JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
[Tumors of the diaphragm, diagnosis and surgical treatment].
Kyobu Geka
PUBLISHED: 10-09-2014
Show Abstract
Hide Abstract
Primary tumors of the diaphragm are very rare, and we often have difficulties in preoperative diagnosis and accurate evaluation of invasion. We experienced 3 surgical cases of tumor of diaphragm:primary mucinous adenocarcinoma, metastatic gastrointestinal stromal tumor, and mesothelioma. Besides computed tomography (CT) and conventional magnetic resonance imaging(MRI), respiratory dynamic cine magnetic resonance imaging (cine MRI) was performed. Cine MRI was acquired using steady state free precession (SSFP) sequence, and about 80 consecutive images of the same slice were taken while a patient breathed deeply. In all cases, cine MRI showed lack of tumor movement along the diaphragm during respiration. During surgery, we found that tumor was originated from diaphragm and there was no adhesion to other organs. Securing a sufficient margin, we resected tumor including the diaphragm. Since the defect of diaphragm was from 4 to 5cm in short diameter, we could close the diaphragm by direct suture. Cine MRI could provide useful information concerning discrimination between diaphragmatic and para-diaphragmatic tumor.
Related JoVE Video
The adipocyte-inducible secreted phospholipases PLA2G5 and PLA2G2E play distinct roles in obesity.
Cell Metab.
PUBLISHED: 02-19-2014
Show Abstract
Hide Abstract
Metabolic disorders, including obesity and insulin resistance, have their basis in dysregulated lipid metabolism and low-grade inflammation. In a microarray search of unique lipase-related genes whose expressions are associated with obesity, we found that two secreted phospholipase A2s (sPLA2s), PLA2G5 and PLA2G2E, were robustly induced in adipocytes of obese mice. Analyses of Pla2g5(-/-) and Pla2g2e(-/-) mice revealed distinct roles of these sPLA2s in diet-induced obesity. PLA2G5 hydrolyzed phosphatidylcholine in fat-overladen low-density lipoprotein to release unsaturated fatty acids, which prevented palmitate-induced M1 macrophage polarization. As such, PLA2G5 tipped the immune balance toward an M2 state, thereby counteracting adipose tissue inflammation, insulin resistance, hyperlipidemia, and obesity. PLA2G2E altered minor lipoprotein phospholipids, phosphatidylserine and phosphatidylethanolamine, and moderately facilitated lipid accumulation in adipose tissue and liver. Collectively, the identification of "metabolic sPLA2s" adds this gene family to a growing list of lipolytic enzymes that act as metabolic coordinators.
Related JoVE Video
Very-long-chain polyunsaturated fatty acids accumulate in phosphatidylcholine of fibroblasts from patients with Zellweger syndrome and acyl-CoA oxidase1 deficiency.
Biochim. Biophys. Acta
PUBLISHED: 01-02-2014
Show Abstract
Hide Abstract
Peroxisomes are subcellular organelles that function in multiple anabolic and catabolic processes, including ?-oxidation of very-long-chain fatty acids (VLCFA) and biosynthesis of ether phospholipids. Peroxisomal disorders caused by defects in peroxisome biogenesis or peroxisomal ?-oxidation manifest as severe neural disorders of the central nervous system. Abnormal peroxisomal metabolism is thought to be responsible for the clinical symptoms of these diseases, but their molecular pathogenesis remains to be elucidated. We performed lipidomic analysis to identify aberrant metabolites in fibroblasts from patients with Zellweger syndrome (ZS), acyl-CoA oxidase1 (AOx) deficiency, D-bifunctional protein (D-BP) and X-linked adrenoleukodystrophy (X-ALD), as well as in peroxisome-deficient Chinese hamster ovary cell mutants. In cells deficient in peroxisomal biogenesis, plasmenylethanolamine was remarkably reduced and phosphatidylethanolamine was increased. Marked accumulation of very-long-chain saturated fatty acid and monounsaturated fatty acids in phosphatidylcholine was observed in all mutant cells. Very-long-chain polyunsaturated fatty acid (VLC-PUFA) levels were significantly elevated, whilst phospholipids containing docosahexaenoic acid (DHA, C22:6n-3) were reduced in fibroblasts from patients with ZS, AOx deficiency, and D-BP deficiency, but not in fibroblasts from an X-ALD patient. Because patients with AOx deficiency suffer from more severe symptoms than those with X-ALD, accumulation of VLC-PUFA and/or reduction of DHA may be associated with the severity of peroxisomal diseases.
