JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Evaluation of anti-HIV-1 mutagenic nucleoside analogues.
J. Biol. Chem.
PUBLISHED: 11-16-2014
Show Abstract
Hide Abstract
Due to their high mutation rates, RNA viruses and retroviruses replicate close to the threshold of viability. Their existence as quasi-species has pioneered the concept of lethal mutagenesis that prompted us to synthesize pyrimidine nucleoside analogues with antiviral activity in cell culture consistent with an accumulation of deleterious mutations in the HIV-1 genome. However, testing all potentially mutagenic compounds in cell-based assays is tedious and costly. Here, we describe two simple in vitro biophysical/biochemical assays that allow prediction of the mutagenic potential of deoxyribonucleoside analogues. The first assay compares the thermal stabilities of matched and mismatched base-pairs in DNA duplexes containing or not the nucleoside analogues: a promising candidate should display a small destabilisation of the matched base-pair compared to the natural nucleoside and the smallest gap possible between the stabilities of the matched and mismatched base-pairs. From this assay, we predicted that two of our compounds, 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine should be mutagenic. The second in vitro reverse transcription assay assesses DNA synthesis opposite nucleoside analogues inserted into a template strand and subsequent extension of the newly synthesised base pairs. Once again, only 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine are predicted to be efficient mutagens. The predictive potential of our fast and easy first line screens was confirmed by detailed analysis of the mutation spectrum induced by the compounds in cell culture since only compounds 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine were found to increase the mutation frequency, by 3.1 and 3.4 fold, respectively.
Related JoVE Video
Specific recognition of the HIV-1 genomic RNA by the Gag precursor.
Nat Commun
PUBLISHED: 06-05-2014
Show Abstract
Hide Abstract
During assembly of HIV-1 particles in infected cells, the viral Pr55(Gag) protein (or Gag precursor) must select the viral genomic RNA (gRNA) from a variety of cellular and viral spliced RNAs. However, there is no consensus on how Pr55(Gag) achieves this selection. Here, by using RNA binding and footprinting assays, we demonstrate that the primary Pr55(Gag) binding site on the gRNA consists of the internal loop and the lower part of stem-loop 1 (SL1), the upper part of which initiates gRNA dimerization. A double regulation ensures specific binding of Pr55(Gag) to the gRNA despite the fact that SL1 is also present in spliced viral RNAs. The region upstream of SL1, which is present in all HIV-1 RNAs, prevents binding to SL1, but this negative effect is counteracted by sequences downstream of SL4, which are unique to the gRNA.
Related JoVE Video
Structural basis of genomic RNA (gRNA) dimerization and packaging determinants of mouse mammary tumor virus (MMTV).
Retrovirology
PUBLISHED: 05-08-2014
Show Abstract
Hide Abstract
BackgroundOne of the hallmarks of retroviral life cycle is the efficient and specific packaging of two copies of retroviral gRNA in the form of a non-covalent RNA dimer by the assembling virions. It is becoming increasingly clear that the process of dimerization is closely linked with gRNA packaging, and in some retroviruses, the latter depends on the former. Earlier mutational analysis of the 5¿ end of the MMTV genome indicated that MMTV gRNA packaging determinants comprise sequences both within the 5¿ untranslated region (5¿ UTR) and the beginning of gag.ResultsThe RNA secondary structure of MMTV gRNA packaging sequences was elucidated employing selective 2¿hydroxyl acylation analyzed by primer extension (SHAPE). SHAPE analyses revealed the presence of a U5/Gag long-range interaction (U5/Gag LRI), not predicted by minimum free-energy structure predictions that potentially stabilizes the global structure of this region. Structure conservation along with base-pair covariations between different strains of MMTV further supported the SHAPE-validated model. The 5¿ region of the MMTV gRNA contains multiple palindromic (pal) sequences that could initiate intermolecular interaction during RNA dimerization. In vitro RNA dimerization, SHAPE analysis, and structure prediction approaches on a series of pal mutants revealed that MMTV RNA utilizes a palindromic point of contact to initiate intermolecular interactions between two gRNAs, leading to dimerization. This contact point resides within pal II (5¿ CGGCCG 3¿) at the 5¿ UTR and contains a canonical ¿GC¿ dyad and therefore likely constitutes the MMTV RNA dimerization initiation site (DIS). Further analyses of these pal mutants employing in vivo genetic approaches indicate that pal II, as well as pal sequences located in the primer binding site (PBS) are both required for efficient MMTV gRNA packaging.ConclusionsEmploying structural prediction, biochemical, and genetic approaches, we show that pal II functions as a primary point of contact between two MMTV RNAs, leading to gRNA dimerization and its subsequent encapsidation into the assembling virus particles. The results presented here enhance our understanding of the MMTV gRNA dimerization and packaging processes and the role of structural motifs with respect to RNA-RNA and possibly RNA-protein interactions that might be taking place during MMTV life cycle.
