JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Hydrated Excess Protons Can Create Their Own Water Wires.
J Phys Chem B
PUBLISHED: 11-05-2014
Show Abstract
Hide Abstract
Grotthuss shuttling of an excess proton charge defect through hydrogen bonded water networks has long been the focus of theoretical and experimental studies. In this work we show that there is a related process in which water molecules move ("shuttle") through a hydrated excess proton charge defect in order to wet the path ahead for subsequent proton charge migration. This process is illustrated through reactive molecular dynamics simulations of proton transport through a hydrophobic nanotube, which penetrates through a hydrophobic region. Surprisingly, before the proton enters the nanotube, it starts "shooting" water molecules into the otherwise dry space via Grotthuss shuttling, effectively creating its own water wire where none existed before. As the proton enters the nanotube (by 2-3 Å), it completes the solvation process, transitioning the nanotube to the fully wet state. By contrast, other monatomic cations (e.g., K(+)) have just the opposite effect, by blocking the wetting process and making the nanotube even drier. As the dry nanotube gradually becomes wet when the proton charge defect enters it, the free energy barrier of proton permeation through the tube via Grotthuss shuttling drops significantly. This finding suggests that an important wetting mechanism may influence proton translocation in biological systems, i.e., one in which protons "create" their own water structures (water "wires") in hydrophobic spaces (e.g., protein pores) before migrating through them. An existing water wire, e.g., one seen in an X-ray crystal structure or MD simulations without an explicit excess proton, is therefore not a requirement for protons to transport through hydrophobic spaces.
Related JoVE Video
Size-dependent impact of CNTs on dynamic properties of calmodulin.
Nanoscale
PUBLISHED: 09-17-2014
Show Abstract
Hide Abstract
There are growing concerns about the biosafety of nanomaterials such as carbon nanotubes (CNTs) as their applications become more widespread. We report here a theoretical and experimental study of the binding of various sizes of CNTs [CNT (4,4), (5,5), (6,6) and (7,7)] to calmodulin (CaM) protein and, in particular, their impact on the Ca(2+)-dependent dynamic properties of CaM. Our simulations show that all the CNTs can plug into the hydrophobic binding pocket of Ca(2+)-bound CaM with binding affinities comparable with the native substrate M13 peptide. Even though CNT (4,4) shows a similar behavior to the M13 peptide in its dissociation from Ca(2+)-free CaM, wider CNTs still bind firmly to CaM, indicating a potential failure of Ca(2+) regulation. Such a size-dependent impact of CNTs on the dynamic properties of CaM is a result of the excessively strong hydrophobic interactions between the wider CNTs and CaM. These simulation results were confirmed by circular dichroism spectroscopy, which showed that the secondary structures of CaM become insensitive to Ca(2+) concentrations after the addition of CNTs. Our findings indicate that the cytotoxicity of nanoparticles to proteins arises not only from the inhibition of static protein structures (binding pockets), but also from impacts on their dynamic properties.
Related JoVE Video
Controlled transport of DNA through a Y-shaped carbon nanotube in a solid membrane.
Nanoscale
PUBLISHED: 08-27-2014
Show Abstract
Hide Abstract
We investigate the possible ratcheting dynamics of double-stranded DNA (dsDNA) driven through a Y-shaped carbon nanotube (Y-CNT) in a solid membrane, using all-atom molecular dynamics (MD) simulation. By applying constant or alternating biasing voltages, we found that the dsDNA molecule can be unzipped at the junction of the Y-CNT. Because of the energy barrier (a few kBT per base-pair), the motion of the entire DNA molecule was alternatively in a trapped state or a transiting state. We show that during each transiting state the same number of nucleotides were transported (DNA ratcheting). An analytical theory that is mathematically equivalent to the one for Josephson junctions was then proposed to quantitatively describe the simulation results. The controlled motion of DNA in the Y-CNT is expected to enhance the accuracy of nanopore-based DNA sequencing.
Related JoVE Video
An improved DNA force field for ssDNA interactions with gold nanoparticles.
J Chem Phys
PUBLISHED: 06-23-2014
Show Abstract
Hide Abstract
The widespread applications of single-stranded DNA (ssDNA) conjugated gold nanoparticles (AuNPs) have spurred an increasing interest in the interactions between ssDNA and AuNPs. Despite extensive studies using the most sophisticated experimental techniques, the detailed molecular mechanisms still remain largely unknown. Large scale molecular dynamics (MD) simulations can thus be used to supplement experiments by providing complementary information about ssDNA-AuNP interactions. However, up to now, all modern force fields for DNA were developed based on the properties of double-stranded DNA (dsDNA) molecules, which have hydrophilic outer backbones "protecting" hydrophobic inner nucleobases from water. Without the double-helix structure of dsDNA and thus the "protection" by the outer backbone, the nucleobases of ssDNA are directly exposed to solvent, and their behavior in water is very different from that of dsDNA, especially at the interface with nanoparticles. In this work, we have improved the force field of ssDNA for use with nanoparticles, such as AuNPs, based on recent experimental results and quantum mechanics calculations. With the new improved force field, we demonstrated that a poly(A) sequence adsorbed on a AuNP surface is much more stable than a poly(T) sequence, which is consistent with recent experimental observations. On the contrary, the current standard force fields, including AMBER03, CHARMM27, and OPLSAA, all gave erroneous results as compared to experiments. The current improved force field is expected to have wide applications in the study of ssDNA with nanomaterials including AuNPs, which might help promote the development of ssDNA-based biosensors and other bionano-devices.
Related JoVE Video
Conformation-dependent DNA attraction.
Nanoscale
PUBLISHED: 05-22-2014
Show Abstract
Hide Abstract
Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg(2+) ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg(2+) or Na(+), benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg(2+) bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.
Related JoVE Video
Characterization of a novel water pocket inside the human Cx26 hemichannel structure.
Biophys. J.
PUBLISHED: 05-12-2014
Show Abstract
Hide Abstract
Connexins (Cxs) are a family of vertebrate proteins constituents of gap junction channels (GJCs) that connect the cytoplasm of adjacent cells by the end-to-end docking of two Cx hemichannels. The intercellular transfer through GJCs occurs by passive diffusion allowing the exchange of water, ions, and small molecules. Despite the broad interest to understand, at the molecular level, the functional state of Cx-based channels, there are still many unanswered questions regarding structure-function relationships, perm-selectivity, and gating mechanisms. In particular, the ordering, structure, and dynamics of water inside Cx GJCs and hemichannels remains largely unexplored. In this work, we describe the identification and characterization of a believed novel water pocket-termed the IC pocket-located in-between the four transmembrane helices of each human Cx26 (hCx26) monomer at the intracellular (IC) side. Using molecular dynamics (MD) simulations to characterize hCx26 internal water structure and dynamics, six IC pockets were identified per hemichannel. A detailed characterization of the dynamics and ordering of water including conformational variability of residues forming the IC pockets, together with multiple sequence alignments, allowed us to propose a functional role for this cavity. An in vitro assessment of tracer uptake suggests that the IC pocket residue Arg-143 plays an essential role on the modulation of the hCx26 hemichannel permeability.
Related JoVE Video
Rotation motion of designed nano-turbine.
Sci Rep
PUBLISHED: 04-30-2014
Show Abstract
Hide Abstract
Construction of nano-devices that can generate controllable unidirectional rotation is an important part of nanotechnology. Here, we design a nano-turbine composed of carbon nanotube and graphene nanoblades, which can be driven by fluid flow. Rotation motion of nano-turbine is quantitatively studied by molecular dynamics simulations on this model system. A robust linear relationship is achieved with this nano-turbine between its rotation rate and the fluid flow velocity spanning two orders of magnitude, and this linear relationship remains intact at various temperatures. More interestingly, a striking difference from its macroscopic counterpart is identified: the rotation rate is much smaller (by a factor of ~15) than that of the macroscopic turbine with the same driving flow. This discrepancy is shown to be related to the disruption of water flow at nanoscale, together with the water slippage at graphene surface and the so-called "dragging effect". Moreover, counterintuitively, the ratio of "effective" driving flow velocity increases as the flow velocity increases, suggesting that the linear dependence on the flow velocity can be more complicated in nature. These findings may serve as a foundation for the further development of rotary nano-devices and should also be helpful for a better understanding of the biological molecular motors.
Related JoVE Video
Cytotoxicity of graphene: recent advances and future perspective.
Wiley Interdiscip Rev Nanomed Nanobiotechnol
PUBLISHED: 04-16-2014
Show Abstract
Hide Abstract
Graphene, a unique two-dimensional single-atom-thin nanomaterial with exceptional structural, mechanical, and electronic properties, has spurred an enormous interest in many fields, including biomedical applications, which at the same time ignites a growing concern on its biosafety and potential cytotoxicity to human and animal cells. In this review, we present a summary of some very recent studies on this important subject with both experimental and theoretical approaches. The molecular interactions of graphene with proteins, DNAs, and cell membranes (both bacteria and mammalian cells) are discussed in detail. Severe distortions in structures and functions of these biomacromolecules by graphene are identified and characterized. For example, the graphene is shown to disrupt bacteria cell membranes by insertion/cutting as well as destructive extraction of lipid molecules directly. More interestingly, this cytotoxicity has been shown to have implications in de novo design of nanomedicine, such as graphene-based band-aid, a potential 'green' antibiotics due to its strong physical-based (instead of chemical-based) antibacterial capability. These studies have provided a better understanding of graphene nanotoxicity at both cellular and molecular levels, and also suggested therapeutic potential by using graphene's cytotoxicity against bacteria cells.
Related JoVE Video
Large scale molecular simulations of nanotoxicity.
Wiley Interdiscip Rev Syst Biol Med
PUBLISHED: 04-02-2014
Show Abstract
Hide Abstract
The widespread use of nanomaterials in biomedical applications has been accompanied by an increasing interest in understanding their interactions with tissues, cells, and biomolecules, and in particular, on how they might affect the integrity of cell membranes and proteins. In this mini-review, we present a summary of some of the recent studies on this important subject, especially from the point of view of large scale molecular simulations. The carbon-based nanomaterials and noble metal nanoparticles are the main focus, with additional discussions on quantum dots and other nanoparticles as well. The driving forces for adsorption of fullerenes, carbon nanotubes, and graphene nanosheets onto proteins or cell membranes are found to be mainly hydrophobic interactions and the so-called ?-? stacking (between aromatic rings), while for the noble metal nanoparticles the long-range electrostatic interactions play a bigger role. More interestingly, there are also growing evidences showing that nanotoxicity can have implications in de novo design of nanomedicine. For example, the endohedral metallofullerenol Gd@C??(OH)?? is shown to inhibit tumor growth and metastasis by inhibiting enzyme MMP-9, and graphene is illustrated to disrupt bacteria cell membranes by insertion/cutting as well as destructive extraction of lipid molecules. These recent findings have provided a better understanding of nanotoxicity at the molecular level and also suggested therapeutic potential by using the cytotoxicity of nanoparticles against cancer or bacteria cells.