Related JoVE Video
Novel lysophospholipid acyltransferase PLAT1 of Aurantiochytrium limacinum F26-b responsible for generation of palmitate-docosahexaenoate-phosphatidylcholine and phosphatidylethanolamine.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
N-3 polyunsaturated fatty acids (PUFA), such as docosahexaenoic acid (DHA, 22:6n-3), have been reported to play roles in preventing cardiovascular diseases. The major source of DHA is fish oils but a recent increase in the global demand of DHA and decrease in fish stocks require a substitute. Thraustochytrids, unicellular marine protists belonging to the Chromista kingdom, can synthesize large amounts of DHA, and, thus, are expected to be an alternative to fish oils. DHA is found in the acyl chain(s) of phospholipids as well as triacylglycerols in thraustochytrids; however, how thraustochytrids incorporate DHA into phospholipids remains unknown. We report here a novel lysophospholipid acyltransferase (PLAT1), which is responsible for the generation of DHA-containing phosphatidylcholine and phosphatidylethanolamine in thraustochytrids. The PLAT1 gene, which was isolated from the genomic DNA of Aurantiochytrium limacinum F26-b, was expressed in Saccharomyces cerevisiae, and the FLAG-tagged recombinant enzyme was characterized after purification with anti-FLAG affinity gel. PLAT1 shows wide specificity for donor substrates as well as acceptor substrates in vitro, i.e, the enzyme can adopt lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylserine and lysophosphatidylinositol as acceptor substrates, and 15:0/16:0-CoA and DHA-CoA as donor substrates. In contrast to the in vitro experiment, only lysophosphatidylcholine acyltransferase and lysophosphatidylethanolamine acyltransferase activities were decreased in plat1-knockout mutants, resulting in a decrease of 16:0-DHA-phosphatidylcholine (PC) [PC(38:6)] and 16:0-DHA-phosphatidylethanolamine (PE) [PE(38:6)], which are two major DHA-containing phospholipids in A. limacinum F26-b. However, the amounts of other phospholipid species including DHA-DHA-PC [PC(44:12)] and DHA-DHA-PE [PE(44:12)] were almost the same in plat-knockout mutants and the wild-type. These results indicate that PLAT1 is the enzyme responsible for the generation of 16:0-DHA-PC and 16:0-DHA-PE in the thraustochytrid.
Related JoVE Video
Mutation for Nonsyndromic Mental Retardation in the trans-2-Enoyl-CoA Reductase TER Gene Involved in Fatty Acid Elongation Impairs the Enzyme Activity and Stability, Leading to Change in Sphingolipid Profile.
J. Biol. Chem.
PUBLISHED: 11-12-2013
Show Abstract
Hide Abstract
Very long-chain fatty acids (VLCFAs, chain length >C20) exist in tissues throughout the body and are synthesized by repetition of the fatty acid (FA) elongation cycle composed of four successive enzymatic reactions. In mammals, the TER gene is the only gene encoding trans-2-enoyl-CoA reductase, which catalyzes the fourth reaction in the FA elongation cycle. The TER P182L mutation is the pathogenic mutation for nonsyndromic mental retardation. This mutation substitutes a leucine for a proline residue at amino acid 182 in the TER enzyme. Currently, the mechanism by which the TER P182L mutation causes nonsyndromic mental retardation is unknown. To understand the effect of this mutation on the TER enzyme and VLCFA synthesis, we have biochemically characterized the TER P182L mutant enzyme using yeast and mammalian cells transfected with the TER P182L mutant gene and analyzed the FA elongation cycle in the B-lymphoblastoid cell line with the homozygous TER P182L mutation (TER(P182L/P182L) B-lymphoblastoid cell line). We have found that TER P182L mutant enzyme exhibits reduced trans-2-enoyl-CoA reductase activity and protein stability, thereby impairing VLCFA synthesis and, in turn, altering the sphingolipid profile (i.e. decreased level of C24 sphingomyelin and C24 ceramide) in the TER(P182L/P182L) B-lymphoblastoid cell line. We have also found that in addition to the TER enzyme-catalyzed fourth reaction, the third reaction in the FA elongation cycle is affected by the TER P182L mutation. These findings provide new insight into the biochemical defects associated with this genetic mutation.
Related JoVE Video
Postnatal expression of BRAFV600E does not induce thyroid cancer in mouse models of thyroid papillary carcinoma.
Endocrinology
PUBLISHED: 08-22-2013
Show Abstract
Hide Abstract
The mutant BRAF (BRAF(V600E)) is the most common genetic alteration in papillary thyroid carcinomas (PTCs). The oncogenicity of this mutation has been shown by some genetically engineered mouse models. However, in these mice, BRAF(V600E) is expressed in all the thyroid cells from the fetal periods, and suppresses thyroid function, thereby leading to TSH elevation, which by itself promotes thyroid tumorigenesis. To overcome these problems, we exploited 2 different approaches, both of which allowed temporally and spatially restricted expression of BRAF(V600E) in the thyroid glands. First, we generated conditional transgenic mice harboring the loxP-neo(R)-loxP-BRAF(V600E)-internal ribosome entry site-green fluorescent protein sequence [Tg(LNL-BRAF(V600E))]. The double transgenic mice (LNL-BRAF(V600E);TPO-Cre) were derived from a high expressor line of Tg(LNL-BRAF(V600E)) mice and TPO-Cre mice; the latter expresses Cre DNA recombinase under the control of thyroid-specific thyroid peroxidase (TPO) promoter and developed PTC-like lesions in early life under normal serum TSH levels due to mosaic recombination. In contrast, injection of adenovirus expressing Cre under the control of another thyroid-specific thyroglobulin (Tg) promoter (Ad-TgP-Cre) into the thyroids of LNL-BRAF(V600E) mice did not induce tumor formation despite detection of BRAF(V600E) and pERK in a small fraction of thyroid cells. Second, postnatal expression of BRAF(V600E) in a small number of thyroid cells was also achieved by injecting the lentivirus expressing loxP-green fluorescent protein-loxP-BRAF(V600E) into the thyroids of TPO-Cre mice; however, no tumor development was again observed. These results suggest that BRAF(V600E) does not appear to induce PTC-like lesions when expressed in a fraction of thyroid cells postnatally under normal TSH concentrations.