Related JoVE Video
Selective packaging of the influenza A genome and consequences for genetic reassortment.
Trends Microbiol.
PUBLISHED: 02-11-2014
Show Abstract
Hide Abstract
Influenza A viruses package their segmented RNA genome in a selective manner. Electron tomography, biochemical assays, and replication assays of viruses produced by reverse genetics recently unveiled molecular details of this mechanism, whereby different influenza viral strains form different and unique networks of direct intermolecular RNA-RNA interactions. Together with detailed views of the three-dimensional structure of the viral ribonucleoparticles, these recent advances help us understand the rules that govern genome packaging. They also have deep implications for the genetic reassortment processes, which are responsible for devastating pandemics.
Related JoVE Video
SHAPE analysis of the 5 end of the Mason-Pfizer monkey virus (MPMV) genomic RNA reveals structural elements required for genome dimerization.
RNA
PUBLISHED: 10-23-2013
Show Abstract
Hide Abstract
Earlier genetic and structural prediction analyses revealed that the packaging determinants of Mason Pfizer monkey virus (MPMV) include two discontinuous core regions at the 5 end of its genomic RNA. RNA secondary structure predictions suggested that these packaging determinants fold into several stem-loops (SLs). To experimentally validate this structural model, we employed selective 2 hydroxyl acylation analyzed by primer extension (SHAPE), which examines the flexibility of the RNA backbone at each nucleotide position. Our SHAPE data validated several predicted structural motifs, including U5/Gag long-range interactions (LRIs), a stretch of single-stranded purine (ssPurine)-rich region, and a distinctive G-C-rich palindromic (pal) SL. Minimum free-energy structure predictions, phylogenetic, and in silico modeling analyses of different MPMV strains revealed that the U5 and gag sequences involved in the LRIs differ minimally within strains and maintain a very high degree of complementarity. Since the pal SL forms a helix loop containing a canonical "GC" dyad, it may act as a RNA dimerization initiation site (DIS), enabling the virus to package two copies of its genome. Analyses of wild-type and pal mutant RNAs revealed that disruption of pal sequence strongly affected RNA dimerization. However, when in vitro transcribed trans-complementary pal mutants were incubated together showed RNA dimerization was restored authenticating that the pal loop (5-CGGCCG-3) functions as DIS.
