPPs) that target contrast agents to in vivo sites of matrix metalloproteinase activity, such as tumors. Here we use parallel in vivo and in vitro selection with phage display to identify novel tumor-homing ACPPs with no bias for primary sequence or target protease. Specifically, phage displaying a library of ACPPs were either injected into tumor-bearing mice, followed by isolation of cleaved phage from dissected tumor, or isolated based on selective cleavage by extracts of tumor versus normal tissue. Selected sequences were synthesized as fluorescently labeled peptides, and tumor-specific cleavage was confirmed by digestion with tissue extracts. The most efficiently cleaved peptide contained the substrate sequence RLQLKL and labeled tumors and metastases from several cancer models with up to 5-fold contrast. This uniquely identified ACPP was not cleaved by matrix metalloproteinases or various coagulation factors but was efficiently cleaved by plasmin and elastases, both of which have been shown to be aberrantly overexpressed in tumors. The identification of an ACPP that targets tumor expressed proteases without rational design highlights the value of unbiased selection schemes for the development of potential therapeutic agents.
Related JoVE Video
Simultaneous visualization of protumorigenic Src and MT1-MMP activities with fluorescence resonance energy transfer.
Cancer Res.
PUBLISHED: 03-02-2010
Show Abstract
Hide Abstract
Both Src kinase and membrane type 1 matrix metalloproteinase (MT1-MMP) play critical roles in cancer invasion and metastasis. It is not clear, however, how the spatiotemporal activation of these two critical enzymes is coordinated in response to an oncogenic epithelial growth factor (EGF) stimulation. Here, we have visualized the activities of Src and MT1-MMP concurrently in a single live cell by combining two fluorescence resonance energy transfer (FRET) pairs with distinct spectra: (a) cyan fluorescent protein (CFP) and yellow FP (YFP), and (b) orange FP (mOrange2) and red FP (mCherry). The new FRET pair, mOrange2 and mCherry, was first characterized in vitro and in cultured mammalian cells. When integrated with the CFP/YFP pair, this new pair allowed the revelation of an immediate, rapid, and relatively dispersed Src activity. In contrast, the MT1-MMP activity displayed a slow increase at the cell periphery, although Src was shown to play a role upstream to MT1-MMP globally. This difference in the activation patterns of MT1-MMP and Src in response to EGF is further confirmed using an optimized MT1-MMP biosensor capable of being rapidly cleaved by MT1-MMP. The results indicate that although Src and MT1-MMP act globally in the same signaling pathway, their activations differ in space and time upon EGF stimulation, possibly mediated by different sets of intermediates at different subcellular locations. Our results also showed the potential of mOrange2/mCherry as a new FRET pair, together with the popular variants of CFP and YFP, for the simultaneous visualization of multiple molecular activities in a single live cell.
Related JoVE Video
Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-16-2010
Show Abstract
Hide Abstract
The completeness of tumor removal during surgery is dependent on the surgeons ability to differentiate tumor from normal tissue using subjective criteria that are not easily quantifiable. A way to objectively assess tumor margins during surgery in patients would be of great value. We have developed a method to visualize tumors during surgery using activatable cell-penetrating peptides (ACPPs), in which the fluorescently labeled, polycationic cell-penetrating peptide (CPP) is coupled via a cleavable linker to a neutralizing peptide. Upon exposure to proteases characteristic of tumor tissue, the linker is cleaved, dissociating the inhibitory peptide and allowing the CPP to bind to and enter tumor cells. In mice, xenografts stably transfected with green fluorescent protein show colocalization with the Cy5-labeled ACPPs. In the same mouse models, Cy5-labeled free ACPPs and ACPPs conjugated to dendrimers (ACPPDs) delineate the margin between tumor and adjacent tissue, resulting in improved precision of tumor resection. Surgery guided by ACPPD resulted in fewer residual cancer cells left in the animal after surgery as measured by Alu PCR. A single injection of ACPPD dually labeled with Cy5 and gadolinium chelates enabled preoperative whole-body tumor detection by MRI, intraoperative guidance by real-time fluorescence, intraoperative histological analysis of margin status by fluorescence, and postoperative MRI tumor quantification. Animals whose tumors were resected with ACPPD guidance had better long-term tumor-free survival and overall survival than animals whose tumors were resected with traditional bright-field illumination only.