Related JoVE Video
Hypothalamic SIRT1 prevents age-associated weight gain by improving leptin sensitivity in mice.
Diabetologia
PUBLISHED: 07-27-2013
Show Abstract
Hide Abstract
Obesity is associated with ageing and increased energy intake, while restriction of energy intake improves health and longevity in multiple organisms; the NAD(+)-dependent deacetylase sirtuin 1 (SIRT1) is implicated in this process. Pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons in the arcuate nucleus (ARC) of the hypothalamus are critical for energy balance regulation, and the level of SIRT1 protein decreases with age in the ARC. In the current study we tested whether conditional Sirt1 overexpression in mouse POMC or AgRP neurons prevents age-associated weight gain and diet-induced obesity.
Related JoVE Video
Inhibition of ATP citrate lyase induces triglyceride accumulation with altered fatty acid composition in cancer cells.
Int. J. Cancer
PUBLISHED: 07-18-2013
Show Abstract
Hide Abstract
De novo lipogenesis is activated in most cancers, and several lipogenic enzymes have been implicated as therapeutic targets. Here, we demonstrate a novel function of the lipogenic enzyme, ATP citrate lyase (ACLY), in lipid metabolism in cancer cells. ACLY depletion by small interfering RNAs caused growth suppression and/or apoptosis in a subset of cancer cell lines. To investigate the effect of ACLY inhibition on lipid metabolism, metabolome and transcriptome analysis was performed. ACLY depletion blocks the fatty acid chain elongation from C16 to C18 in triglyceride (TG), but not in other lipid classes. Meanwhile, wild type ACLY overexpression enhanced fatty acid elongation of TG, whereas an inactive mutant ACLY did not change it. ACLY depletion-mediated blockade of fatty acid elongation was coincident with down-regulation of long-chain fatty acid elongase ELOVL6, which resides in endoplasmic reticulum (ER). Paradoxically, ACLY depletion-mediated growth suppression was associated with TG accumulation. ACLY depletion down-regulated the expression of carnitine palmitoyltransferase 1A (CPT1A), which is a mitochondrial fatty acid transporter. Consistent with this finding, metabolome analysis revealed that ACLY positively regulates the carnitine system, which plays as an essential cofactor for fatty acid transport across mitochondrial membrane. AICAR, an activator of mitochondrial fatty acid oxidation, significantly reduced ACLY depletion-mediated TG accumulation. These data indicate that inhibition of ACLY might affect both fatty acid elongation in ER and fatty acid oxidation in mitochondria, thereby explaining the TG accumulation with altered fatty acid composition. This phenotype may be a hallmark of growth suppression mediated by ACLY inhibition. © 2013 Wiley Periodicals, Inc.
Related JoVE Video
Molecular Species of Phospholipids with Very Long Chain Fatty Acids in Skin Fibroblasts of Zellweger Syndrome.
Lipids
PUBLISHED: 06-04-2013
Show Abstract
Hide Abstract
The ratio of C26:0/C22:0 fatty acids in patient lipids is widely accepted as a critical clinical criterion of peroxisomal diseases, such as Zellweger syndrome and X-linked adrenoleukodystrophy (X-ALD). However, phospholipid molecular species with very long chain fatty acids (VLCFA) have not been precisely characterized. In the present study, the structures of such molecules in fibroblasts of Zellweger syndrome and X-ALD were examined using LC-ESI-MS/MS analysis. In fibroblasts from Zellweger patients, a large number of VLCFA-containing molecular species were detected in several phospholipid classes as well as neutral lipids, including triacylglycerol and cholesteryl esters. Among these lipids, phosphatidylcholine showed the most diversity in the structures of VLCFA-containing molecular species. Some VLCFA possessed longer carbon chains and/or larger number of double bonds than C26:0-fatty acid (FA). Similar VLCFA were also found in other phospholipid classes, such as phosphatidylethanolamine and phosphatidylserine. In addition, VLCFA-containing phospholipid species showed some differences among fibroblasts from Zellweger patients. It appears that phospholipids with VLCFA, with or without double bonds, as well as C26:0-FA might affect cellular functions, thus leading to the pathogenesis of peroxisomal diseases, such as Zellweger syndrome and X-ALD.
Related JoVE Video
Lymphoid tissue phospholipase A2 group IID resolves contact hypersensitivity by driving antiinflammatory lipid mediators.