Related JoVE Video
A functional sequence-specific interaction between influenza A virus genomic RNA segments.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 09-25-2013
Show Abstract
Hide Abstract
Influenza A viruses cause annual influenza epidemics and occasional severe pandemics. Their genome is segmented into eight fragments, which offers evolutionary advantages but complicates genomic packaging. The existence of a selective packaging mechanism, in which one copy of each viral RNA is specifically packaged into each virion, is suspected, but its molecular details remain unknown. Here, we identified a direct intermolecular interaction between two viral genomic RNA segments of an avian influenza A virus using in vitro experiments. Using silent trans-complementary mutants, we then demonstrated that this interaction takes place in infected cells and is required for optimal viral replication. Disruption of this interaction did not affect the HA titer of the mutant viruses, suggesting that the same amount of viral particles was produced. However, it nonspecifically decreased the amount of viral RNA in the viral particles, resulting in an eightfold increase in empty viral particles. Competition experiments indicated that this interaction favored copackaging of the interacting viral RNA segments. The interaction we identified involves regions not previously designated as packaging signals and is not widely conserved among influenza A virus. Combined with previous studies, our experiments indicate that viral RNA segments can promote the selective packaging of the influenza A virus genome by forming a sequence-dependent supramolecular network of interactions. The lack of conservation of these interactions might limit genetic reassortment between divergent influenza A viruses.
Related JoVE Video
Critical role of segment-specific packaging signals in genetic reassortment of influenza A viruses.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 09-16-2013
Show Abstract
Hide Abstract
The fragmented nature of the influenza A genome allows the exchange of gene segments when two or more influenza viruses infect the same cell, but little is known about the rules underlying this process. Here, we studied genetic reassortment between the A/Moscow/10/99 (H3N2, MO) virus originally isolated from human and the avian A/Finch/England/2051/91 (H5N2, EN) virus and found that this process is strongly biased. Importantly, the avian HA segment never entered the MO genetic background alone but always was accompanied by the avian PA and M fragments. Introduction of the 5 and 3 packaging sequences of HA(MO) into an otherwise HA(EN) backbone allowed efficient incorporation of the chimerical viral RNA (vRNA) into the MO genetic background. Furthermore, forcing the incorporation of the avian M segment or introducing five silent mutations into the human M segment was sufficient to drive coincorporation of the avian HA segment into the MO genetic background. These silent mutations also strongly affected the genotype of reassortant viruses. Taken together, our results indicate that packaging signals are crucial for genetic reassortment and that suboptimal compatibility between the vRNA packaging signals, which are detected only when vRNAs compete for packaging, limit this process.
Related JoVE Video
APOBEC3G impairs the multimerization of the HIV-1 Vif protein in living cells.
J. Virol.
PUBLISHED: 04-10-2013
Show Abstract
Hide Abstract
The HIV-1 viral infectivity factor (Vif) is a small basic protein essential for viral fitness and pathogenicity. Vif allows productive infection in nonpermissive cells, including most natural HIV-1 target cells, by counteracting the cellular cytosine deaminases APOBEC3G (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G [A3G]) and A3F. Vif is also associated with the viral assembly complex and packaged into viral particles through interactions with the viral genomic RNA and the nucleocapsid domain of Pr55(Gag). Recently, we showed that oligomerization of Vif into high-molecular-mass complexes induces Vif folding and influences its binding to high-affinity RNA binding sites present in the HIV genomic RNA. To get further insight into the role of Vif multimerization in viral assembly and A3G repression, we used fluorescence lifetime imaging microscopy (FLIM)- and fluorescence resonance energy transfer (FRET)-based assays to investigate Vif-Vif interactions in living cells. By using two N-terminally tagged Vif proteins, we show that Vif-Vif interactions occur in living cells. This oligomerization is strongly reduced when the putative Vif multimerization domain ((161)PPLP(164)) is mutated, indicating that this domain is crucial, but that regions outside this motif also participate in Vif oligomerization. When coexpressed together with Pr55(Gag), Vif is largely relocated to the cell membrane, where Vif oligomerization also occurs. Interestingly, wild-type A3G strongly interferes with Vif multimerization, contrary to an A3G mutant that does not bind to Vif. These findings confirm that Vif oligomerization occurs in living cells partly through its C-terminal motif and suggest that A3G may target and perturb the Vif oligomerization state to limit its functions in the cell.
Related JoVE Video
A supramolecular assembly formed by influenza A virus genomic RNA segments.