Related JoVE Video
Molecular recognition of metabotropic glutamate receptor type 1 (mGluR1): synergistic understanding with free energy perturbation and linear response modeling.
J Phys Chem B
PUBLISHED: 03-28-2014
Show Abstract
Hide Abstract
Metabotropic glutamate receptors (mGluRs) constitute an important family of the G-protein coupled receptors. Due to their widespread distribution in the central nervous system (CNS), these receptors are attractive candidates for understanding the molecular basis of various cognitive processes as well as for designing inhibitors for relevant psychiatric and neurological disorders. Despite many studies on drugs targeting the mGluR receptors to date, the molecular level details on the ligand binding dynamics still remain unclear. In this study, we performed in silico experiments for mGluR1 with 29 different ligands including known synthetic agonists and antagonists as well as natural amino acids. The ligand-receptor binding affinities were estimated by the use of atomistic simulations combined with the mathematically rigorous, Free Energy Perturbation (FEP) method, which successfully recognized the native agonist l-glutamate among the highly favorable binders, and also accurately distinguished antagonists from agonists. Comparative contact analysis also revealed the binding mode differences between natural and non-natural amino acid-based ligands. Several factors potentially affecting the ligand binding affinity and specificity were identified including net charges, dipole moments, and the presence of aromatic rings. On the basis of these findings, linear response models (LRMs) were built for different sets of ligands that showed high correlations (R(2) > 0.95) to the corresponding FEP binding affinities. These results identify some key factors that determine ligand-mGluR1 binding and could be used for future inhibitor designs and support a role for in silico modeling for understanding receptor ligand interactions.
Related JoVE Video
Irreversible denaturation of proteins through aluminum-induced formation of backbone ring structures.
Angew. Chem. Int. Ed. Engl.
PUBLISHED: 03-24-2014
Show Abstract
Hide Abstract
A combination of ab?initio calculations, circular dichroism, nuclear magnetic resonance, and X-ray photoelectron spectroscopy has shown that aluminum ions can induce the formation of backbone ring structures in a wide range of peptides, including neurodegenerative disease related motifs. These ring structures greatly destabilize the protein and result in irreversible denaturation. This behavior benefits from the ability of aluminum ions to form chemical bonds simultaneously with the amide nitrogen and carbonyl oxygen atoms on the peptide backbone.
Related JoVE Video
How force unfolding differs from chemical denaturation.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-18-2014
Show Abstract
Hide Abstract
Single-molecule force spectroscopies are remarkable tools for studying protein folding and unfolding, but force unfolding explores protein configurations that are potentially very different from the ones traditionally explored in chemical or thermal denaturation. Understanding these differences is crucial because such configurations serve as starting points of folding studies, and thus can affect both the folding mechanism and the kinetics. Here we provide a detailed comparison of both chemically induced and force-induced unfolded state ensembles of ubiquitin based on extensive, all-atom simulations of the protein either extended by force or denatured by urea. As expected, the respective unfolded states are very different on a macromolecular scale, being fully extended under force with no contacts and partially extended in urea with many nonnative contacts. The amount of residual secondary structure also differs: A significant population of ?-helices is found in chemically denatured configurations but such helices are absent under force, except at the lowest applied force of 30 pN where short helices form transiently. We see that typical-size helices are unstable above this force, and ?-sheets cannot form. More surprisingly, we observe striking differences in the backbone dihedral angle distributions for the protein unfolded under force and the one unfolded by denaturant. A simple model based on the dialanine peptide is shown to not only provide an explanation for these striking differences but also illustrates how the force dependence of the protein dihedral angle distributions give rise to the worm-like chain behavior of the chain upon force.
Related JoVE Video
Dual inhibitory pathways of metallofullerenol Gd@C??(OH)?? on matrix metalloproteinase-2: molecular insight into drug-like nanomedicine.
Sci Rep
PUBLISHED: 02-12-2014
Show Abstract
Hide Abstract
Cancer metastasis is an important criterion to evaluate tumor malignancy. Matrix metalloproteinases (MMPs) play a crucial role in cancer proliferation and migration by virtue of their proteolytic functions in angiogenesis and extracelluar matrix (ECM) degradation, making them potential targets of anti-metastaic therapeutics. Recently we showed with both in vivo and in vitro experiments that metallofullerenol Gd@C82(OH)22 can effectively inhibit MMP-2 and MMP-9 with high antitumoral efficacy. Furthermore, our in silico study revealed that Gd@C82(OH)22 could indirectly inhibit the proteolysis of MMP-9 via allosteric modulation exclusively at the ligand specificity S1' loop. Here, we expand our study toward another gelatinase, MMP-2, using molecular dynamics simulations. Despite the high structural similarity with 64.3% sequence identity, their responses to Gd@C82(OH)22 were quite different. Toward MMP-2, Gd@C82(OH)22 could block either the Zn(2+)-catalylitic site directly or the S1' loop indirectly. Surface electrostatics uniquely determines the initial adsorption of Gd@C82(OH)22 on MMP-2, and then its further location of the most favorable binding site(s). These findings not only illustrated how the inhibitory mechanism of Gd@C82(OH)22 is distinguished between the two gelatinase MMPs with atomic details, but also shed light on the de novo design of anti-metastatic nanotherapeutics with enhanced target specificity.
Related JoVE Video
The complex and specific pMHC interactions with diverse HIV-1 TCR clonotypes reveal a structural basis for alterations in CTL function.
Sci Rep
PUBLISHED: 01-29-2014
Show Abstract
Hide Abstract
Immune control of viral infections is modulated by diverse T cell receptor (TCR) clonotypes engaging peptide-MHC class I complexes on infected cells, but the relationship between TCR structure and antiviral function is unclear. Here we apply in silico molecular modeling with in vivo mutagenesis studies to investigate TCR-pMHC interactions from multiple CTL clonotypes specific for a well-defined HIV-1 epitope. Our molecular dynamics simulations of viral peptide-HLA-TCR complexes, based on two independent co-crystal structure templates, reveal that effective and ineffective clonotypes bind to the terminal portions of the peptide-MHC through similar salt bridges, but their hydrophobic side-chain packings can be very different, which accounts for the major part of the differences among these clonotypes. Non-specific hydrogen bonding to viral peptide also accommodates greater epitope variants. Furthermore, free energy perturbation calculations for point mutations on the viral peptide KK10 show excellent agreement with in vivo mutagenesis assays, with new predictions confirmed by additional experiments. These findings indicate a direct structural basis for heterogeneous CTL antiviral function.
Related JoVE Video
Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
Nanoscale
PUBLISHED: 01-27-2014
Show Abstract
Hide Abstract
Understanding the nature of the self-assembly of peptide nanostructures at the molecular level is critical for rational design of functional bio-nanomaterials. Recent experimental studies have shown that triphenylalanine(FFF)-based peptides can self-assemble into solid plate-like nanostructures and nanospheres, which are different from the hollow nanovesicles and nanotubes formed by diphenylalanine(FF)-based peptides. In spite of extensive studies, the assembly mechanism and the molecular basis for the structural differences between FFF and FF nanostructures remain poorly understood. In this work, we first investigate the assembly process and the structural features of FFF nanostructures using coarse-grained molecular dynamics simulations, and then compare them with FF nanostructures. We find that FFF peptides spontaneously assemble into solid nanometer-sized nanospheres and nanorods with substantial ?-sheet contents, consistent with the structural properties of hundred-nanometer-sized FFF nano-plates characterized by FT-IR spectroscopy. Distinct from the formation mechanism of water-filled FF nanovesicles and nanotubes reported in our previous study, intermediate bilayers are not observed during the self-assembly process of FFF nanospheres and nanorods. The peptides in FFF nanostructures are predominantly anti-parallel-aligned, which can form larger sizes of ?-sheet-like structures than the FF counterparts. In contrast, FF peptides exhibit lipid-like assembly behavior and assemble into bilayered nanostructures. Furthermore, although the self-assembly of FF and FFF peptides is mostly driven by side chain-side chain (SC-SC) aromatic stacking interactions, the main chain-main chain (MC-MC) interactions also play an important role in the formation of fine structures of the assemblies. The delicate interplay between MC-MC and SC-SC interactions results in the different nanostructures formed by the two peptides. These findings provide new insights into the structure and self-assembly pathway of di-/tri-phenylalanine peptide assemblies, which might be helpful for the design of bioinspired nanostructures.
Related JoVE Video
Structural and electronic properties of uranium-encapsulated Au?? cage.
Sci Rep
PUBLISHED: 01-20-2014
Show Abstract
Hide Abstract
The structural properties of the uranium-encapsulated nano-cage U@Au14 are predicted using density functional theory. The presence of the uranium atom makes the Au14 structure more stable than the empty Au14-cage, with a triplet ground electronic state for U@Au14. Analysis of the electronic structure shows that the two frontier single-occupied molecular orbital electrons of U@Au14 mainly originate from the 5f shell of the U atom after charge transfer. Meanwhile, the bonding orbitals and charge population indicate that the designed U@Au14 nano-cage structure is stabilized by ionocovalent interactions. The current findings provide theoretical basis for future syntheses and further study of actinide doped gold nanoclusters, which might subsequently facilitate applications of such structure in radio-labeling, nanodrug carrier and other biomedical applications.
Related JoVE Video
Effect of Urea Concentration on Aggregation of Amyloidogenic Hexapeptides (NFGAIL).
J Phys Chem B
PUBLISHED: 12-19-2013
Show Abstract
Hide Abstract
We have performed large-scale all-atom molecular dynamics (MD) simulations to study the aggregation behavior of four NFGAIL hexapeptides in the aqueous urea solution, with a urea concentration ranging from 0 to 5 M. We find that urea in general suppresses the peptide aggregation, but suppression slows down in the intermediation concentration regime around 3 M. Two competing mechanisms of urea are determined: urea molecules accumulated near the first solvation shell (FSS) tend to unfold the hexapeptide, which favors aggregation; on the other hand, the tight hydrogen bonds formed between urea and peptide mainchains hinder the association of peptides which disfavors the formation of the ?-sheet. Furthermore, the different nonlinear urea concentration dependences of the urea-peptide and peptide-peptide hydrogen bonds lead to a nonmonotonic behavior, with a weak enhancement in the peptide aggregation around 3 M.