J. Exp. Med.
PUBLISHED: 05-20-2013
Show Abstract
Hide Abstract
Resolution of inflammation is an active process that is mediated in part by antiinflammatory lipid mediators. Although phospholipase A2 (PLA2) enzymes have been implicated in the promotion of inflammation through mobilizing lipid mediators, the molecular entity of PLA2 subtypes acting upstream of antiinflammatory lipid mediators remains unknown. Herein, we show that secreted PLA2 group IID (PLA2G2D) is preferentially expressed in CD11c(+) dendritic cells (DCs) and macrophages and displays a pro-resolving function. In hapten-induced contact dermatitis, resolution, not propagation, of inflammation was compromised in skin and LNs of PLA2G2D-deficient mice (Pla2g2d(-/-)), in which the immune balance was shifted toward a proinflammatory state over an antiinflammatory state. Bone marrow-derived DCs from Pla2g2d(-/-) mice were hyperactivated and elicited skin inflammation after intravenous transfer into mice. Lipidomics analysis revealed that PLA2G2D in the LNs contributed to mobilization of a pool of polyunsaturated fatty acids that could serve as precursors for antiinflammatory/pro-resolving lipid mediators such as resolvin D1 and 15-deoxy-?(12,14)-prostaglandin J2, which reduced Th1 cytokine production and surface MHC class II expression in LN cells or DCs. Altogether, our results highlight PLA2G2D as a "resolving sPLA2" that ameliorates inflammation through mobilizing pro-resolving lipid mediators and points to a potential use of this enzyme for treatment of inflammatory disorders.
Related JoVE Video
Impaired epidermal permeability barrier in mice lacking elovl1, the gene responsible for very-long-chain fatty acid production.
Mol. Cell. Biol.
PUBLISHED: 05-20-2013
Show Abstract
Hide Abstract
The sphingolipid backbone ceramide (Cer) is a major component of lipid lamellae in the stratum corneum of epidermis and has a pivotal role in epidermal barrier formation. Unlike Cers in other tissues, Cers in epidermis contain extremely long fatty acids (FAs). Decreases in epidermal Cer levels, as well as changes in their FA chain lengths, cause several cutaneous disorders. However, the molecular mechanisms that produce such extremely long Cers and determine their chain lengths are poorly understood. We generated mice deficient in the Elovl1 gene, which encodes the FA elongase responsible for producing C20 to C28 FAs. Elovl1 knockout mice died shortly after birth due to epidermal barrier defects. The lipid lamellae in the stratum corneum were largely diminished in these mice. In the epidermis of the Elovl1-null mice, the levels of Cers with ?C26 FAs were decreased, while those of Cers with ?C24 FAs were increased. In contrast, the levels of C24 sphingomyelin were reduced, accompanied by an increase in C20 sphingomyelin levels. Two ceramide synthases, CerS2 and CerS3, expressed in an epidermal layer-specific manner, regulate Elovl1 to produce acyl coenzyme As with different chain lengths. Elovl1 is a key determinant of epidermal Cer chain length and is essential for permeability barrier formation.
Related JoVE Video
Mast cell maturation is driven via a group III phospholipase A2-prostaglandin D2-DP1 receptor paracrine axis.
Nat. Immunol.
PUBLISHED: 03-11-2013
Show Abstract
Hide Abstract
Microenvironment-based alterations in phenotypes of mast cells influence the susceptibility to anaphylaxis, yet the mechanisms underlying proper maturation of mast cells toward an anaphylaxis-sensitive phenotype are incompletely understood. Here we report that PLA2G3, a mammalian homolog of anaphylactic bee venom phospholipase A2, regulates this process. PLA2G3 secreted from mast cells is coupled with fibroblastic lipocalin-type PGD2 synthase (L-PGDS) to provide PGD2, which facilitates mast-cell maturation via PGD2 receptor DP1. Mice lacking PLA2G3, L-PGDS or DP1, mast cell-deficient mice reconstituted with PLA2G3-null or DP1-null mast cells, or mast cells cultured with L-PGDS-ablated fibroblasts exhibited impaired maturation and anaphylaxis of mast cells. Thus, we describe a lipid-driven PLA2G3-L-PGDS-DP1 loop that drives mast cell maturation.
Related JoVE Video
TLR4-MD-2 complex is negatively regulated by an endogenous ligand, globotetraosylceramide.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 03-05-2013
Show Abstract
Hide Abstract
Although endogenous ligands for Toll-like receptor (TLR)4-myeloid differentiation factor 2 (MD2) have not been well-understood, we here report that a globo-series glycosphingolipid, globotetraosylceramide (Gb4), attenuates the toxicity of lipopolysaccharides (LPSs) by binding to TLR4-MD-2. Because ?1,4-galactosyltransferase (A4galt)-deficient mice lacking globo-series glycosphingolipids showed higher sensitivity to LPS than wild-type mice, we examined mechanisms by which globo-series glycosphingolipids attenuate LPS toxicity. Cultured endothelial cells lacking A4galt showed higher expression of LPS-inducible genes upon LPS treatment. In turn, introduction of A4galt cDNA resulted in the neo expression of Gb4, leading to the reduced expression of LPS-inducible genes. Exogenous Gb4 induced similar effects. As a mechanism for the suppressive effects of Gb4 on LPS signals, specific binding of Gb4 to the LPS receptor TLR4-MD-2 was demonstrated by coprecipitation of Gb4 with recombinant MD-2 and by native PAGE. A docking model also supported these data. Taken together with colocalization of TLR4-MD-2 with Gb4 in lipid rafts after LPS stimulation, it was suggested that Gb4 competes with LPS for binding to TLR4-MD-2. Finally, administration of Gb4 significantly protected mice from LPS-elicited mortality. These results suggest that Gb4 is an endogenous ligand for TLR4-MD-2 and is capable of attenuating LPS toxicity, indicating the possibility for its therapeutic application in endotoxin shock.