Related JoVE Video
Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-16-2010
Show Abstract
Hide Abstract
High-resolution imaging of molecules intrinsically involved in malignancy and metastasis would be of great value for clinical detection and staging of tumors. We now report in vivo visualization of matrix metalloproteinase activities by MRI and fluorescence of dendrimeric nanoparticles coated with activatable cell penetrating peptides (ACPPs), labeled with Cy5, gadolinium, or both. Uptake of such nanoparticles in tumors is 4- to 15-fold higher than for unconjugated ACPPs. With fluorescent molecules, we are able to detect residual tumor and metastases as small as 200 microm, which can be resected under fluorescence guidance and analyzed histopathologically with fluorescence microscopy. We show that uptake via this mechanism is comparable to that of other near infrared protease sensors, with the added advantage that the approach is translatable to MRI. Once activated, the Gd-labeled nanoparticles deposit high levels (30-50 microM) of Gd in tumor parenchyma with even higher amounts deposited in regions of infiltrative tumor, resulting in useful T(1) contrast lasting several days after injection. These results should improve MRI-guided clinical staging, presurgical planning, and intraoperative fluorescence-guided surgery. The approach may be generalizable to deliver radiation-sensitizing and chemotherapeutic agents.
Related JoVE Video
TimeSTAMP tagging of newly synthesized proteins.
Curr Protoc Protein Sci
PUBLISHED: 02-16-2010
Show Abstract
Hide Abstract
The ability to quantify or visualize newly synthesized proteins has important uses in cell biology. For example, a researcher may wish to quantify basal or inducible rates of translation of a specific gene of interest, or detect subcellular locations of newly synthesized copies of a protein in order to study the role of new protein synthesis in the growth of specialized cellular structures. In this unit, the TimeSTAMP method for labeling of newly synthesized copies of a protein of interest is described. In the TimeSTAMP method, the experimenter expresses a protein of interest as a fusion with a cis-acting protease and an epitope tag, both of which are removed by default protease activity. Addition of a specific protease inhibitor then allows preservation of the tag on subsequently synthesized proteins. Finally, the tag is detected by immunological methods.
Related JoVE Video
The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008.
J Vis Exp
PUBLISHED: 01-15-2010
Show Abstract
Hide Abstract
American biochemist Roger Tsien shared the 2008 Nobel Prize in Chemistry with Martin Chalfie and Osamu Shimomura for their discovery and development of the Green Fluorescent Protein (GFP). Tsien, who was born in New York in 1952 and grew up in Livingston New Jersey, began to experiment in the basement of the family home at a young age. From growing silica gardens of colorful crystallized metal salts to attempting to synthesize aspirin, these early experiments fueled what would become Tsiens lifelong interest in chemistry and colors. Tsiens first official laboratory experience was an NSF-supported summer research program in which he used infrared spectroscopy to examine how metals bind to thiocyanate, for which he was awarded a $10,000 scholarship in the Westinghouse Science Talent Search. Following graduation from Harvard in 1972, Tsien attended Cambridge University in England under a Marshall Scholarship. There he learned organic chemistry --a subject hed hated as an undergraduate-- and looked for a way to synthesize dyes for imaging neuronal activity, generating BAPTA based optical calcium indicator dyes. Following the completion of his postdoctoral training at Cambridge in 1982, Tsien accepted a faculty position at the University of California, Berkeley. There he and colleagues developed and improved numerous small molecule indicators, including indicators fura-2 and indo-1. In 1989, Tsien moved his laboratory to the University of California at San Diego, where he and his colleagues developed the enhanced mutant of GFP as a way to devise a cyclic AMP (cAMP) sensor for use in live cells. They initially engineered molecules to take advantage of the conformational change that occurs when cAMP binds to protein kinase A (PKA). By labeling one part of PKA with fluoroscein and another with a rhodamine, they hoped to detect Fluorescence Resonance Energy Transfer (FRET), which would occur when the two molecules were in close proximity. The initial experiments presented numerous difficulties due to the challenges of expressing PKA subunits in E. coli, labeling the protein without destroying its function, and delivering the protein to cells via microinjection. Eventually, Tsien sought a more elegant approach, hoping to use and modify a naturally fluorescent protein that could be expressed in the cell. GFP originally described by Davenport in 1955, extracted and purified by Shimomura in 1965, and cloned by Prasher in 1992 was an appealing candidate. To make the protein more useful for their FRET studies, Tsien and colleagues modified the amino acid