Nucleic Acids Res.
PUBLISHED: 11-10-2011
Show Abstract
Hide Abstract
The influenza A virus genome consists of eight viral RNAs (vRNAs) that form viral ribonucleoproteins (vRNPs). Even though evidence supporting segment-specific packaging of vRNAs is accumulating, the mechanism ensuring selective packaging of one copy of each vRNA into the viral particles remains largely unknown. We used electron tomography to show that the eight vRNPs emerge from a common transition zone located underneath the matrix layer at the budding tip of the virions, where they appear to be interconnected and often form a star-like structure. This zone appears as a platform in 3D surface rendering and is thick enough to contain all known packaging signals. In vitro, all vRNA segments are involved in a single network of intermolecular interactions. The regions involved in the strongest interactions were identified and correspond to known packaging signals. A limited set of nucleotides in the 5 region of vRNA 7 was shown to interact with vRNA 6 and to be crucial for packaging of the former vRNA. Collectively, our findings support a model in which the eight genomic RNA segments are selected and packaged as an organized supramolecular complex held together by direct base pairing of the packaging signals.
Related JoVE Video
8-Modified-2-deoxyadenosine analogues induce delayed polymerization arrest during HIV-1 reverse transcription.
PLoS ONE
PUBLISHED: 07-08-2011
Show Abstract
Hide Abstract
The occurrence of resistant viruses to any of the anti-HIV-1 compounds used in the current therapies against AIDS underlies the urge for the development of new drug targets and/or new drugs acting through novel mechanisms. While all anti-HIV-1 nucleoside analogues in clinical use and in clinical trials rely on ribose modifications for activity, we designed nucleosides with a natural deoxyribose moiety and modifications of position 8 of the adenine base. Such modifications might induce a steric clash with helix ?H in the thumb domain of the p66 subunit of HIV-1 RT at a distance from the catalytic site, causing delayed chain termination. Eleven new 2-deoxyadenosine analogues modified on position 8 of the purine base were synthesized and tested in vitro and in cell-based assays. In this paper we demonstrate for the first time that chemical modifications on position 8 of 2-deoxyadenosine induce delayed chain termination in vitro, and also inhibit DNA synthesis when incorporated in a DNA template strand. Furthermore, one of them had moderate anti-HIV-1 activity in cell-culture. Our results constitute a proof of concept indicating that modification on the base moiety of nucleosides can induce delayed polymerization arrest and inhibit HIV-1 replication.
Related JoVE Video
Labeling of multiple HIV-1 proteins with the biarsenical-tetracysteine system.
PLoS ONE
PUBLISHED: 01-19-2011
Show Abstract
Hide Abstract
Due to its small size and versatility, the biarsenical-tetracysteine system is an attractive way to label viral proteins for live cell imaging. This study describes the genetic labeling of the human immunodeficiency virus type 1 (HIV-1) structural proteins (matrix, capsid and nucleocapsid), enzymes (protease, reverse transcriptase, RNAse H and integrase) and envelope glycoprotein 120 with a tetracysteine tag in the context of a full-length virus. We measure the impact of these modifications on the natural virus infection and, most importantly, present the first infectious HIV-1 construct containing a fluorescently-labeled nucleocapsid protein. Furthermore, due to the high background levels normally associated with the labeling of tetracysteine-tagged proteins we have also optimized a metabolic labeling system that produces infectious virus containing the natural envelope glycoproteins and specifically labeled tetracysteine-tagged proteins that can easily be detected after virus infection of T-lymphocytes. This approach can be adapted to other viral systems for the visualization of the interplay between virus and host cell during infection.
Related JoVE Video
Importance of the proline-rich multimerization domain on the oligomerization and nucleic acid binding properties of HIV-1 Vif.
Nucleic Acids Res.