Related JoVE Video
Lipidomic analysis of brain tissues and plasma in a mouse model expressing mutated human amyloid precursor protein/tau for Alzheimers disease.
Lipids Health Dis
PUBLISHED: 02-18-2013
Show Abstract
Hide Abstract
Alzheimers disease (AD), the most common cause of dementia among neurodegenerative diseases, afflicts millions of elderly people worldwide. In addition to amyloid-beta (A?) peptide and phosphorylated tau, lipid dysregulation is suggested to participate in AD pathogenesis. However, alterations in individual lipid species and their role in AD disease progression remain unclear.
Related JoVE Video
The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza.
Cell
PUBLISHED: 02-13-2013
Show Abstract
Hide Abstract
Influenza A viruses are a major cause of mortality. Given the potential for future lethal pandemics, effective drugs are needed for the treatment of severe influenza such as that caused by H5N1 viruses. Using mediator lipidomics and bioactive lipid screen, we report that the omega-3 polyunsaturated fatty acid (PUFA)-derived lipid mediator protectin D1 (PD1) markedly attenuated influenza virus replication via RNA export machinery. Production of PD1 was suppressed during severe influenza and PD1 levels inversely correlated with the pathogenicity of H5N1 viruses. Suppression of PD1 was genetically mapped to 12/15-lipoxygenase activity. Importantly, PD1 treatment improved the survival and pathology of severe influenza in mice, even under conditions where known antiviral drugs fail to protect from death. These results identify the endogenous lipid mediator PD1 as an innate suppressor of influenza virus replication that protects against lethal influenza virus infection.
Related JoVE Video
Determination and physiological roles of the glycosylphosphatidylinositol lipid remodelling pathway in yeast.
Mol. Microbiol.
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
In the yeast Saccharomyces cerevisiae, glycosylphosphatidylinositol (GPI)-anchored proteins play important roles in cell wall biogenesis/assembly and the formation of lipid microdomains. The lipid moieties of mature GPI-anchored proteins in yeast typically contain either ceramide moieties or diacylglycerol. Recent studies have identified that the GPI phospholipase A2 Per1p and O-acyltransferase Gup1p play essential roles in diacylglycerol-type lipid remodelling of GPI-anchored proteins, while Cwh43p is involved in the remodelling of lipid moieties to ceramide. It has been generally proposed that phosphatidylinositol with diacylglycerol containing a C26 saturated fatty acid, which is generated by the sequential activity of Per1p and Gup1p, is converted to inositolphosphoryl-ceramide by Cwh43p. In this report, we constructed double-mutant strains defective in lipid remodelling and investigated their growth phenotypes and the lipid moieties of GPI-anchored proteins. Based on our analyses of single- and double-mutants of proteins involved in lipid remodelling, we demonstrate that an alternative pathway, in which lyso-phosphatidylinositol generated by Per1p is used as a substrate for Cwh43p, is involved in the remodelling of GPI lipid moieties to ceramide when the normal sequential pathway is inhibited. In addition, mass spectrometric analysis of lipid species of Flag-tagged Gas1p revealed that Gas1p contains ceramide moieties in its GPI anchor.
Related JoVE Video
Global metabolomic analysis of heart tissue in a hamster model for dilated cardiomyopathy.
J. Mol. Cell. Cardiol.
PUBLISHED: 01-08-2013
Show Abstract
Hide Abstract
Dilated cardiomyopathy (DCM), a common cause of heart failure, is characterized by cardiac dilation and reduced left ventricular ejection fraction, but the underlying mechanisms remain unclear. To investigate the mechanistic basis, we performed global metabolomic analysis of myocardial tissues from the left ventricles of J2N-k cardiomyopathic hamsters. This model exhibits symptoms similar to those of human DCM, owing to the deletion of the ?-sarcoglycan gene. Charged and lipid metabolites were measured by capillary electrophoresis mass spectrometry (MS) and liquid chromatography MS(/MS), respectively, and J2N-k hamsters were compared with J2N-n healthy controls at 4 (presymptomatic phase) and 16weeks (symptomatic) of age. Disturbances in membrane phospholipid homeostasis were initiated during the presymptomatic phase. Significantly different levels of charged metabolites, occurring mainly in the symptomatic phase, were mapped to primary metabolic pathways. Reduced levels of metabolites in glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, together with large decreases in major triacylglycerol levels, suggested that decreased energy production leads to cardiac contractile dysfunction in the symptomatic phase. A mild reduction in glutathione and a compensatory increase in ophthalmate levels suggest increased oxidative stress in diseased tissues, which was confirmed by histochemical staining. Increased levels of 4 eicosanoids, including prostaglandin (PG) E2 and 6-keto-PGF1?, in the symptomatic phase suggested activation of the protective response pathways. These results provide mechanistic insights into DCM pathogenesis and may help identify new targets for therapeutic intervention and diagnosis.