structure of the protein (S65T). The improved protein had an excitation peak near that of fluoroscein, and was photostable. Tsien and colleagues also solved the proteins crystal structure, enabling them to generate additional colors with spectral properties suitable for FRET. However, when they attempted to use the GFP proteins in the detection of cAMP, they experienced further difficulties with PKA. Instead, their first successful use of GFP derivatives for FRET was in the detection of intracellular calcium using their engineered calmodulin-based calcium indicator, Cameleon. In a short time, Tsiens work has led to further technological developments and important scientific findings. GFP and its derivatives have been used in a wide range of biological applications, from the study of protein localization to understanding how HIV spreads from cell to cell. The need for such probes is highlighted by the abundance of research conducted using these fluorescent proteins, as well as the continued development of similar fluorescent proteins, such as the coral-derived dsRED. Tsien is currently developing genetically encoded Infrared Fluorescent Proteins (IFPs), which with their long emission wavelengths of >700 nm, have the ability to pass through living tissue and improve imaging in living organisms. He is also building synthetic molecules for use in humans. He cites team effort and the contributions of students and post-docs as key components of progress and success: "Even if I had the time, I couldnt have done the experiments, because I dont know how. Its very much a team effort."
Related JoVE Video
Indicators based on fluorescence resonance energy transfer (FRET).
Cold Spring Harb Protoc
PUBLISHED: 12-31-2009
Show Abstract
Hide Abstract
One of the major new trends in the design of indicators for optically imaging biochemical and physiological functions of living cells has been the exploitation of fluorescence resonance energy transfer (FRET). FRET is a well-known spectroscopic technique for monitoring changes in the proximity and mutual orientation of pairs of chromophores. It has long been used in biochemistry and cell biology to assess distances and orientations between specific labeling sites within a single macromolecule or between two separate molecules. More recently, macromolecules or molecular pairs have been engineered to change their FRET in response to biochemical and physiological signals such as membrane potential, cyclic AMP (cAMP), protease activity, free Ca(2+) and Ca(2+)-calmodulin (CaM) concentrations, protein-protein heterodimerization, phosphorylation, and reporter-gene expression. Because FRET is general, nondestructive, and easily imaged, it has proven to be one of the most versatile spectroscopic readouts available to the designer of new probes. FRET is particularly amenable to emission ratioing, which is more reliably quantifiable than single-wavelength monitoring and better suited than excitation ratioing to high-speed and laser-excited imaging. This article summarizes the photophysical principles of FRET and the types of indicators used.
Related JoVE Video
Photoswitching mechanism of cyanine dyes.
J. Am. Chem. Soc.
PUBLISHED: 12-08-2009
Show Abstract
Hide Abstract
Cyanine dyes have been shown to undergo reversible photoswitching, where the fluorophore can be switched between a fluorescent state and a dark state upon illumination at different wavelengths. The photochemical mechanism by which switching occurs has yet to be elucidated. In this study, we have determined the mechanism of photoswitching by characterizing the kinetics of dark state formation and the spectral and structural properties of the dark state. The rate of switching to the dark state depends on the concentration of the primary thiol in the solution and the solution pH in a manner quantitatively consistent with the formation of an encounter complex between the cyanine dye and ionized thiol prior to their conjugation. Mass spectrometry suggests that the photoconversion product is a thiol-cyanine adduct in which covalent attachment of the thiol to the polymethine bridge disrupts the original conjugated pi-electron system of the dye.
Related JoVE Video
Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals.
Chem. Biol.
PUBLISHED: 06-29-2009
Show Abstract
Hide Abstract
Fluorescent proteins have become valuable tools for biomedical research as protein tags, reporters of gene expression, biosensor components, and cell lineage tracers. However, applications of fluorescent proteins for deep tissue imaging in whole mammals have been constrained by the opacity of tissues to excitation light below 600 nm, because of absorbance by hemoglobin. Fluorescent proteins that excite efficiently in the "optical window" above 600 nm are therefore highly desirable. We report here the evolution of far-red fluorescent proteins with peak excitation at 600 nm or above. The brightest one of these, Neptune, performs well in imaging deep tissues in living mice. The crystal structure of Neptune reveals a novel mechanism for red-shifting involving the acquisition of a new hydrogen bond with the acylimine region of the chromophore.