PUBLISHED: 11-13-2010
Show Abstract
Hide Abstract
The HIV-1 viral infectivity factor (Vif) is required for productive infection of non-permissive cells, including most natural HIV-1 targets, where it counteracts the antiviral activities of the cellular cytosine deaminases APOBEC-3G (A3G) and A3F. Vif is a multimeric protein and the conserved proline-rich domain (161)PPLP(164) regulating Vif oligomerization is crucial for its function and viral infectivity. Here, we expressed and purified wild-type Vif and a mutant protein in which alanines were substituted for the proline residues of the (161)PPLP(164) domain. Using dynamic light scattering, circular dichroism and fluorescence spectroscopy, we established the impact of these mutations on Vif oligomerization, secondary structure content and nucleic acids binding properties. In vitro, wild-type Vif formed oligomers of five to nine proteins, while Vif AALA formed dimers and/or trimers. Up to 40% of the unbound wild-type Vif protein appeared to be unfolded, but binding to the HIV-1 TAR apical loop promoted formation of ?-sheets. Interestingly, alanine substitutions did not significantly affect the secondary structure of Vif, but they diminished its binding affinity and specificity for nucleic acids. Dynamic light scattering showed that Vif oligomerization, and interaction with folding-promoting nucleic acids, favor formation of high molecular mass complexes. These properties could be important for Vif functions involving RNAs.
Related JoVE Video
5-Modified-2-dU and 2-dC as mutagenic anti HIV-1 proliferation agents: synthesis and activity.
J. Med. Chem.
PUBLISHED: 02-02-2010
Show Abstract
Hide Abstract
With the goal of limiting HIV-1 proliferation by increasing the mutation rate of the viral genome, we synthesized a series of pyrimidine nucleoside analogues modified in position 5 of the aglycone moiety but unmodified on the sugar part. The synthetic strategies allow us to prepare the targeted compounds directly from commercially available nucleosides. All compounds were tested for their ability to reduce HIV-1 proliferation in cell culture. Two of them (5-hydroxymethyl-2-dU (1c) and 5-hydroxymethyl-2-dC (2c)) displayed a moderate antiviral activity in single passage experiments. The same two compounds plus two additional ones (5-carbamoyl-2-dU (1a) and 5-carbamoylmethyl-2-dU (1b)) were potent inhibitors of HIV-1 RT activity in serial passage assays, in which they induced a progressive loss of HIV-1 replication. In addition, viruses collected after seven passages in the presence of 1c and 2c replicated very poorly after withdrawal of these compounds, consistent with the accumulation of deleterious mutations in the HIV-1 genome.
Related JoVE Video
HIV-1 Vif binds to APOBEC3G mRNA and inhibits its translation.
Nucleic Acids Res.
PUBLISHED: 11-12-2009
Show Abstract
Hide Abstract
The HIV-1 viral infectivity factor (Vif) allows productive infection of non-permissive cells (including most natural HIV-1 targets) by counteracting the cellular cytosine deaminases APOBEC-3G (hA3G) and hA3F. The Vif-induced degradation of these restriction factors by the proteasome has been extensively studied, but little is known about the translational repression of hA3G and hA3F by Vif, which has also been proposed to participate in Vif function. Here, we studied Vif binding to hA3G mRNA and its role in translational repression. Filter binding assays and fluorescence titration curves revealed that Vif tightly binds to hA3G mRNA. Vif overall binding affinity was higher for the 3UTR than for the 5UTR, even though this region contained at least one high affinity Vif binding site (apparent K(d) = 27 +/- 6 nM). Several Vif binding sites were identified in 5 and 3UTRs using RNase footprinting. In vitro translation evidenced that Vif inhibited hA3G translation by two mechanisms: a main time-independent process requiring the 5UTR and an additional time-dependent, UTR-independent process. Results using a Vif protein mutated in the multimerization domain suggested that the molecular mechanism of translational control is more complicated than a simple physical blockage of scanning ribosomes.