Related JoVE Video
Novel regulation of cardiac metabolism and homeostasis by the adrenomedullin-receptor activity-modifying protein 2 system.
Hypertension
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
Adrenomedullin (AM) was identified as a vasodilating and hypotensive peptide mainly produced by the cardiovascular system. The AM receptor calcitonin receptor-like receptor associates with receptor activity-modifying protein (RAMP), one of the subtypes of regulatory proteins. Among knockout mice ((-/-)) of RAMPs, only RAMP2(-/-) is embryonically lethal with cardiovascular abnormalities that are the same as AM(-/-). This suggests that the AM-RAMP2 system is particularly important for the cardiovascular system. Although AM and RAMP2 are highly expressed in the heart from embryo to adulthood, their analysis has been limited by the embryonic lethality of AM(-/-) and RAMP2(-/-). For this study, we generated inducible cardiac myocyte-specific RAMP2(-/-) (C-RAMP2(-/-)). C-RAMP2(-/-) exhibited dilated cardiomyopathy-like heart failure with cardiac dilatation and myofibril disruption. C-RAMP2(-/-) hearts also showed changes in mitochondrial structure and downregulation of mitochondria-related genes involved in oxidative phosphorylation, ?-oxidation, and reactive oxygen species regulation. Furthermore, the heart failure was preceded by changes in peroxisome proliferator-activated receptor-? coactivator 1? (PGC-1?), a master regulator of mitochondrial biogenesis. Metabolome and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) imaging analyses revealed early downregulation of cardiolipin, a mitochondrial membrane-specific lipid. Furthermore, primary-cultured cardiac myocytes from C-RAMP2(-/-) showed reduced mitochondrial membrane potential and enhanced reactive oxygen species production in a RAMP2 deletion-dependent manner. C-RAMP2(-/-) showed downregulated activation of cAMP response element binding protein (CREB), one of the main regulators of mitochondria-related genes. These data demonstrate that the AM-RAMP2 system is essential for cardiac metabolism and homeostasis. The AM-RAMP2 system is a promising therapeutic target of heart failure.
Related JoVE Video
Inhibition of ATP citrate lyase induces an anticancer effect via reactive oxygen species: AMPK as a predictive biomarker for therapeutic impact.
Am. J. Pathol.
PUBLISHED: 01-03-2013
Show Abstract
Hide Abstract
De novo lipogenesis is activated in most cancers. Inhibition of ATP citrate lyase (ACLY), the enzyme that catalyzes the first step of de novo lipogenesis, leads to growth suppression and apoptosis in a subset of human cancer cells. Herein, we found that ACLY depletion increases the level of intracellular reactive oxygen species (ROS), whereas addition of an antioxidant reduced ROS and attenuated the anticancer effect. ACLY depletion or exogenous hydrogen peroxide induces phosphorylation of AMP-activated protein kinase (p-AMPK), a crucial regulator of lipid metabolism, independently of energy status. Analysis of various cancer cell lines revealed that cancer cells with a higher susceptibility to ACLY depletion have lower levels of basal ROS and p-AMPK. Mitochondrial-deficient ?(0) cells retained high levels of ROS and p-AMPK and were resistant to ACLY depletion, whereas the replenishment of normal mitochondrial DNA reduced the levels of ROS and p-AMPK and restored the sensitivity to ACLY depletion, indicating that low basal levels of mitochondrial ROS are critical for the anticancer effect of ACLY depletion. Finally, p-AMPK levels were significantly correlated to the levels of oxidative DNA damage in colon cancer tissues, suggesting that p-AMPK reflects cellular ROS levels in vitro and in vivo. Together, these data suggest that ACLY inhibition exerts an anticancer effect via increased ROS, and p-AMPK could be a predictive biomarker for its therapeutic outcome.
Related JoVE Video
IL1RAPL1 associated with mental retardation and autism regulates the formation and stabilization of glutamatergic synapses of cortical neurons through RhoA signaling pathway.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Interleukin-1 receptor accessory protein-like 1 (IL1RAPL1) is associated with X-linked mental retardation and autism spectrum disorder. We found that IL1RAPL1 regulates synapse formation of cortical neurons. To investigate how IL1RAPL1 controls synapse formation, we here screened IL1RAPL1-interacting proteins by affinity chromatography and mass spectroscopy. IL1RAPL1 interacted with Mcf2-like (Mcf2l), a Rho guanine nucleotide exchange factor, through the cytoplasmic Toll/IL-1 receptor domain. Knockdown of endogenous Mcf2l and treatment with an inhibitor of Rho-associated protein kinase (ROCK), the downstream kinase of RhoA, suppressed IL1RAPL1-induced excitatory synapse formation of cortical neurons. Furthermore, we found that the expression of IL1RAPL1 affected the turnover of AMPA receptor subunits. Insertion of GluA1-containing AMPA receptors to the cell surface was decreased, whereas that of AMPA receptors composed of GluA2/3 was enhanced. Mcf2l knockdown and ROCK inhibitor treatment diminished the IL1RAPL1-induced changes of AMPA receptor subunit insertions. Our results suggest that Mcf2l-RhoA-ROCK signaling pathway mediates IL1RAPL1-dependent formation and stabilization of glutamatergic synapses of cortical neurons.