Related JoVE Video
Impacts of fullerene derivatives on regulating the structure and assembly of collagen molecules.
Nanoscale
PUBLISHED: 07-04-2013
Show Abstract
Hide Abstract
During cancer development, the fibrous layers surrounding the tumor surface get thin and stiff which facilitates the tumor metastasis. After the treatment of metallofullerene derivatives Gd@C82(OH)22, the fibrous layers become thicker and softer, the metastasis of tumor is then largely suppressed. The effect of Gd@C82(OH)22 was found to be related to their direct interaction with collagen and the resulting impact on the structure of collagen fibrils, the major component of extracellular matrices. In this work we study the interaction of Gd@C82(OH)22 with collagen by molecular dynamics simulations. We find that Gd@C82(OH)22 can enhance the rigidity of the native structure of collagen molecules and promote the formation of an oligomer or a microfibril. The interaction with Gd@C82(OH)22 may regulate further the assembly of collagen fibrils and change the biophysical properties of collagen. The control run with fullerene derivatives C60(OH)24 also indicates that C60(OH)24 can influence the structure and assembly of collagen molecules as well, but to a lesser degree. Both fullerene derivatives can form hydrogen bonds with multiple collagen molecules acting as a "fullerenol-mediated bridge" that enhance the interaction within or among collagen molecules. Compared to C60(OH)24, the interaction of Gd@C82(OH)22 with collagen is stronger, resulting in particular biomedical effects for regulating the biophysical properties of collagen fibrils.
Related JoVE Video
The ice-like water monolayer near the wall makes inner water shells diffuse faster inside a charged nanotube.
J Chem Phys
PUBLISHED: 06-08-2013
Show Abstract
Hide Abstract
Using molecular dynamics simulations, we have investigated the impact of the ice-like water monolayer inside the tube and nearest to the tube wall on the diffusion properties of other inner water shells confined within a charged nanotube. We find that the axial diffusion coefficient of the first water monolayer near the wall monotonously decreases with the charge size on the nanotube, indicating a tighter control of the first monolayer from the larger sized charge. However, for the other water shells, the diffusion coefficients increase when the charge is larger than a critical value qc (~1.0 e). This unexpected phenomenon is attributed to the decreased number of hydrogen bonds between the first monolayer and other inner water shells caused by the very unique hydrogen-bond network patterns in the first ice-like monolayer, which makes it behave like a "hydrophobic water layer." Our findings may have implications for water treatment, non-fouling surfaces, catalysis engine, and biological sensor.
Related JoVE Video
Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets.
Nat Nanotechnol
PUBLISHED: 05-28-2013
Show Abstract
Hide Abstract
Understanding how nanomaterials interact with cell membranes is related to how they cause cytotoxicity and is therefore critical for designing safer biomedical applications. Recently, graphene (a two-dimensional nanomaterial) was shown to have antibacterial activity on Escherichia coli, but its underlying molecular mechanisms remain unknown. Here we show experimentally and theoretically that pristine graphene and graphene oxide nanosheets can induce the degradation of the inner and outer cell membranes of Escherichia coli, and reduce their viability. Transmission electron microscopy shows three rough stages, and molecular dynamics simulations reveal the atomic details of the process. Graphene nanosheets can penetrate into and extract large amounts of phospholipids from the cell membranes because of the strong dispersion interactions between graphene and lipid molecules. This destructive extraction offers a novel mechanism for the molecular basis of graphenes cytotoxicity and antibacterial activity.
Related JoVE Video
Salts drive controllable multilayered upright assembly of amyloid-like peptides at mica/water interface.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 05-06-2013
Show Abstract
Hide Abstract
Surface-assisted self-assembly of amyloid-like peptides has received considerable interest in both amyloidosis research and nanotechnology in recent years. Despite extensive studies, some controlling factors, such as salts, are still not well understood, even though it is known that some salts can promote peptide self-assemblies through the so-called "salting-out" effect. However, they are usually noncontrollable, disordered, amorphous aggregates. Here, we show via a combined experimental and theoretical approach that a conserved consensus peptide NH2-VGGAVVAGV-CONH2 (GAV-9) (from representative amyloidogenic proteins) can self-assemble into highly ordered, multilayered nanofilaments, with surprising all-upright conformations, under high-salt concentrations. Our atomic force microscopy images also demonstrate that the vertical stacking of multiple layers is highly controllable by tuning the ionic strength, such as from 0 mM (monolayer) to 100 mM (mainly double layer), and to 250 mM MgCl2 (double, triple, quadruple, and quintuple layers). Our atomistic molecular dynamics simulations then reveal that these individual layers have very different internal nanostructures, with parallel ?-sheets in the first monolayer but antiparallel ?-sheets in the subsequent upper layers due to their different microenvironment. Further studies show that the growth of multilayered, all-upright nanostructures is a common phenomenon for GAV-9 at the mica/water interface, under a variety of salt types and a wide range of salt concentrations.
Related JoVE Video
Collapse of a hydrophobic polymer in a mixture of denaturants.
Langmuir
PUBLISHED: 04-02-2013
Show Abstract
Hide Abstract
The solvent quality of an aqueous mixture of two good solvents, urea and guanidinium chloride (GdmCl), for a hydrophobic polymer was investigated using atomistic molecular dynamics simulations. A counterintuitive collapse of the polymer was found, suggesting that mixing the two denaturants reduces the solvent quality. This cononsolvency of the polymer in the urea + GdmCl mixture is found to be caused by the preferential adsorption of urea on the polymer. The polymer collapses as a result of indirect long-range interactions between monomers resulting from the presence of urea clouds surrounding them. Surprisingly, urea behaves as the better solvent in the mixture not because there exists a stronger affinity of the polymer for urea. Instead, attractive interactions between two unlike denaturant molecules combined with the direct dispersion interactions of the polymer with both denaturants determine the solvent quality of the mixture.
Related JoVE Video
Binding preference of carbon nanotube over proline-rich motif ligand on SH3-domain: a comparison with different force fields.
J Phys Chem B
PUBLISHED: 03-26-2013
Show Abstract
Hide Abstract
With the widespread applications of nanomaterials such as carbon nanotubes, there is a growing concern on the biosafety of these engineered nanoparticles, in particular their interactions with proteins. In molecular simulations of nanoparticle-protein interactions, the choice of empirical parameters (force fields) plays a decisive role, and thus is of great importance and should be examined carefully before wider applications. Here we compare three commonly used force fields, CHARMM, OPLSAA, and AMBER in study of the competitive binding of a single wall carbon nanotube (SWCNT) with a native proline-rich motif (PRM) ligand on its target protein SH3 domain, a ubiquitous protein-protein interaction mediator involved in signaling and regulatory pathways. We find that the SWCNT displays a general preference over the PRM in binding with SH3 domain in all the three force fields examined, although the degree of preference can be somewhat different, with the AMBER force field showing the highest preference. The SWCNT prevents the ligand from reaching its native binding pocket by (i) occupying the binding pocket directly, and (ii) binding with the ligand itself and then being trapped together onto some off-sites. The ?-? stacking interactions between the SWCNT and aromatic residues are found to play a significant role in its binding to the SH3 domain in all the three force fields. Further analyses show that even the SWCNT-ligand binding can also be relatively more stable than the native ligand-protein binding, indicating a serious potential disruption to the protein SH3 function.
Related JoVE Video
UV-radiation induced disruption of dry-cavities in human ?D-crystallin results in decreased stability and faster unfolding.
Sci Rep
PUBLISHED: 03-11-2013
Show Abstract
Hide Abstract
Age-onset cataracts are believed to be expedited by the accumulation of UV-damaged human ?D-crystallins in the eye lens. Here we show with molecular dynamics simulations that the stability of ?D-crystallin is greatly reduced by the conversion of tryptophan to kynurenine due to UV-radiation, consistent with previous experimental evidences. Furthermore, our atomic-detailed results reveal that kynurenine attracts more waters and other polar sidechains due to its additional amino and carbonyl groups on the damaged tryptophan sidechain, thus breaching the integrity of nearby dry center regions formed by the two Greek key motifs in each domain. The damaged tryptophan residues cause large fluctuations in the Tyr-Trp-Tyr sandwich-like hydrophobic clusters, which in turn break crucial hydrogen-bonds bridging two ?-strands in the Greek key motifs at the "tyrosine corner". Our findings may provide new insights for understanding of the molecular mechanism of the initial stages of UV-induced cataractogenesis.
Related JoVE Video
Metallofullerenol Gd@C??(OH)?? distracts the proline-rich-motif from putative binding on the SH3 domain.
Nanoscale
PUBLISHED: 02-21-2013
Show Abstract
Hide Abstract
Biocompatibility is often regarded as one important aspect of de novo designed nanomaterials for biosafety. However, the toxicological effect, appearing along with its latency, is much more difficult to address by linearly mapping physicochemical properties of related nanomaterials with biological effects such as immune or cellular regulatory responses due to the complicated protein-protein interactions. Here, we investigate a potential interference of a metallofullerenol, Gd@C82(OH)22, on the function of SH3 domain, a highly promiscuous protein-protein interaction mediator involved in signaling and regulatory pathways through its binding with the proline-rich motif (PRM) peptides, using the atomistic molecular dynamics simulation. Our study shows that when only Gd@C82(OH)22 and the SH3 domain are present (without the PRM ligand), Gd@C82(OH)22 can interact with the SH3 domain by either directly blocking the hydrophobic active site or binding with a hydrophilic off-site with almost equal probability, which can be understood from its intrinsic amphiphilic nature. In a binding competition with the PRM onto the SH3 domain, however, the on-site binding mode is depleted while Gd@C82(OH)22 effectively intercepts the PRM from the putative binding site of the SH3 domain, implying that Gd@C82(OH)22 can disturb protein-protein interactions mediated by the SH3 domain. Despite a successful surface modification in an aqueous biological medium and a more recent demonstration as potential de novo cancer therapeutics, our study indicates that greater attention is needed in assessing the potential cytotoxicity of these nanomaterials.
Related JoVE Video
Hydrophobic interaction drives surface-assisted epitaxial assembly of amyloid-like peptides.