Related JoVE Video
Tumultuous relationship between the human immunodeficiency virus type 1 viral infectivity factor (Vif) and the human APOBEC-3G and APOBEC-3F restriction factors.
Microbiol. Mol. Biol. Rev.
PUBLISHED: 06-03-2009
Show Abstract
Hide Abstract
The viral infectivity factor (Vif) is dispensable for human immunodeficiency virus type 1 (HIV-1) replication in so-called permissive cells but is required for replication in nonpermissive cell lines and for pathogenesis. Virions produced in the absence of Vif have an aberrant morphology and an unstable core and are unable to complete reverse transcription. Recent studies demonstrated that human APOBEC-3G (hA3G) and APOBEC-3F (hA3F), which are selectively expressed in nonpermissive cells, possess strong anti-HIV-1 activity and are sufficient to confer a nonpermissive phenotype. Vif induces the degradation of hA3G and hA3F, suggesting that its main function is to counteract these cellular factors. Most studies focused on the hypermutation induced by the cytidine deaminase activity of hA3G and hA3F and on their Vif-induced degradation by the proteasome. However, recent studies suggested that several mechanisms are involved both in the antiviral activity of hA3G and hA3F and in the way Vif counteracts these antiviral factors. Attempts to reconcile the studies involving Vif in virus assembly and stability with these recent findings suggest that hA3G and hA3F partially exert their antiviral activity independently of their catalytic activity by destabilizing the viral core and the reverse transcription complex, possibly by interfering with the assembly and/or maturation of the viral particles. Vif could then counteract hA3G and hA3F by excluding them from the viral assembly intermediates through competition for the viral genomic RNA, by regulating the proteolytic processing of Pr55(Gag), by enhancing the efficiency of the reverse transcription process, and by inhibiting the enzymatic activities of hA3G and hA3F.
Related JoVE Video
The A-rich RNA sequences of HIV-1 pol are important for the synthesis of viral cDNA.
Nucleic Acids Res.
PUBLISHED: 04-02-2009
Show Abstract
Hide Abstract
The bias of A-rich codons in HIV-1 pol is thought to be a record of hypermutations in viral genomes that lack biological functions. Bioinformatic analysis predicted that A-rich sequences are generally associated with minimal local RNA structures. Using codon modifications to reduce the amount of A-rich sequences within HIV-1 genomes, we have reduced the flexibility of RNA sequences in pol to analyze the functional significance of these A-rich structurally poor RNA elements in HIV-1 pol. Our data showed that codon modification of HIV-1 sequences led to a suppression of virus infectivity by 5-100-fold, and this defect does not correlate with, viral entry, viral protein expression levels, viral protein profiles or virion packaging of genomic RNA. Codon modification of HIV-1 pol correlated with an enhanced dimer stability of the viral RNA genome, which was associated with a reduction of viral cDNA synthesis both during HIV-1 infection and in a cell free reverse transcription assay. Our data provided direct evidence that the HIV-1 A-rich pol sequence is not merely an evolutionary artifact of enzyme-induced hypermutations, and that HIV-1 has adapted to rely on A-rich RNA sequences to support the synthesis of viral cDNA during reverse transcription, highlighting the utility of using structurally poor RNA domains in regulating biological process.
Related JoVE Video
An in vitro network of intermolecular interactions between viral RNA segments of an avian H5N2 influenza A virus: comparison with a human H3N2 virus.
Nucleic Acids Res.