Related JoVE Video
Increased oxidative stress impairs adipose tissue function in sphingomyelin synthase 1 null mice.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Sphingomyelin synthase 1 (SMS1) catalyzes the conversion of ceramide to sphingomyelin. Here, we found that SMS1 null mice showed lipodystrophic phenotype. Mutant mice showed up-regulation of plasma triglyceride concentrations accompanied by reduction of white adipose tissue (WAT) as they aged. Lipoprotein lipase (LPL) activity was severely reduced in mutant mice. In vivo analysis indicated that fatty acid uptake in WAT but not in liver decreased in SMS1 null compared to wild-type mice. In vitro analysis using cultured cell revealed that SMS1 depletion reduced fatty acid uptake. Proteins extracted from WAT of mutant mice were severely modified by oxidative stress, and up-regulation of mRNAs related to apoptosis, redox adjustment, mitochondrial stress response and mitochondrial biogenesis was observed. ATP content of WAT was reduced in SMS1 null mice. Blue native gel analysis indicated that accumulation of mitochondrial respiratory chain complexes was reduced. These results suggest that WAT of SMS1 null mice is severely damaged by oxidative stress and barely functional. Indeed, mutant mice treated with the anti-oxidant N-acetyl cysteine (NAC) showed partial recovery of lipodystrophic phenotypes together with normalized plasma triglyceride concentrations. Altogether, our data suggest that SMS1 is crucial to control oxidative stress in order to maintain WAT function.
Related JoVE Video
Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1).
J. Biol. Chem.
PUBLISHED: 11-09-2011
Show Abstract
Hide Abstract
A fungus-specific glucosylceramide (GlcCer), which contains a unique sphingoid base possessing two double bonds and a methyl substitution, is essential for pathogenicity in fungi. Although the biosynthetic pathway of the GlcCer has been well elucidated, little is known about GlcCer catabolism because a GlcCer-degrading enzyme (glucocerebrosidase) has yet to be identified in fungi. We found a homologue of endoglycoceramidase tentatively designated endoglycoceramidase-related protein 1 (EGCrP1) in several fungal genomic databases. The recombinant EGCrP1 hydrolyzed GlcCer but not other glycosphingolipids, whereas endoglycoceramidase hydrolyzed oligosaccharide-linked glycosphingolipids but not GlcCer. Disruption of egcrp1 in Cryptococcus neoformans, a typical pathogenic fungus causing cryptococcosis, resulted in the accumulation of fungus-specific GlcCer and immature GlcCer that possess sphingoid bases without a methyl substitution concomitant with a dysfunction of polysaccharide capsule formation. These results indicated that EGCrP1 participates in the catabolism of GlcCer and especially functions to eliminate immature GlcCer in vivo that are generated as by-products due to the broad specificity of GlcCer synthase. We conclude that EGCrP1, a glucocerebrosidase identified for the first time in fungi, controls the quality of GlcCer by eliminating immature GlcCer incorrectly generated in C. neoformans, leading to accurate processing of fungus-specific GlcCer.
Related JoVE Video
Haploinsufficient and predominant expression of multiple endocrine neoplasia type 1 (MEN1)-related genes, MLL, p27Kip1 and p18Ink4C in endocrine organs.
Biochem. Biophys. Res. Commun.
PUBLISHED: 10-01-2011
Show Abstract
Hide Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominantly inherited syndrome characterized by parathyroid, gastro-entero-pancreatic and anterior pituitary tumors. Although the tissue selectivity of tumors in specific endocrine organs is the very essence of MEN1, the mechanisms underlying the tissue-selectivity of tumors remain unknown. The product of the Men1 gene, menin, and mixed lineage leukemia (MLL) have been found to cooperatively regulate p27(Kip1)/CDKN1B (p27) and p18(Ink4C)/CDKN2C (p18) genes. However, there are no reports on the tissue distribution of these MEN1-related genes. We investigated the expression of these genes in the endocrine and non-endocrine organs of wild-type, Men1 knockout and MLL knockout mice. Men1 mRNA was expressed at a similar level in endocrine and non-endocrine organs. However, MLL, p27 and p18 mRNAs were predominantly expressed in the endocrine organs. Notably, p27 and MLL mRNAs were expressed in the pituitary gland at levels approximately 12- and 17-fold higher than those in the liver. The heterozygotes of Men1 knockout mice the levels of MLL, p27 and p18 mRNAs did not differ from those in the wild-type mice. In contrast, heterozygotes of MLL knockout mice showed significant reductions in p27 mRNA as well as protein levels in the pituitary and p27 and p18 in the pancreatic islets, but not in the liver. This study demonstrated for the first time the predominant expression MEN1-related genes, particularly MLL and p27, in the endocrine organs, and a tissue-specific haploinsuffiency of MLL, but not menin, may lead to a decrease in levels of p27 and p18 mRNAs in endocrine organs. These findings may provide basic information for understanding the mechanisms of tissue selectivity of the tumorigenesis in patients with MEN1.