J. Am. Chem. Soc.
PUBLISHED: 02-13-2013
Show Abstract
Hide Abstract
The molecular mechanism of epitaxial fibril formation has been investigated for GAV-9 (NH(3)(+)-VGGAVVAGV-CONH(2)), an amyloid-like peptide extracted from a consensus sequence of amyloidogenic proteins, which assembles with very different morphologies, "upright" on mica and "flat" on the highly oriented pyrolytic graphite (HOPG). Our all-atom molecular dynamics simulations reveal that the strong electrostatic interaction induces the "upright" conformation on mica, whereas the hydrophobic interaction favors the "flat" conformation on HOPG. We also show that the epitaxial pattern on mica is ensured by the lattice matching between the anisotropic binding sites of the basal substrate and the molecular dimension of GAV-9, accompanied with a long-range order of well-defined ?-strands. Furthermore, the binding free energy surfaces indicate that the longitudinal assembly growth is predominantly driven by the hydrophobic interaction along the longer crystallographic unit cell direction of mica. These findings provide a molecular basis for the surface-assisted molecular assembly, which might also be useful for the design of de novo nanodevices.
Related JoVE Video
Large domain motions in Ago protein controlled by the guide DNA-strand seed region determine the Ago-DNA-mRNA complex recognition process.
PLoS ONE
PUBLISHED: 01-29-2013
Show Abstract
Hide Abstract
The recognition mechanism and cleavage activity of argonaute (Ago), miRNA, and mRNA complexes are the core processes to the small non-coding RNA world. The 5 nucleation at the seed region (position 2-8) of miRNA was believed to play a significant role in guiding the recognition of target mRNAs to the given miRNA family. In this paper, we have performed all-atom molecular dynamics simulations of the related and recently revealed Ago-DNA:mRNA ternary complexes to study the dynamics of the guide-target recognition and the effect of mutations by introducing "damaging" C·C mismatches at different positions in the seed region of the DNA-RNA duplex. Our simulations show that the A-form-like helix duplex gradually distorts as the number of seed mismatches increases and the complex can survive no more than two such mismatches. Severe distortions of the guide-target heteroduplex are observed in the ruinous 4-sites mismatch mutant, which give rise to a bending motion of the PAZ domain along the L1/L2 "hinge-like" connection segment, resulting in the opening of the nucleic-acid-binding channel. These long-range interactions between the seed region and PAZ domain, moderated by the L1/L2 segments, reveal the central role of the seed region in the guide-target strands recognition: it not only determines the guide-target heteroduplexs nucleation and propagation, but also regulates the dynamic motions of Ago domains around the nucleic-acid-binding channel.
Related JoVE Video
Interplay between drying and stability of a TIM barrel protein: a combined simulation-experimental study.
J. Am. Chem. Soc.
PUBLISHED: 01-25-2013
Show Abstract
Hide Abstract
Recent molecular dynamics simulations have suggested important roles for nanoscale dewetting in the stability, function, and folding dynamics of proteins. Using a synergistic simulation-experimental approach on the ?TS TIM barrel protein, we validated this hypothesis by revealing the occurrence of drying inside hydrophobic amino acid clusters and its manifestation in experimental measures of protein stability and structure. Cavities created within three clusters of branched aliphatic amino acids [isoleucine, leucine, and valine (ILV) clusters] were found to experience strong water density fluctuations or intermittent dewetting transitions in simulations. Individually substituting 10 residues in the large ILV cluster at the N-terminus with less hydrophobic alanines showed a weakening or diminishing effect on dewetting that depended on the site of the mutation. Our simulations also demonstrated that replacement of buried leucines with isosteric, polar asparagines enhanced the wetting of the N- and C-terminal clusters. The experimental results on the stability, secondary structure, and compactness of the native and intermediate states for the asparagine variants are consistent with the preferential drying of the large N-terminal cluster in the intermediate. By contrast, the region encompassing the small C-terminal cluster experiences only partial drying in the intermediate, and its structure and stability are unaffected by the asparagine substitution. Surprisingly, the structural distortions required to accommodate the replacement of leucine by asparagine in the N-terminal cluster revealed the existence of alternative stable folds in the native basin. This combined simulation-experimental study demonstrates the critical role of drying within hydrophobic ILV clusters in the folding and stability of the ?TS TIM barrel.
Related JoVE Video
Capability of charge signal conversion and transmission by water chains confined inside Y-shaped carbon nanotubes.
J Chem Phys
PUBLISHED: 01-10-2013
Show Abstract
Hide Abstract
The molecular scale signal conversion, transmission, and amplification by a single external charge through a water-mediated Y-shaped nanotube have been studied using molecular dynamics simulations. Our results show that the signal converting capability is highly sensitive to the magnitude of the charge, while the signal transmitting capability is independent of the charge signal. There is a sharp two-state-like transition in the signal converting capacity for both positive and negative charges. When the charge magnitude is above a threshold (|q| ? ~0.7 e), the water dipole orientations in the main tube can be effectively controlled by the signaling charge (i.e., signal conversion), and then be transmitted and amplified through the Y-junction, despite the thermal noises and interferences between branch signals. On the other hand, the signal transmitting capability, characterized by the correlation between the two water dipole orientations in the two branches, is found to be always larger than 0.6, independent of charge signals, indicating that the water-mediated Y-tube is an excellent signal transmitter. These findings may provide useful insights for the future design of molecular scale signal processing devices based on Y-shaped nanotubes.
Related JoVE Video
Molecular wire of urea in carbon nanotube: a molecular dynamics study.
Nanoscale
PUBLISHED: 12-08-2011
Show Abstract
Hide Abstract
We perform molecular dynamics simulations of narrow single-walled carbon nanotubes (SWNTs) in aqueous urea to investigate the structure and dynamical behavior of urea molecules inside the SWNT. Even at low urea concentrations (e.g., 0.5 M), we have observed spontaneous and continuous filling of SWNT with a one-dimensional urea wire (leaving very few water molecules inside the SWNT). The urea wire is structurally ordered, both translationally and orientationally, with a contiguous hydrogen-bonded network and concerted ureas dipole orientations. Interestingly, despite the symmetric nature of the whole system, the potential energy profile of urea along the SWNT is asymmetric, arising from the ordering of asymmetric urea partial charge distribution (or dipole moment) in confined environment. Furthermore, we study the kinetics of confined urea and find that the permeation of urea molecules through the SWNT decreases significantly (by a factor of ?20) compared to that of water molecules, due to the stronger dispersion interaction of urea with SWNT than water, and a maximum in urea permeation happens around a concentration of 5 M. These findings might shed some light on the better understanding of unique properties of molecular wires (particularly the wires formed by polar organic small molecules) confined within both artificial and biological nanochannels, and are expected to have practical applications such as the electronic devices for signal transduction and multiplication at the nanoscale.
Related JoVE Video
Binding of blood proteins to carbon nanotubes reduces cytotoxicity.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-03-2011
Show Abstract
Hide Abstract
With the potential wide uses of nanoparticles such as carbon nanotubes in biomedical applications, and the growing concerns of nanotoxicity of these engineered nanoparticles, the importance of nanoparticle-protein interactions cannot be stressed enough. In this study, we use both experimental and theoretical approaches, including atomic force microscope images, fluorescence spectroscopy, CD, SDS-PAGE, and molecular dynamics simulations, to investigate the interactions of single-wall carbon nanotubes (SWCNTs) with human serum proteins, and find a competitive binding of these proteins with different adsorption capacity and packing modes. The ?-? stacking interactions between SWCNTs and aromatic residues (Trp, Phe, Tyr) are found to play a critical role in determining their adsorption capacity. Additional cellular cytotoxicity assays, with human acute monocytic leukemia cell line and human umbilical vein endothelial cells, reveal that the competitive bindings of blood proteins on the SWCNT surface can greatly alter their cellular interaction pathways and result in much reduced cytotoxicity for these protein-coated SWCNTs, according to their respective adsorption capacity. These findings have shed light toward the design of safe carbon nanotube nanomaterials by comprehensive preconsideration of their interactions with human serum proteins.
Related JoVE Video
Dewetting transitions in the self-assembly of two amyloidogenic ?-sheets and the importance of matching surfaces.
J Phys Chem B
PUBLISHED: 09-07-2011
Show Abstract
Hide Abstract
We use molecular dynamics simulations to investigate the water-mediated self-assembly of two amyloidogenic ?-sheets of hIAPP(22-27) peptides (NFGAIL). The initial configurations of ?-sheet pairs are packed with two different modes, forming a tube-like nanoscale channel and a slab-like 2-D confinement, respectively. For both packing modes, we observe strong water drying transitions occurring in the intersheet region with high occurrence possibilities, suggesting that the "dewetting transition"-induced collapse may play an important role in promoting the amyloid fibrils formation. However, contrary to general dewetting theory prediction, the slab-like confinement (2-D) shows stronger dewetting phenomenon than the tube-like channel (1-D). This unexpected observation is attributed to the different surface roughness caused by different packing modes. Furthermore, we demonstrated the profound influence of internal surface topology of ?-sheet pairs on the dewetting phenomenon through an in silico mutagenesis study. The present study highlights the important role of packing modes (i.e., surface roughness) in the assembly process of ?-sheets, which improves our understanding toward the molecular mechanism of the amyloid fibrils formation. In addition, our study also suggests a potential route to regulate controllably the self-assembly process of ?-sheets through mutations, which may have future applications in nanotechnology and biotechnology.
Related JoVE Video
Aggregation of ?-crystallins associated with human cataracts via domain swapping at the C-terminal ?-strands.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 06-13-2011
Show Abstract
Hide Abstract
The prevalent eye disease age-onset cataract is associated with aggregation of human ?D-crystallins, one of the longest-lived proteins. Identification of the ?-crystallin precursors to aggregates is crucial for developing strategies to prevent and reverse cataract. Our microseconds of atomistic molecular dynamics simulations uncover the molecular structure of the experimentally detected aggregation-prone folding intermediate species of monomeric native ?D-crystallin with a largely folded C-terminal domain and a mostly unfolded N-terminal domain. About 30 residues including a, b, and c strands from the Greek Key motif 4 of the C-terminal domain experience strong solvent exposure of hydrophobic residues as well as partial unstructuring upon N-terminal domain unfolding. Those strands comprise the domain-domain interface crucial for unusually high stability of ?D-crystallin. We further simulate the intermolecular linkage of these monomeric aggregation precursors, which reveals domain-swapped dimeric structures. In the simulated dimeric structures, the N-terminal domain of one monomer is frequently found in contact with residues 135-164 encompassing the a, b, and c strands of the Greek Key motif 4 of the second molecule. The present results suggest that ?D-crystallin may polymerize through successive domain swapping of those three C-terminal ?-strands leading to age-onset cataract, as an evolutionary cost of its very high stability. Alanine substitutions of the hydrophobic residues in those aggregation-prone ?-strands, such as L145 and M147, hinder domain swapping as a pathway toward dimerization. These findings thus provide critical molecular insights onto the initial stages of age-onset cataract, which is important for understanding protein aggregation diseases.