Related JoVE Video
In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer.
Integr Biol (Camb)
PUBLISHED: 05-11-2009
Show Abstract
Hide Abstract
Activatable cell penetrating peptides (ACPPs) are novel in vivo targeting agents comprised of a polycationic cell penetrating peptide (CPP) connected via a cleavable linker to a neutralizing polyanion (). Adsorption and uptake into cells are inhibited until the linker is proteolyzed. An ACPP cleavable by matrix metalloproteinase-2 (MMP-2) in vitro was the first one demonstrated to work in a tumor model in vivo, but only HT-1080 xenografts and resected human squamous cell carcinomas were tested. Generality to other cancer types, in vivo selectivity of ACPPs for MMPs, and spatial resolution require further characterization. We now show that ACPPs can target many xenograft tumor models from different cancer sites, as well as a thoroughly studied transgenic model of spontaneous breast cancer (mouse mammary tumor virus promoter driving polyoma middle T antigen, MMTV-PyMT). Pharmacological inhibitors and genetic knockouts indicate that current ACPPs are selective for MMP-2 and MMP-9 in the above in vivo models. In accord with the known local distribution of MMP activity, accumulation is strongest at the tumor-stromal interface in primary tumors and associated metastases, indicating better spatial resolution (<50 mum) than other currently available MMP-cleavable probes. We also find that background uptake of ACPPs into normal tissues such as cartilage can be decreased by appending inert macromolecules of 30-50 KDa to the polyanionic inhibitory domain. Our results validate an approach that should generally deliver imaging agents and chemotherapeutics to sites of invasion, tumor-promoting inflammation, and metastasis.
Related JoVE Video
Systemic in vivo distribution of activatable cell penetrating peptides is superior to that of cell penetrating peptides.
Integr Biol (Camb)
PUBLISHED: 05-11-2009
Show Abstract
Hide Abstract
Cell penetrating peptides (CPPs) have been developed as vehicles for payload delivery into cells in culture and in animals. However several biologic features limit their usefulness in living animals. Activatable cell penetrating peptides (ACPPs) are polycationic CPPs whose adsorption and cellular uptake are minimized by a covalently attached polyanionic inhibitory domain. Cleavage of the linker connecting the polyanionic and polycationic domains by specific proteases (tumor associated matrix metalloproteases discussed herein) dissociates the polyanion and enables the cleaved ACPP to enter cells. In contrast to their CPP counterpart, ACPPs are relatively nonadherent and distributed uniformly to normal tissues. While nonaarginine (r(9)) CPP administered intravenously into mice initially bind to the local vasculature and redistribute to the liver, where >90% of the injected dose accumulates 30 min after injection. Regardless of the presence of the polyanionic inhibitory domain, confocal imaging of live tissues reveals that the majority of the ACPP and CPP remain in punctate organelles, presumably endosomes. Therefore further improvements in the efficiency of delivery to the cytosol and nucleus are necessary. In addition to improved target specificity, a major advantage of ACPPs over CPPs for potential clinical applications is reduced toxicity. Systemically administered r(9) CPP causes acute toxicity in mice at a dose 4-fold lower than the MMP cleavable ACPP, a complication not observed with an uncleavable ACPP presumably because the polycationic charge remains masked systemically. These data suggest that ACPPs have greater potential than CPPs for systemic delivery of imaging and therapeutic agents.
Related JoVE Video
Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome.
Science
PUBLISHED: 05-09-2009
Show Abstract
Hide Abstract
Visibly fluorescent proteins (FPs) from jellyfish and corals have revolutionized many areas of molecular and cell biology, but the use of FPs in intact animals, such as mice, has been handicapped by poor penetration of excitation light. We now show that a bacteriophytochrome from Deinococcus radiodurans, incorporating biliverdin as the chromophore, can be engineered into monomeric, infrared-fluorescent proteins (IFPs), with excitation and emission maxima of 684 and 708 nm, respectively; extinction coefficient >90,000 M(-1) cm(-1); and quantum yield of 0.07. IFPs express well in mammalian cells and mice and spontaneously incorporate biliverdin, which is ubiquitous as the initial intermediate in heme catabolism but has negligible fluorescence by itself. Because their wavelengths penetrate tissue well, IFPs are suitable for whole-body imaging. The IFPs developed here provide a scaffold for further engineering.