Show Abstract
Hide Abstract
The genome of influenza A viruses (IAV) is split into eight viral RNAs (vRNAs) that are encapsidated as viral ribonucleoproteins. The existence of a segment-specific packaging mechanism is well established, but the molecular basis of this mechanism remains to be deciphered. Selective packaging could be mediated by direct interaction between the vRNA packaging regions, but such interactions have never been demonstrated in virions. Recently, we showed that the eight vRNAs of a human H3N2 IAV form a single interaction network in vitro that involves regions of the vRNAs known to contain packaging signals in the case of H1N1 IAV strains. Here, we show that the eight vRNAs of an avian H5N2 IAV also form a single network of interactions in vitro, but, interestingly, the interactions and the regions of the vRNAs they involve differ from those described for the human H3N2 virus. We identified the vRNA sequences involved in five of these interactions at the nucleotide level, and in two cases, we validated the existence of the interaction using compensatory mutations in the interacting sequences. Electron tomography also revealed significant differences in the interactions taking place between viral ribonucleoproteins in H5N2 and H3N2 virions, despite their canonical 7 + 1 arrangement.
Related JoVE Video
Interaction network linking the human H3N2 influenza A virus genomic RNA segments.
Vaccine
Show Abstract
Hide Abstract
The genome of influenza A viruses is comprised of eight negative-sense viral RNAs (vRNAs) that form viral ribonucleoproteins (vRNPs). In order to be infectious, an influenza A viral particle must encapsidate at least one copy of each of the vRNAs. Thus, even though genome segmentation is evolutionary advantageous, it undeniably complicates viral assembly, which is believed to occur through a selective mechanism that still remains to be understood. Using electron tomography 3D-reconstructions, we show that the eight vRNPs of an influenza A Moscow/10/99 (H3N2) virus are interconnected within a star-like structure as they emerge from a unique "transition zone" at the budding tip of the virions. Notably, this "transition zone" is thick enough to accommodate all described packaging signals. We also report that, in vitro, each vRNA segment is involved in a direct contact with at least one other vRNA partner, in a single network of intermolecular interactions. We show that in several cases, the regions involved in vRNA/vRNA interactions overlap with previously identified packaging signals. Our results thus provide support for the involvement of RNA/RNA interactions in the selection and specific packaging of influenza A genomic RNAs, which appear embedded into an organised supramolecular complex likely held together by direct base-pairings between packaging signals.
Related JoVE Video
A pyrophosphatase activity associated with purified HIV-1 particles.
Biochimie
Show Abstract
Hide Abstract
Treatment of HIV-1 with nucleoside reverse transcription inhibitors leads to the emergence of resistance mutations in the reverse transcriptase (RT) gene. Resistance to 3-azido-3-deoxythymidine (AZT) and to a lesser extent to 2-3-didehydro-2-3-dideoxythymidine is mediated by phosphorolytic excision of the chain terminator. Wild-type RT excises AZT by pyrophosphorolysis, while thymidine-associated resistance mutations in RT (TAMs) favour ATP as the donor substrate. However, in vitro, resistant RT still uses pyrophosphate more efficiently than ATP. We performed in vitro (-) strong-stop DNA synthesis experiments, with wild-type and AZT-resistant HIV-1 RTs, in the presence of physiologically relevant pyrophosphate and/or ATP concentrations and found that in the presence of pyrophosphate, ATP and AZTTP, TAMs do not enhance in vitro (-) strong-stop DNA synthesis. We hypothesized that utilisation of ATP in vivo is driven by intrinsic low pyrophosphate concentrations within the reverse transcription complex, which could be explained by the packaging of a cellular pyrophosphatase. We showed that over-expressed flagged-pyrophosphatase was associated with HIV-1 viral-like particles. In addition, we demonstrated that when HIV-1 particles were purified in order to avoid cellular microvesicle contamination, a pyrophosphatase activity was specifically associated to them. The presence of a pyrophosphatase activity in close proximity to the reverse transcription complex is most likely advantageous to the virus, even in the absence of any drug pressure.
Related JoVE Video
The role of Vif oligomerization and RNA chaperone activity in HIV-1 replication.
Virus Res.