Related JoVE Video
Urea-induced drying of hydrophobic nanotubes: comparison of different urea models.
J Phys Chem B
PUBLISHED: 03-08-2011
Show Abstract
Hide Abstract
In a previous study, we performed the molecular dynamics (MD) simulations of various carbon nanotubes solvated in 8 M urea and observed a striking phenomenon of urea-induced drying of hydrophobic nanotubes, which resulted from the stronger dispersion interaction of urea than water with nanotube (Das, P.; Zhou, R. H. J. Phys. Chem. B2010, 114, 5427-5430). In this paper, we have compared five different urea models to investigate if the above phenomenon is sensitive to the urea models used. We demonstrate through MD simulations that the drying phenomenon and its physical mechanism are qualitatively independent of the urea models. Consistent with our previous study, our current analyses with both interaction potential energy and association free energy indicate that there is a "dry state" inside the carbon nanotubes, which is caused by the ureas preferential binding to nanotubes through stronger dispersion interactions. These results also have implications for understanding the urea-induced protein denaturation by providing further evidence of the potential existence of a "dry globule"-like transient state during protein unfolding and the "direct interaction mechanism" (whereby urea attacks protein directly, rather than disrupts water structure as a "water breaker"). In addition, our study highlights the crucial role of dispersion interaction in the selective absorption of molecules in hydrophobic nanopores and may have significance for nanoscience and nanotechnology.
Related JoVE Video
Plugging into proteins: poisoning protein function by a hydrophobic nanoparticle.
ACS Nano
PUBLISHED: 11-16-2010
Show Abstract
Hide Abstract
Nanoscale particles have become promising materials in many fields, such as cancer therapeutics, diagnosis, imaging, drug delivery, catalysis, as well as biosensors. In order to stimulate and facilitate these applications, there is an urgent need for the understanding of the nanoparticle toxicity and other risks involved with these nanoparticles to human health. In this study, we use large-scale molecular dynamics simulations to study the interaction between several proteins (WW domains) and carbon nanotubes (one form of hydrophobic nanoparticles). We have found that the carbon nanotube can plug into the hydrophobic core of proteins to form stable complexes. This plugging of nanotubes disrupts and blocks the active sites of WW domains from binding to the corresponding ligands, thus leading to the loss of the original function of the proteins. The key to this observation is the hydrophobic interaction between the nanoparticle and the hydrophobic residues, particularly tryptophans, in the core of the domain. We believe that these findings might provide a novel route to the nanoparticle toxicity on the molecular level for the hydrophobic nanoparticles.
Related JoVE Video
Key residues that play a critical role in urea-induced lysozyme unfolding.
J Phys Chem B
PUBLISHED: 11-05-2010
Show Abstract
Hide Abstract
In this paper, we have developed a simple sensitivity score, based on the relative population of solvent molecules near each residue, to analyze the detailed motions of both urea and water around the hen egg-white lysozyme protein (W62G mutant) during its early stage of urea-induced unfolding for a better understanding of the atomic picture of the chemical denaturation process. Our simulation and analysis show that some hydrophobic core residues can keep dry from water for tens of nanoseconds in 8 M urea, while their contacts with urea increase significantly at the same time, forming a molten dry-globule-like state. Also, different from previously proposed actions that urea molecules preferentially absorb onto charged residues, our analysis shows that the noncharged residues, rather than the charged ones, attract more urea molecules in their surroundings (acting as attractants for urea), which is consistent with our earlier findings that urea molecules preferentially bind to protein through their stronger dispersion interactions than water. Once the initial adsorption surrounding the protein surface is accomplished, the further intrusion is found to be facilitated by a group of key residues, including Leu8, Met12, Val29, and Ala95, which play a critical role in the formation of the dry-globule structure. These hydrophobic dry residues form a local contact map which excludes the intrusion of water but accommodates the presence of urea due to their stronger binding to protein during this swelling process, thus maintaining an interesting transient dry-globule state.
Related JoVE Video
Signal transmission, conversion and multiplication by polar molecules confined in nanochannels.
Nanoscale
PUBLISHED: 08-27-2010
Show Abstract
Hide Abstract
The mechanism of signal transmission, conversion and multiplication at molecular level has been of great interest lately, due to its wide applications in nanoscience and nanotechnology. The interferences between authentic signals and thermal noises at the nanoscale make it difficult for molecular signal transduction. Here we review some of our recent progress on the signal transduction mediated by water and other polar molecules confined in nanochannels, such as Y-shaped carbon nanotubes. We also explore possible future directions in this emerging field. These studies on molecular signal conduction might have significance in future designs and applications of nanoscale electronic devices, and might also provide useful insights for a better understanding of signal conduction in both physical and biological systems.
Related JoVE Video
Single mutation effects on conformational change and membrane deformation of influenza hemagglutinin fusion peptides.
J Phys Chem B
PUBLISHED: 06-18-2010
Show Abstract
Hide Abstract
The single mutation effect on the conformational change and membrane permeation of influenza hemagglutinin fusion peptides has been studied with molecular dynamics simulations. A total of seven peptides, including wild-type fusion peptide and its six single point mutants (G1E, G1S, G1V, G4V, E11A, and W14A, all with no fusion or hemifusion activity) are examined systematically, which covers a wide range of mutation sites as well as mutant residue types (both hydrophobic and hydrophilic). The wild-type shows a kink structure (inversed V-shape), which facilitates the interaction between the fusion peptide and the lipid bilayer, as well as the interaction between the two arms of the fusion peptide. All mutants show a strong tendency toward a linear alpha-helix conformation, with the initial kink structure in the wild-type broken. More interestingly, one of the key hydrophobic residues around the initial kink region, Phe-9, is found to flip away from the membrane surface in most of these mutants. This conformational change causes a loss of key interactions between the original two arms of the inversed V-shape of the wild-type, thus disabling the kink structure, which results in the stabilization of the linear alpha-helix structure. The fusion peptides also display significant impact on the membrane structure deformation. The thickness of the lipid bilayer surrounding the wild-type fusion peptide decreases significantly, which induces a positive curvature of lipid bilayer. All the single mutations examined here reduce this membrane structural deformation, supporting the fusion activity data from experiments.
Related JoVE Video
Size dependence of nanoscale confinement on chiral transformation.
Chemistry
PUBLISHED: 05-21-2010
Show Abstract
Hide Abstract
Molecular dynamic simulations of the chiral transition of a difluorobenzo[c]phenanthrene molecule (C(18)H(12)F(2), D molecule) in single-walled boron-nitride nanotubes (SWBNNTs) revealed remarkable effects of the nanoscale confinement. The critical temperature, above which the chiral transition occurs, increases considerably with the nanotube diameter, and the chiral transition frequency decreases almost exponentially with respect to the reciprocal of temperature. The chiral transitions correlate closely with the orientational transformations of the D molecule. Furthermore, the interaction energy barriers between the D molecule and the nanotube for different orientational states can characterize the chiral transition. This implies that the temperature threshold of a chiral transition can be controlled by a suitable nanotube. These findings provide new insights to the effect of nanoscale confinement on molecular chirality.
Related JoVE Video
Urea-induced drying of carbon nanotubes suggests existence of a dry globule-like transient state during chemical denaturation of proteins.
J Phys Chem B
PUBLISHED: 04-06-2010
Show Abstract
Hide Abstract
Atomistic dynamics simulations of purely hydrophobic carbon nanotubes in 8 M urea are performed to dissect the role of dispersion interactions in the denaturing power of urea. The enhanced population of urea and a paucity of water in proximity of nanotubes suggest that the stronger dispersion interaction of urea than water with nanotube triggers drying of its interior. The preferential intrusion of urea over water within nanotube interiors irrespective of their diameters directly implies a "dry globule"-like transient intermediate formation in the initial stage of protein unfolding in urea.
Related JoVE Video
Water-mediated signal multiplication with Y-shaped carbon nanotubes.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-08-2009
Show Abstract
Hide Abstract
Molecular scale signal conversion and multiplication is of particular importance in many physical and biological applications, such as molecular switches, nano-gates, biosensors, and various neural systems. Unfortunately, little is currently known regarding the signal processing at the molecular level, partly due to the significant noises arising from the thermal fluctuations and interferences between branch signals. Here, we use molecular dynamics simulations to show that a signal at the single-electron level can be converted and multiplied into 2 or more signals by water chains confined in a narrow Y-shaped nanochannel. This remarkable transduction capability of molecular signal by Y-shaped nanochannel is found to be attributable to the surprisingly strong dipole-induced ordering of such water chains, such that the concerted water orientations in the 2 branches of the Y-shaped nanotubes can be modulated by the water orientation in the main channel. The response to the switching of the charge signal is very rapid, from a few nanoseconds to a few hundred nanoseconds. Furthermore, simulations with various water models, including TIP3P, TIP4P, and SPC/E, show that the transduction capability of the Y-shaped carbon nanotubes is very robust at room temperature, with the interference between branch signals negligible.
Related JoVE Video
Using a mutual information-based site transition network to map the genetic evolution of influenza A/H3N2 virus.
Bioinformatics
PUBLISHED: 08-25-2009
Show Abstract
Hide Abstract
Mapping the antigenic and genetic evolution pathways of influenza A is of critical importance in the vaccine development and drug design of influenza virus. In this article, we have analyzed more than 4000 A/H3N2 hemagglutinin (HA) sequences from 1968 to 2008 to model the evolutionary path of the influenza virus, which allows us to predict its future potential drifts with specific mutations.
Related JoVE Video
Dewetting and hydrophobic interaction in physical and biological systems.
Annu Rev Phys Chem
PUBLISHED: 06-20-2009
Show Abstract
Hide Abstract
Hydrophobicity manifests itself differently on large and small length scales. This review focuses on large-length-scale hydrophobicity, particularly on dewetting at single hydrophobic surfaces and drying in regions bounded on two or more sides by hydrophobic surfaces. We review applicable theories, simulations, and experiments pertaining to large-scale hydrophobicity in physical and biomolecular systems and clarify some of the critical issues pertaining to this subject. Given space constraints, we cannot review all the significant and interesting work in this active field.
Related JoVE Video
Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity.