Related JoVE Video
Hairpin structure of a biarsenical-tetracysteine motif determined by NMR spectroscopy.
J. Am. Chem. Soc.
PUBLISHED: 03-14-2009
Show Abstract
Hide Abstract
The biarsenical-tetracysteine motif is a useful tag for genetic labeling of proteins with small molecules in living cells. The present study concerns the structure of a 12 amino acid peptide FLNCCPGCCMEP bound to the fluorophore ReAsH based on resorufin. (1)H NMR spectroscopy was used to determine the solution structure of the complex formed between the peptide and the ReAsH moiety. Structure calculations based on the NMR results showed that the backbone structure of the peptide is fairly well defined, with a hairpinlike turn, similar to a type-II beta-turn, formed by the central CPGC segment. The most stable complex was formed when As2 was bonded to C4 and C5 and As1 to C8 and C9. Two clear NOESY cross-peaks between the Phe1 side chain and ReAsH confirmed the close positioning of the phenyl ring of Phe1 and ReAsH. Phe1 was found to have an edge-face geometry relative to ReAsH. The close interaction between Phe1 and ReAsH may be highly significant for the fluorescence properties of the ReAsH complex.
Related JoVE Video
Characterization of engineered channelrhodopsin variants with improved properties and kinetics.
Biophys. J.
PUBLISHED: 03-04-2009
Show Abstract
Hide Abstract
Channelrhodopsin 2 (ChR2), a light-activated nonselective cationic channel from Chlamydomonas reinhardtii, has become a useful tool to excite neurons into which it is transfected. The other ChR from Chlamydomonas, ChR1, has attracted less attention because of its proton-selective permeability. By making chimeras of the transmembrane domains of ChR1 and ChR2, combined with site-directed mutagenesis, we developed a ChR variant, named ChEF, that exhibits significantly less inactivation during persistent light stimulation. ChEF undergoes only 33% inactivation, compared with 77% for ChR2. Point mutation of Ile(170) of ChEF to Val (yielding "ChIEF") accelerates the rate of channel closure while retaining reduced inactivation, leading to more consistent responses when stimulated above 25 Hz in both HEK293 cells and cultured hippocampal neurons. In addition, these variants have altered spectral responses, light sensitivity, and channel selectivity. ChEF and ChIEF allow more precise temporal control of depolarization, and can induce action potential trains that more closely resemble natural spiking patterns.
Related JoVE Video
Real-time in vivo molecular detection of primary tumors and metastases with ratiometric activatable cell-penetrating peptides.
Cancer Res.
Show Abstract
Hide Abstract
Management of metastatic disease is integral to cancer treatment. Evaluation of metastases often requires surgical removal of all anatomically susceptible lymph nodes for ex vivo pathologic examination. We report a family of novel ratiometric activatable cell-penetrating peptides, which contain Cy5 as far red fluorescent donor and Cy7 as near-infrared fluorescent acceptor. Cy5 is quenched in favor of Cy7 re-emission until the intervening linker is cut by tumor-associated matrix metalloproteinases-2 and 9 (MMP2,9) or elastases. Such cleavage increases the Cy5:Cy7 emission ratio 40-fold and triggers tissue retention of the Cy5-containing fragment. This ratiometric increase provides an accelerated and quantifiable metric to identify primary tumors and metastases to liver and lymph nodes with increased sensitivity and specificity. This technique represents a significant advance over existing nonratiometric protease sensors and sentinel lymph node detection methods, which give no information about cancer invasion.
Related JoVE Video
Fluorescent and photo-oxidizing TimeSTAMP tags track protein fates in light and electron microscopy.
Nat. Neurosci.
Show Abstract
Hide Abstract
Protein synthesis is highly regulated throughout nervous system development, plasticity and regeneration. However, tracking the distributions of specific new protein species has not been possible in living neurons or at the ultrastructural level. Previously we created TimeSTAMP epitope tags, drug-controlled tags for immunohistochemical detection of specific new proteins synthesized at defined times. Here we extend TimeSTAMP to label new protein copies by fluorescence or photo-oxidation. Live microscopy of a fluorescent TimeSTAMP tag reveals that copies of the synaptic protein PSD95 are synthesized in response to local activation of growth factor and neurotransmitter receptors, and preferentially localize to stimulated synapses in rat neurons. Electron microscopy of a photo-oxidizing TimeSTAMP tag reveals new PSD95 at developing dendritic structures of immature neurons and at synapses in differentiated neurons. These results demonstrate the versatility of the TimeSTAMP approach for visualizing newly synthesized proteins in neurons.