Show Abstract
Hide Abstract
The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells that involve most natural HIV-1 target cells. Vif counteracts the packaging of two cellular cytidine deaminases named APOBEC3G (A3G) and A3F by diverse mechanisms including the recruitment of an E3 ubiquitin ligase complex and the proteasomal degradation of A3G/A3F, the inhibition of A3G mRNA translation or by a direct competition mechanism. In addition, Vif appears to be an active partner of the late steps of viral replication by participating in virus assembly and Gag processing, thus regulating the final stage of virion formation notably genomic RNA dimerization and by inhibiting the initiation of reverse transcription. Vif is a small pleiotropic protein with multiple domains, and recent studies highlighted the importance of Vif conformation and flexibility in counteracting A3G and in binding RNA. In this review, we will focus on the oligomerization and RNA chaperone properties of Vif and show that the intrinsic disordered nature of some Vif domains could play an important role in virus assembly and replication. Experimental evidence demonstrating the RNA chaperone activity of Vif will be presented.
Related JoVE Video
Initiation of HIV-1 reverse transcription and functional role of nucleocapsid-mediated tRNA/viral genome interactions.
Virus Res.
Show Abstract
Hide Abstract
HIV-1 reverse transcription is initiated from a tRNA(Lys)(3) molecule annealed to the viral RNA at the primer binding site (PBS). The annealing of tRNA(Lys)(3) requires the opening of its three-dimensional structure and RNA rearrangements to form an efficient initiation complex recognized by the reverse transcriptase. This annealing is mediated by the nucleocapsid protein (NC). In this paper, we first review the actual knowledge about HIV-1 viral RNA and tRNA(Lys)(3) structures. Then, we summarize the studies explaining how NC chaperones the formation of the tRNA(Lys)(3)/PBS binary complex. Additional NMR data that investigated the NC interaction with tRNA(Lys)(3) D-loop are presented. Lastly, we focused on the additional interactions occurring between tRNA(Lys)(3) and the viral RNA and showed that they are dependent on HIV-1 isolates, i.e. the sequence and the structure of the viral RNA.
Related JoVE Video
HIV-1 polymerase inhibition by nucleoside analogs: cellular- and kinetic parameters of efficacy, susceptibility and resistance selection.
PLoS Comput. Biol.
Show Abstract
Hide Abstract
Nucleoside analogs (NAs) are used to treat numerous viral infections and cancer. They compete with endogenous nucleotides (dNTP/NTP) for incorporation into nascent DNA/RNA and inhibit replication by preventing subsequent primer extension. To date, an integrated mathematical model that could allow the analysis of their mechanism of action, of the various resistance mechanisms, and their effect on viral fitness is still lacking. We present the first mechanistic mathematical model of polymerase inhibition by NAs that takes into account the reversibility of polymerase inhibition. Analytical solutions for the model point out the cellular- and kinetic aspects of inhibition. Our model correctly predicts for HIV-1 that resistance against nucleoside analog reverse transcriptase inhibitors (NRTIs) can be conferred by decreasing their incorporation rate, increasing their excision rate, or decreasing their affinity for the polymerase enzyme. For all analyzed NRTIs and their combinations, model-predicted macroscopic parameters (efficacy, fitness and toxicity) were consistent with observations. NRTI efficacy was found to greatly vary between distinct target cells. Surprisingly, target cells with low dNTP/NTP levels may not confer hyper-susceptibility to inhibition, whereas cells with high dNTP/NTP contents are likely to confer natural resistance. Our model also allows quantification of the selective advantage of mutations by integrating their effects on viral fitness and drug susceptibility. For zidovudine triphosphate (AZT-TP), we predict that this selective advantage, as well as the minimal concentration required to select thymidine-associated mutations (TAMs) are highly cell-dependent. The developed model allows studying various resistance mechanisms, inherent fitness effects, selection forces and epistasis based on microscopic kinetic data. It can readily be embedded in extended models of the complete HIV-1 reverse transcription process, or analogous processes in other viruses and help to guide drug development and improve our understanding of the mechanisms of resistance development during treatment.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.