J Comput Chem
PUBLISHED: 04-29-2009
Show Abstract
Hide Abstract
Historically, influenza pandemics have been triggered when an avian influenza virus or a human/avian reassorted virus acquires the ability to replicate efficiently and become transmissible in the human population. Most critically, the major surface glycoprotein hemagglutinin (HA) must adapt to the usage of human-like (alpha-2,6-linked) sialylated glycan receptors. Therefore, identification of mutations that can switch the currently circulating H5N1 HA receptor binding specificity from avian to human might provide leads to the emergence of pandemic H5N1 viruses. To define such mutations in the H5 subtype, here we provide a computational framework that combines molecular modeling with extensive free energy simulations. Our results show that the simulated binding affinities are in good agreement with currently available experimental data. Moreover, we predict that one double mutation (V135S and A138S) in HA significantly enhances alpha-2,6-linked receptor recognition by the H5 subtype. Our simulations indicate that this double mutation in H5N1 HA increases the binding affinity to alpha-2,6-linked sialic acid receptors by 2.6 +/- 0.7 kcal/mol per HA monomer that primarily arises from the electrostatic interactions. Further analyses reveal that introduction of this double mutation results in a conformational change in the receptor binding pocket of H5N1 HA. As a result, a major rearrangement occurs in the hydrogen-bonding network of HA with the human receptor, making the human receptor binding pattern of double mutant H5N1 HA surprisingly similar to that observed in human H1N1 HA. These large scale molecular simulations on single and double mutants thus provide new insights into our understanding toward human adaptation of the avian H5N1 virus.
Related JoVE Video
Recognition mechanism of siRNA by viral p19 suppressor of RNA silencing: a molecular dynamics study.
Biophys. J.
PUBLISHED: 03-04-2009
Show Abstract
Hide Abstract
The p19 protein (p19) encoded from Tombusvirus is involved in various activities such as pathogenicity and virus transport. Recent studies have found that p19 is a plant suppressor of RNA silencing, which binds to short interfering RNAs (siRNAs) with high affinity. We use molecular dynamics (MD) simulations of the wild-type and mutant p19 protein (W39 and W42G) binding with a 21-nt siRNA duplex to study the p19-siRNA recognition mechanism and mutation effects. Our simulations with standard MD and steered molecular dynamics have shown that the double mutant structure is indeed much less stable than the wild-type, consistent with the recent experimental findings. Comprehensive structural analysis also shows that the W39/42G mutations first induce the loss of stacking interactions between p19 and siRNA, Trp(42)-Cyt1 (Cyt1 from the 5 to 3 strand) and Trp(39)-Gua19 (Gua19 from the 3 to 5 strand), and then breaks the hydrophobic core formed by W39-W42 with nucleotide basepairs in the wild-type. The steered molecular dynamics simulations also show that the mutant p19 complex is "decompounded" very fast under a constant separation force, whereas the wild-type remains largely intact under the same steering force. Moreover, we have used the free energy perturbation to predict a binding affinity loss of 6.98 +/- 0.95 kcal/mol for the single mutation W39G, and 12.8 +/- 1.0 kcal/mol loss for the double mutation W39/42G, with the van der Waals interactions dominating the contribution ( approximately 90%). These results indicate that the W39/42G mutations essentially destroy the important p19-siRNA recognition by breaking the strong stacking interaction between Cyt1 and Gua19 with end-capping tryptophans. These large scale simulations might provide new insights to the interactions and co-evolution relationship between RNA virus proteins and their hosts.
Related JoVE Video
Ureas action on hydrophobic interactions.
J. Am. Chem. Soc.
PUBLISHED: 01-07-2009
Show Abstract
Hide Abstract
For more than a century, urea has been commonly used as an agent for denaturing proteins. However, the mechanism behind its denaturing power is still not well understood. Here we show by molecular dynamics simulations that a 7 M aqueous urea solution unfolds a chain of purely hydrophobic groups which otherwise adopts a compact structure in pure water. The unfolding process arises due to a weakening of hydrophobic interactions between the polymer groups. We also show that the attraction between two model hydrophobic plates, and graphene sheets, is reduced when urea is added to the solution. The action of urea is found to be direct, through its preferential binding to the polymer or plates. It is, therefore, acting like a surfactant capable of forming hydrogen bonds with the solvent. The preferential binding and the consequent weakened hydrophobic interactions are driven by enthalpy and are related to the difference in the strength of the attractive dispersion interactions of urea and water with the polymer chain or plate. This relation scales with square root(epsilon(b)), where epsilon(b) is the Lennard Jones (LJ) energy parameter for each group on the chain. Larger values of epsilon(b) increase the preferential binding and result in a larger decrease of the hydrophobic interactions, with a crossover at very weak dispersions. We also show that the indirect mechanism, in which urea acts as a chaotrope, is not a likely cause of ureas action as a denaturant. These findings suggest that, in denaturing proteins, urea (and perhaps other denaturants) forms stronger attractive dispersion interactions with the protein side chains and backbone than does water and, therefore, is able to dissolve the core hydrophobic region.
Related JoVE Video
Non-destructive inhibition of metallofullerenol Gd@C(82)(OH)(22) on WW domain: implication on signal transduction pathway.
Sci Rep
Show Abstract
Hide Abstract
Endohedral metallofullerenol Gd@C(82)(OH)(22) has recently been shown to effectively inhibit tumor growth; however, its potential adverse bioeffects remain to be understood before its wider applications. Here, we present our study on the interaction between Gd@C(82)(OH)(22) and WW domain, a representative protein domain involved in signaling and regulatory pathway, using all-atom explicit solvent molecular dynamics simulations. We find that Gd@C(82)(OH)(22) has an intrinsic binding preference to the binding groove, particularly the key signature residues Y28 and W39. In its binding competition with the native ligand PRM, Gd@C(82)(OH)(22) is shown to easily win the competition over PRM in occupying the active site, implying that Gd@C(82)(OH)(22) can impose a potential inhibitory effect on the WW domain. Further analyses with binding free energy landscapes reveal that Gd@C(82)(OH)(22) can not only directly block the binding site of the WW domain, but also effectively distract the PRM from its native binding pocket.
Related JoVE Video
Enantiomerization mechanism of thalidomide and the role of water and hydroxide ions.
Chemistry
Show Abstract
Hide Abstract
The significance of the molecular chirality of drugs has been widely recognized due to the thalidomide tragedy. Most of the new drugs reaching the market today are single enantiomers, rather than racemic mixtures. However, many optically pure drugs, including thalidomide, undergo enantiomerization in vivo, thus negating the single enantiomers benefits or inducing unexpected effects. A detailed atomic level understanding of chiral conversion, which is still largely lacking, is thus critical for drug development. Herein, we use first-principle density function theory (DFT) to explore the mechanism of enantiomerization of thalidomide. We have identified the two most plausible interconversion pathways for isolated thalidomide: 1)?proton transfer from the chiral carbon center to an adjacent carbonyl oxygen atom, followed by isomerization and rotation of the glutarimide ring (before the proton hops back to the chiral carbon atom); and 2)?a pathway that is the same as "1", but with the isomerization of the glutarimide ring occurring ahead of the initial proton transfer reaction. There are two remarkable energy barriers, 73.29 and 23.59?kcal?mol(-1), corresponding to the proton transfer and the rotation of the glutarimide ring, respectively. Furthermore, we found that water effectively catalyzes the interconversion by facilitating the proton transfer with the highest energy barrier falling to approximately 30?kcal?mol(-1), which, to our knowledge, is the first time that this important role of water in chiral conversion has been demonstrated. Finally, we show that the hydroxide ion can further lower the enantiomerization energy barrier to approximately 24?kcal?mol(-1) by facilitating proton abstraction, which agrees well with recent experimental data under basic conditions. Our current findings highlight the importance of water and hydroxide ions in the enantiomerization of thalidomide and also provide new insights into the mechanism of enantiomerization at an atomic level.
Related JoVE Video
Dynamics of DNA translocation in a solid-state nanopore immersed in aqueous glycerol.
Nanotechnology
Show Abstract
Hide Abstract
Nanopore-based technologies have attracted much attention recently for their promising use in low-cost and high-throughput genome sequencing. To achieve single-base resolution of DNA sequencing, it is critical to slow and control the translocation of DNA, which has been achieved in a protein nanopore but not yet in a solid-state nanopore. Using all-atom molecular dynamics simulations, we investigated the dynamics of a single-stranded DNA (ssDNA) molecule in an aqueous glycerol solution confined in a SiO(2) nanopore. The friction coefficient ? of the ssDNA molecule is found to be approximately 18 times larger in glycerol than in water, which can dramatically slow the motion of ssDNA. The electrophoretic mobility ? of ssDNA in glycerol, however, decreases by almost the same factor, yielding the effective charge (??) of ssDNA being roughly the same as in water. This is counterintuitive since the ssDNA effective charge predicted from the counterion condensation theory varies with the dielectric constant of a solvent. Due to the larger friction coefficient of ssDNA in glycerol, we further show that glycerol can improve trapping of ssDNA in the DNA transistor, a nanodevice that can be used to control the motion of ssDNA in a solid-state nanopore. Simulation results of slowing ssDNA translocation were confirmed in our nanopore experiment.
Related JoVE Video
Collapse of unfolded proteins in a mixture of denaturants.
J. Am. Chem. Soc.
Show Abstract
Hide Abstract
Both urea and guanidinium chloride (GdmCl) are frequently used as protein denaturants. Given that proteins generally adopt extended or unfolded conformations in either aqueous urea or GdmCl, one might expect that the unfolded protein chains will remain or become further extended due to the addition of another denaturant. However, a collapse of denatured proteins is revealed using atomistic molecular dynamics simulations when a mixture of denaturants is used. Both hen egg-white lysozyme and protein L are found to undergo collapse in the denaturant mixture. The collapse of the protein conformational ensembles is accompanied by a decreased solubility and increased non-native self-interactions of hydrophobic residues in the urea/GdmCl mixture. The increase of non-native interactions rather than the native contacts indicates that the proteins experience a simple collapse transition from the fully denatured states. During the protein collapse, the relatively stronger denaturant GdmCl displays a higher tendency to be absorbed onto the protein surface due to their stronger electrostatic interactions with proteins. At the same time, urea molecules also accumulate near the protein surface, resulting in an enhanced "local crowding" for the protein near its first solvation shell. This rearrangement of denaturants near the protein surface and crowded local environment induce the protein collapse, mainly by burying their hydrophobic residues. These findings from molecular simulations are then further explained by a simple analytical model based on statistical mechanics.
Related JoVE Video
Interactions between proteins and carbon-based nanoparticles: exploring the origin of nanotoxicity at the molecular level.