Related JoVE Video
Ratiometric activatable cell-penetrating peptides provide rapid in vivo readout of thrombin activation.
Angew. Chem. Int. Ed. Engl.
Show Abstract
Hide Abstract
In real time: thrombin activation in vivo can be imaged in real time with ratiometric activatable cell penetrating peptides (RACPPs). RACPPs are designed to combine 1) dual-emission ratioing, 2) far red to infrared wavelengths for in vivo mammalian imaging, and 3) cleavage-dependent spatial localization. The most advanced RACPP uses norleucine (Nle)-TPRSFL as a linker that increases sensitivity to thrombin by about 90-fold.
Related JoVE Video
A structural basis for the assembly and functions of a viral polymer that inactivates multiple tumor suppressors.
Cell
Show Abstract
Hide Abstract
Evolution of minimal DNA tumor virus genomes has selected for small viral oncoproteins that hijack critical cellular protein interaction networks. The structural basis for the multiple and dominant functions of adenovirus oncoproteins has remained elusive. E4-ORF3 forms a nuclear polymer and simultaneously inactivates p53, PML, TRIM24, and MRE11/RAD50/NBS1 (MRN) tumor suppressors. We identify oligomerization mutants and solve the crystal structure of E4-ORF3. E4-ORF3 forms a dimer with a central ? core, and its structure is unrelated to known polymers or oncogenes. E4-ORF3 dimer units coassemble through reciprocal and nonreciprocal exchanges of their C-terminal tails. This results in linear and branched oligomer chains that further assemble in variable arrangements to form a polymer network that partitions the nuclear volume. E4-ORF3 assembly creates avidity-driven interactions with PML and an emergent MRN binding interface. This reveals an elegant structural solution whereby a small protein forms a multivalent matrix that traps disparate tumor suppressors.
Related JoVE Video
Improving FRET dynamic range with bright green and red fluorescent proteins.
Nat. Methods
Show Abstract
Hide Abstract
A variety of genetically encoded reporters use changes in fluorescence (or Förster) resonance energy transfer (FRET) to report on biochemical processes in living cells. The standard genetically encoded FRET pair consists of CFPs and YFPs, but many CFP-YFP reporters suffer from low FRET dynamic range, phototoxicity from the CFP excitation light and complex photokinetic events such as reversible photobleaching and photoconversion. We engineered two fluorescent proteins, Clover and mRuby2, which are the brightest green and red fluorescent proteins to date and have the highest Förster radius of any ratiometric FRET pair yet described. Replacement of CFP and YFP with these two proteins in reporters of kinase activity, small GTPase activity and transmembrane voltage significantly improves photostability, FRET dynamic range and emission ratio changes. These improvements enhance detection of transient biochemical events such as neuronal action-potential firing and RhoA activation in growth cones.
Related JoVE Video
Thrombin activity associated with neuronal damage during acute focal ischemia.
J. Neurosci.
Show Abstract
Hide Abstract
Mechanisms of ischemic neuronal and vascular injury remain obscure. Here we test the hypothesis that thrombin, a blood-borne coagulation factor, contributes to neurovascular injury during acute focal ischemia. Stroke was induced in adult Sprague Dawley rats by occluding the middle cerebral artery. Intra-arterial thrombin infusion during ischemia significantly increased vascular disruption and cellular injury. Intravenous infusion of argatroban, a direct thrombin inhibitor, alleviated neurovascular injury. Immunostaining showed thrombin on neurons in the ischemic core. Using an activatable cell-penetrating peptide engineered to detect thrombin activity, we discovered that thrombin proteolytic activity was specifically associated with neuronal damage during ischemia. Protease activated receptor-1, the presumptive thrombin receptor, appeared to mediate ischemic neurovascular injury. Furthermore, rats receiving thrombin during ischemia showed cognitive deficit, whereas rats receiving argatroban retained intact learning and memory. These results suggest a potential role for thrombin contributing to neurovascular injury and several potential avenues for neuroprotection.