Small
Show Abstract
Hide Abstract
The widespread application of nanomaterials has spurred an interest in the study of interactions between nanoparticles and proteins due to the biosafety concerns of these nanomaterials. In this review, a summary is presented of some of the recent studies on this important subject, especially on the interactions of proteins with carbon nanotubes (CNTs) and metallofullerenols. Two potential molecular mechanisms have been proposed for CNTs inhibition of protein functions. The driving forces of CNTs adsorption onto proteins are found to be mainly hydrophobic interactions and the so-called ?-? stacking between CNTs carbon rings and proteins aromatic residues. However, there is also recent evidence showing that endohedral metallofullerenol Gd@C82 (OH)22 can be used to inhibit tumor growth, thus acting as a potential nanomedicine. These recent findings have provided a better understanding of nanotoxicity at the molecular level and also suggested therapeutic potential by using nanoparticles cytotoxicity against cancer cells.
Related JoVE Video
Molecular mechanism of surface-assisted epitaxial self-assembly of amyloid-like peptides.
ACS Nano
Show Abstract
Hide Abstract
A surprising "upright" fibrilar conformation (with a height of ~2.6 nm) was observed with in situ atomic force microscopy (AFM) for an amyloid-like peptide (NH(2)-VGGAVVAV-COHN(2)) on mica surface, which is very different from its "flat" conformation (with a much smaller height of ~0.9 nm) on the HOPG surface. Our all-atom molecular dynamics (MD) simulations reveal that it is the strong electrostatic interactions between the N-terminus of the peptide and the mica surface that result in an upright conformation and a highly ordered ?-stranded structure on mica, with a height of 2.5 ± 0.1 nm, consistent with the AFM experiment. Similarly, our MD simulations show that the same peptides adopt a flat conformation on HOPG surfaces due to the favorable hydrophobic interactions with HOPG. Our simulations also indicate that epitaxial patterns found in mica are preferentially controlled by anisotropic binding sites commensurate with the inherent crystallographic unit cell of the basal substrate.
Related JoVE Video
Nanopore-Based Sensors for Detecting Toxicity of a Carbon Nanotube to Proteins.
J Phys Chem Lett
Show Abstract
Hide Abstract
A carbon nanotube (CNT) can be toxic to a living cell by binding to proteins and then impairing their functionalities; however, an efficient screening method that examines binding capability of a CNT to protein molecules in vitro is still unavailable. Here, we show that a nanopore-based sensor can be used to investigate CNT-protein interactions. With proof-of-principle molecular dynamics simulations, we have measured ionic currents in a nanopore when threading a CNT-protein complex through the pore, and demonstrated that CNTs binding capability, and thus potential nanotoxicity, can be inferred from current signals. We have then further investigated mechanics and energetics of CNT-protein interactions with the nanopore sensor. These findings indicate that solid-state nanopores have the potential to be ultra-sensitive and high-throughput sensors for nanotoxicity.
Related JoVE Video
Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
Pancreatic adenocarcinoma is the most lethal of the solid tumors and the fourth-leading cause of cancer-related death in North America. Matrix metalloproteinases (MMPs) have long been targeted as a potential anticancer therapy because of their seminal role in angiogenesis and extracellular matrix (ECM) degradation of tumor survival and invasion. However, the inhibition specificity to MMPs and the molecular-level understanding of the inhibition mechanism remain largely unresolved. Here, we found that endohedral metallofullerenol Gd@C(82)(OH)(22) can successfully inhibit the neoplastic activity with experiments at animal, tissue, and cellular levels. Gd@C(82)(OH)(22) effectively blocks tumor growth in human pancreatic cancer xenografts in a nude mouse model. Enzyme activity assays also show Gd@C(82)(OH)(22) not only suppresses the expression of MMPs but also significantly reduces their activities. We then applied large-scale molecular-dynamics simulations to illustrate the molecular mechanism by studying the Gd@C(82)(OH)(22)-MMP-9 interactions in atomic detail. Our data demonstrated that Gd@C(82)(OH)(22) inhibits MMP-9 mainly via an exocite interaction, whereas the well-known zinc catalytic site only plays a minimal role. Steered by nonspecific electrostatic, hydrophobic, and specific hydrogen-bonding interactions, Gd@C(82)(OH)(22) exhibits specific binding modes near the ligand-specificity loop S1, thereby inhibiting MMP-9 activity. Both the suppression of MMP expression and specific binding mode make Gd@C(82)(OH)(22) a potentially more effective nanomedicine for pancreatic cancer than traditional medicines, which usually target the proteolytic sites directly but fail in selective inhibition. Our findings provide insights for de novo design of nanomedicines for fatal diseases such as pancreatic cancer.
Related JoVE Video
Molecular dynamics simulations of Ago silencing complexes reveal a large repertoire of admissible seed-less targets.
Sci Rep
Show Abstract
Hide Abstract
To better understand the recognition mechanism of RISC and the repertoire of guide-target interactions we introduced G:U wobbles and mismatches at various positions of the microRNA (miRNA) seed region and performed all-atom molecular dynamics simulations of the resulting Ago-miRNA:mRNA ternary complexes. Our simulations reveal that many modifications, including combinations of multiple G:U wobbles and mismatches in the seed region, are admissible and result in only minor structural fluctuations that do not affect overall complex stability. These results are further supported by analyses of HITS-CLIP data. Lastly, introduction of disruptive mutations revealed a bending motion of the PAZ domain along the L1/L2 hinge and a subsequent opening of the nucleic-acid-binding channel. Our findings suggest that the spectrum of a miRNAs admissible targets is different from what is currently anticipated by the canonical seed-model. Moreover, they provide a likely explanation for the previously reported sequence-dependent regulation of unintended targeting by siRNAs.
Related JoVE Video
Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains.
Nat Commun
Show Abstract
Hide Abstract
Transcription activator-like effectors are sequence-specific DNA-binding proteins that harbour modular, repetitive DNA-binding domains. Transcription activator-like effectors have enabled the creation of customizable designer transcriptional factors and sequence-specific nucleases for genome engineering. Here we report two improvements of the transcription activator-like effector toolbox for achieving efficient activation and repression of endogenous gene expression in mammalian cells. We show that the naturally occurring repeat-variable diresidue Asn-His (NH) has high biological activity and specificity for guanine, a highly prevalent base in mammalian genomes. We also report an effective transcription activator-like effector transcriptional repressor architecture for targeted inhibition of transcription in mammalian cells. These findings will improve the precision and effectiveness of genome engineering that can be achieved using transcription activator-like effectors.
Related JoVE Video
Coherent microscopic picture for urea-induced denaturation of proteins.
J Phys Chem B
Show Abstract
Hide Abstract
In a previous study, we explored the mechanism of urea-induced denaturation of proteins by performing molecular dynamics (MD) simulations of hen lysozyme in 8 M urea and supported the "direct interaction mechanism" whereby urea denatures protein via dispersion interaction (Hua, L.; Zhou, R. H.; Thirumalai, D.; Berne, B. J. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 16928). Here we perform large scale MD simulations of five representative protein/peptide systems in aqueous urea to investigate if the above mechanism is common to other proteins. In all cases, accumulations of urea around proteins/peptide are observed, suggesting that urea denatures proteins by directly attacking protein backbones and side chains rather than indirectly disrupting water structure as a "water breaker". Consistent with our previous case study of lysozyme, the current energetic analyses with five protein/peptide systems reveal that ureas preferential binding to proteins mainly comes from ureas stronger dispersion interactions with proteins than with bulk solution, whereas the electrostatic (hydrogen-bonded) interactions only play a relatively minor (even negative) role during this denaturation process. Furthermore, the simulations of the peptide system at different urea concentrations (8 and 4.5 M), and with different force fields (CHARMM and OPLSAA) suggest that the above mechanism is robust, independent of the urea concentration and force field used. Last, we emphasize the importance of periodic boundary conditions in pairwise energetic analyses. This article provides a comprehensive study on the physical mechanism of urea-induced protein denaturation and suggests that the "dispersion-interaction-driven" mechanism should be general.
Related JoVE Video
How does water-nanotube interaction influence water flow through the nanochannel?
J Chem Phys
Show Abstract
Hide Abstract
Water permeation across various nitrogen-doped double-walled carbon nanotubes (N-DWCNT) has been studied with molecular dynamics simulations to better understand the influence of water-nanopore interaction on the water permeation rate. There exists a threshold interaction energy at around -34.1 kJ/mol. Over the threshold energy, the water flow through N-DWCNT decreases monotonically with the strengthening of the water-nanotube interaction. The effect on the water flow across the channel is found to be negligible when the interaction energy is weaker than the threshold. The water-nanotube interaction energy can be controlled by doping nitrogen atoms into the nanotube walls. Although the van der Waals interaction energy is much stronger than the electrostatic interaction energy, it is less sensitive to the proportion of doped nitrogen atoms. On the other hand, the electrostatic interaction energy weakens after the initial strengthening when the percentage of doped nitrogen atoms increases to ~25%. The doped nitrogen atoms make less influence on the overall electrostatic interaction energy when the proportion is over 25%, due to the repulsions among themselves. Thus, the monotonous strengthening of the van der Waals interaction energy seems to dominate the overall trend of the total interaction energy, whereas the change of the long-range electrostatic interaction energy characterizes the shape of the correlation curve, as the percentage of doped nitrogen atoms increases.
Related JoVE Video
The folding transition state of protein L is extensive with nonnative interactions (and not small and polarized).
J. Mol. Biol.
Show Abstract
Hide Abstract
Progress in understanding protein folding relies heavily upon an interplay between experiment and theory. In particular, readily interpretable experimental data that can be meaningfully compared to simulations are required. According to standard mutational ? analysis, the transition state for Protein L contains only a single hairpin. However, we demonstrate here using ? analysis with engineered metal ion binding sites that the transition state is extensive, containing the entire four-stranded ? sheet. Underreporting of the structural content of the transition state by ? analysis also occurs for acyl phosphatase [Pandit, A. D., Jha, A., Freed, K. F. & Sosnick, T. R., (2006). Small proteins fold through transition states with native-like topologies. J. Mol. Biol.361, 755-770], ubiquitin [Sosnick, T. R., Dothager, R. S. & Krantz, B. A., (2004). Differences in the folding transition state of ubiquitin indicated by ? and ? analyses. Proc. Natl Acad. Sci. USA 101, 17377-17382] and BdpA [Baxa, M., Freed, K. F. & Sosnick, T. R., (2008). Quantifying the structural requirements of the folding transition state of protein A and other systems. J. Mol. Biol.381, 1362-1381]. The carboxy-terminal hairpin in the transition state of Protein L is found to be nonnative, a significant result that agrees with our Protein Data Bank-based backbone sampling and all-atom simulations. The nonnative character partially explains the failure of accepted experimental and native-centric computational approaches to adequately describe the transition state. Hence, caution is required even when an apparent agreement exists between experiment and theory, thus highlighting the importance of having alternative methods for characterizing transition states.
Related JoVE Video
Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes.
ACS Nano
Show Abstract
Hide Abstract
Nanostructures, particularly those from peptide self-assemblies, have attracted great attention lately due to their potential applications in nanotemplating and nanotechnology. Recent experimental studies reported that diphenylalanine-based peptides can self-assemble into highly ordered nanostructures such as nanovesicles and nanotubes. However, the molecular mechanism of the self-organization of such well-defined nanoarchitectures remains elusive. In this study, we investigate the assembly pathway of 600 diphenylalanine (FF) peptides at different peptide concentrations by performing extensive coarse-grained molecular dynamics (MD) simulations. Based on forty 0.6-1.8 ?s trajectories at 310 K starting from random configurations, we find that FF dipeptides not only spontaneously assemble into spherical vesicles and nanotubes, consistent with previous experiments, but also form new ordered nanoarchitectures, namely, planar bilayers and a rich variety of other shapes of vesicle-like structures including toroid, ellipsoid, discoid, and pot-shaped vesicles. The assembly pathways are concentration-dependent. At low peptide concentrations, the self-assembly involves the fusion of small vesicles and bilayers, whereas at high concentrations, it occurs through the formation of a bilayer first, followed by the bending and closure of the bilayer. Energetic analysis suggests that the formation of different nanostructures is a result of the delicate balance between peptide-peptide and peptide-water interactions. Our all-atom MD simulation shows that FF nanostructures are stabilized by a combination of T-shaped aromatic stacking, interpeptide head-to-tail hydrogen-bonding, and peptide-water hydrogen-bonding interactions. This study provides, for the first time to our knowledge, the self-assembly mechanism and the molecular organization of FF dipeptide nanostructures.
Related JoVE Video
Free-energy simulations reveal that both hydrophobic and polar interactions are important for influenza hemagglutinin antibody binding.
Biophys. J.
Show Abstract
Hide Abstract
Antibodies binding to conserved epitopes can provide a broad range of neutralization to existing influenza subtypes and may also prevent the propagation of potential pandemic viruses by fighting against emerging strands. Here we propose a computational framework to study structural binding patterns and detailed molecular mechanisms of viral surface glycoprotein hemagglutinin (HA) binding with a broad spectrum of neutralizing monoclonal antibody fragments (Fab). We used rigorous free-energy perturbation (FEP) methods to calculate the antigen-antibody binding affinities, with an aggregate underlying molecular-dynamics simulation time of several microseconds (?2 ?s) using all-atom, explicit-solvent models. We achieved a high accuracy in the validation of our FEP protocol against a series of known binding affinities for this complex system, with <0.5 kcal/mol errors on average. We then introduced what to our knowledge are novel mutations into the interfacial region to further study the binding mechanism. We found that the stacking interaction between Trp-21 in HA2 and Phe-55 in the CDR-H2 of Fab is crucial to the antibody-antigen association. A single mutation of either W21A or F55A can cause a binding affinity decrease of ??G > 4.0 kcal/mol (equivalent to an ?1000-fold increase in the dissociation constant K(d)). Moreover, for group 1 HA subtypes (which include both the H1N1 swine flu and the H5N1 bird flu), the relative binding affinities change only slightly (< ±1 kcal/mol) when nonpolar residues at the ?A helix of HA mutate to conservative amino acids of similar size, which explains the broad neutralization capability of antibodies such as F10 and CR6261. Finally, we found that the hydrogen-bonding network between His-38 (in HA1) and Ser-30/Gln-64 (in Fab) is important for preserving the strong binding of Fab against group 1 HAs, whereas the lack of such hydrogen bonds with Asn-38 in most group 2 HAs may be responsible for the escape of antibody neutralization. These large-scale simulations may provide new insight into the antigen-antibody binding mechanism at the atomic level, which could be essential for designing more-effective vaccines for influenza.
Related JoVE Video
Amino acid analogues bind to carbon nanotube via ?-? interactions: comparison of molecular mechanical and quantum mechanical calculations.
J Chem Phys
Show Abstract
Hide Abstract
Understanding the interaction between carbon nanotubes (CNTs) and biomolecules is essential to the CNT-based nanotechnology and biotechnology. Some recent experiments have suggested that the ?-? stacking interactions between proteins aromatic residues and CNTs might play a key role in their binding, which raises interest in large scale modeling of protein-CNT complexes and associated ?-? interactions at atomic detail. However, there is concern on the accuracy of classical fixed-charge molecular force fields due to their classical treatments and lack of polarizability. Here, we study the binding of three aromatic residue analogues (mimicking phenylalanine, tyrosine, and tryptophan) and benzene to a single-walled CNT, and compare the molecular mechanical (MM) calculations using three popular fixed-charge force fields (OPLSAA, AMBER, and CHARMM), with quantum mechanical (QM) calculations using the density-functional tight-binding method with the inclusion of dispersion correction (DFTB-D). Two typical configurations commonly found in ?-? interactions are used, one with the aromatic rings parallel to the CNT surface (flat), and the other perpendicular (edge). Our calculations reveal that compared to the QM results the MM approaches can appropriately reproduce the strength of ?-? interactions for both configurations, and more importantly, the energy difference between them, indicating that the various contributions to ?-? interactions have been implicitly included in the van der Waals parameters of the standard MM force fields. Meanwhile, these MM models are less accurate in predicting the exact structural binding patterns (matching surface), meaning there are still rooms to be improved. In addition, we have provided a comprehensive and reliable QM picture for the ?-? interactions of aromatic molecules with CNTs in gas phase, which might be used as a benchmark for future force field developments.
Related JoVE Video
Multiscale modeling of macromolecular biosystems.
Brief. Bioinformatics
Show Abstract
Hide Abstract
In this article, we review the recent progress in multiresolution modeling of structure and dynamics of protein, RNA and their complexes. Many approaches using both physics-based and knowledge-based potentials have been developed at multiple granularities to model both protein and RNA. Coarse graining can be achieved not only in the length, but also in the time domain using discrete time and discrete state kinetic network models. Models with different resolutions can be combined either in a sequential or parallel fashion. Similarly, the modeling of assemblies is also often achieved using multiple granularities. The progress shows that a multiresolution approach has considerable potential to continue extending the length and time scales of macromolecular modeling.
Related JoVE Video
Salting effects on protein components in aqueous NaCl and urea solutions: toward understanding of urea-induced protein denaturation.
J Phys Chem B
Show Abstract
Hide Abstract
The mechanism of urea-induced protein denaturation is explored through studying the salting effect of urea on 14 amino acid side chain analogues, and N-methylacetamide (NMA) which mimics the protein backbone. The solvation free energies of the 15 molecules were calculated in pure water, aqueous urea, and NaCl solutions. Our results show that NaCl displays strong capability to salt out all 15 molecules, while urea facilitates the solvation (salting-in) of all the 15 molecules on the other hand. The salting effect is found to be largely enthalpy-driven for both NaCl and urea. Our observations can explain the higher stability of proteins secondary and tertiary structures in typical salt solutions than that in pure water. Meanwhile, ureas capability to better solvate protein backbone and side-chain components can be extrapolated to explain proteins denaturation in aqueous urea solution. Urea salts in molecules through direct binding to solute surface, and the strength is linearly dependent on the number of heavy atoms of solute molecules. The van der Waals interactions are found to be the dominant force, which challenges a hydrogen-bonding-driven mechanism proposed previously.
Related JoVE Video
Dissecting the contributions of ?-hairpin tyrosine pairs to the folding and stability of long-lived human ?D-crystallins.
Nanoscale
Show Abstract
Hide Abstract
Ultraviolet-radiation-induced damage to and aggregation of human lens crystallin proteins are thought to be a significant pathway to age-related cataract. The aromatic residues within the duplicated Greek key domains of ?- and ?-crystallins are the main ultraviolet absorbers and are susceptible to direct and indirect ultraviolet damage. The previous site-directed mutagenesis studies have revealed a striking difference for two highly conserved homologous ?-hairpin Tyr pairs, at the N-terminal domain (N-td) and C-terminal domain (C-td), respectively, in their contribution to the overall stability of H?D-Crys, but why they behave so differently still remains a mystery. In this paper, we systematically investigated the underlying molecular mechanism and detailed contributions of these two Tyr pairs with large scale molecular dynamics simulations. A series of different tyrosine-to-alanine pair(s) substitutions were performed in either the N-td, the C-td, or both. Our results suggest that the Y45A/Y50A pair substitution in the N-td mainly affects the stability of the N-td itself, while the Y133A/Y138A pair substitution in the C-td leads to a more cooperative unfolding of both N-td and C-td. The stability of motif 2 in the N-td is mainly determined by the interdomain interface, while motif 1 in the N-td or motifs 3 and 4 in the C-td are mainly stabilized by the intradomain hydrophobic core. The damage to any tyrosine pair(s) can directly introduce some apparent water leakage to the hydrophobic core at the interface, which in turn causes a serious loss in the stability of the N-td. However, for the C-td substitutions, it may further impair the stable "sandwich-like" Y133-R167-Y138 cluster (through cation-? interactions) in the wild-type, thus causing the loop regions near the residue A138 to undergo large fluctuations, which in turn results in the intrusion of water into the hydrophobic core of the C-td and induces the C-td to lose its stability. These findings help resolve the "mystery" on why these two Tyr pairs display such a striking difference in their contributions to the overall protein stability despite their highly homologous nature.
Related JoVE Video
Nanomedicine: de novo design of nanodrugs.
Nanoscale
Show Abstract
Hide Abstract
Phenomenal advances in nanotechnology and nanoscience have been accompanied by exciting progress in de novo design of nanomedicines. Nanoparticles with their large space of structural amenability and excellent mechanical and electrical properties have become ideal candidates for high efficacy nanomedicines in both diagnostics and therapeutics. The therapeutic nanomedicines can be further categorized into nanocarriers for conventional drugs and nanodrugs with direct curing of target diseases. Here we review some of the recent advances in de novo design of nanodrugs, with an emphasis on the molecular level understanding of their interactions with biological systems including key proteins and cell membranes. We also include some of the latest advances in the development of nanocarriers with both passive and active targeting for completeness. These studies may shed light on a better understanding of the molecular mechanisms behind these nanodrugs, and also provide new insights and direction for the future design of nanomedicines.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.