Related JoVE Video
In vivo fluorescence imaging of atherosclerotic plaques with activatable cell-penetrating peptides targeting thrombin activity.
Integr Biol (Camb)
Show Abstract
Hide Abstract
Thrombin and other coagulation enzymes have been shown to be important during atherosclerotic disease development. Study of these proteases is currently limited because of lack of robust molecular imaging agents for imaging protease activity in vivo. Activatable cell penetrating peptides (ACPPs) have been used to monitor MMP activity in tumors and, in principle, can be modified to detect other proteases. We have developed a probe that incorporates the peptide sequence DPRSFL from the proteinase activated receptor 1 (PAR-1) into an ACPP and shown that it is preferentially cleaved by purified thrombin. Active thrombin in serum cleaves DPRSFL-ACPP with >90% inhibition by lepirudin or argatroban. The DPRSFL-ACPP cleavage product accumulated in advanced atherosclerotic lesions in living mice, with 85% reduction in retention upon pre-injection of mice with hirudin. Uptake of the ACPP cleavage product was highest in plaques with histological features associated with more severe disease. Freshly resected human atheromas bathed in DPRSFL-ACPP retained 63% greater cleavage product compared to control ACPP. In conclusion, DPRSFL-ACPP can be used to study thrombin activity in coagulation and atherosclerosis with good spatial and temporal resolution. Thrombin-sensitive ACPPs may be developed into probes for early detection and intraoperative imaging of high risk atherosclerotic plaques.
Related JoVE Video
Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
We describe a method for light-inducible and tissue-selective cell ablation using a genetically encoded photosensitizer, miniSOG (mini singlet oxygen generator). miniSOG is a newly engineered fluorescent protein of 106 amino acids that generates singlet oxygen in quantum yield upon blue-light illumination. We transgenically expressed mitochondrially targeted miniSOG (mito-miniSOG) in Caenorhabditis elegans neurons. Upon blue-light illumination, mito-miniSOG causes rapid and effective death of neurons in a cell-autonomous manner without detectable damages to surrounding tissues. Neuronal death induced by mito-miniSOG appears to be independent of the caspase CED-3, but the clearance of the damaged cells partially depends on the phagocytic receptor CED-1, a homolog of human CD91. We show that neurons can be killed at different developmental stages. We further use this method to investigate the role of the premotor interneurons in regulating the convulsive behavior caused by a gain-of-function mutation in the neuronal acetylcholine receptor acr-2. Our findings support an instructive role for the interneuron AVB in controlling motor neuron activity and reveal an inhibitory effect of the backward premotor interneurons on the forward interneurons. In summary, the simple inducible cell ablation method reported here allows temporal and spatial control and will prove to be a useful tool in studying the function of specific cells within complex cellular contexts.
Related JoVE Video
Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
Fluorescence imaging is an attractive method for monitoring neuronal activity. A key challenge for optically monitoring voltage is development of sensors that can give large and fast responses to changes in transmembrane potential. We now present fluorescent sensors that detect voltage changes in neurons by modulation of photo-induced electron transfer (PeT) from an electron donor through a synthetic molecular wire to a fluorophore. These dyes give bigger responses to voltage than electrochromic dyes, yet have much faster kinetics and much less added capacitance than existing sensors based on hydrophobic anions or voltage-sensitive ion channels. These features enable single-trial detection of synaptic and action potentials in cultured hippocampal neurons and intact leech ganglia. Voltage-dependent PeT should be amenable to much further optimization, but the existing probes are already valuable indicators of neuronal activity.
Related JoVE Video
In Vivo Targeting of Hydrogen Peroxide by Activatable Cell-Penetrating Peptides.
J. Am. Chem. Soc.
Show Abstract
Hide Abstract
A hydrogen peroxide (H2O2)-activated cell-penetrating peptide was developed through incorporation of a boronic acid-containing cleavable linker between polycationic cell-penetrating peptide and polyanionic fragments. Fluorescence labeling of the two ends of the molecule enabled monitoring its reaction with H2O2 through release of the highly adhesive cell-penetrating peptide and disruption of fluorescence resonance energy transfer. The H2O2 sensor selectively reacts with endogenous H2O2, in cell culture to monitor the oxidative burst of promyelocytes, and in vivo to image lung inflammation. Targeting H2O2 has potential applications in imaging and therapy of diseases related to oxidative stress.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.