Related JoVE Video
IL-1 receptor accessory protein-like 1 associated with mental retardation and autism mediates synapse formation by trans-synaptic interaction with protein tyrosine phosphatase ?.
J. Neurosci.
PUBLISHED: 09-24-2011
Show Abstract
Hide Abstract
Mental retardation (MR) and autism are highly heterogeneous neurodevelopmental disorders. IL-1-receptor accessory protein-like 1 (IL1RAPL1) is responsible for nonsyndromic MR and is associated with autism. Thus, the elucidation of the functional role of IL1RAPL1 will contribute to our understanding of the pathogenesis of these mental disorders. Here, we showed that knockdown of endogenous IL1RAPL1 in cultured cortical neurons suppressed the accumulation of punctate staining signals for active zone protein Bassoon and decreased the number of dendritic protrusions. Consistently, the expression of IL1RAPL1 in cultured neurons stimulated the accumulation of Bassoon and spinogenesis. The extracellular domain (ECD) of IL1RAPL1 was required and sufficient for the presynaptic differentiation-inducing activity, while both the ECD and cytoplasmic domain were essential for the spinogenic activity. Notably, the synaptogenic activity of IL1RAPL1 was specific for excitatory synapses. Furthermore, we identified presynaptic protein tyrosine phosphatase (PTP) ? as a major IL1RAPL1-ECD interacting protein by affinity chromatography. IL1RAPL1 interacted selectively with certain forms of PTP? splice variants carrying mini-exon peptides in Ig-like domains. The synaptogenic activity of IL1RAPL1 was abolished in primary neurons from PTP? knock-out mice. IL1RAPL1 showed robust synaptogenic activity in vivo when transfected into the cortical neurons of wild-type mice but not in PTP? knock-out mice. These results suggest that IL1RAPL1 mediates synapse formation through trans-synaptic interaction with PTP?. Our findings raise an intriguing possibility that the impairment of synapse formation may underlie certain forms of MR and autism as a common pathogenic pathway shared by these mental disorders.
Related JoVE Video
Analysis of two major intracellular phospholipases A(2) (PLA(2)) in mast cells reveals crucial contribution of cytosolic PLA(2)?, not Ca(2+)-independent PLA(2)?, to lipid mobilization in proximal mast cells and distal fibroblasts.
J. Biol. Chem.
PUBLISHED: 08-31-2011
Show Abstract
Hide Abstract
Mast cells release a variety of mediators, including arachidonic acid (AA) metabolites, to regulate allergy, inflammation, and host defense, and their differentiation and maturation within extravascular microenvironments depend on the stromal cytokine stem cell factor. Mouse mast cells express two major intracellular phospholipases A(2) (PLA(2)s), namely group IVA cytosolic PLA(2) (cPLA(2)?) and group VIA Ca(2+)-independent PLA(2) (iPLA(2)?), and the role of cPLA(2)? in eicosanoid synthesis by mast cells has been well documented. Lipidomic analyses of mouse bone marrow-derived mast cells (BMMCs) lacking cPLA(2)? (Pla2g4a(-/-)) or iPLA(2)? (Pla2g6(-/-)) revealed that phospholipids with AA were selectively hydrolyzed by cPLA(2)?, not by iPLA(2)?, during Fc?RI-mediated activation and even during fibroblast-dependent maturation. Neither Fc?RI-dependent effector functions nor maturation-driven phospholipid remodeling was impaired in Pla2g6(-/-) BMMCs. Although BMMCs did not produce prostaglandin E(2) (PGE(2)), the AA released by cPLA(2)? from BMMCs during maturation was converted to PGE(2) by microsomal PGE synthase-1 (mPGES-1) in cocultured fibroblasts, and accordingly, Pla2g4a(-/-) BMMCs promoted microenvironmental PGE(2) synthesis less efficiently than wild-type BMMCs both in vitro and in vivo. Mice deficient in mPGES-1 (Ptges(-/-)) had an augmented local anaphylactic response. These results suggest that cPLA(2)? in mast cells is functionally coupled, through the AA transfer mechanism, with stromal mPGES-1 to provide anti-anaphylactic PGE(2). Although iPLA(2)? is partially responsible for PGE(2) production by macrophages and dendritic cells, it is dispensable for mast cell maturation and function.
Related JoVE Video
Overexpression of KLF15 transcription factor in adipocytes of mice results in down-regulation of SCD1 protein expression in adipocytes and consequent enhancement of glucose-induced insulin secretion.
J. Biol. Chem.
PUBLISHED: 08-23-2011
Show Abstract
Hide Abstract
Krüppel-like factor 15 (KLF15), a member of the Krüppel-like factor family of transcription factors, has been found to play diverse roles in adipocytes in vitro. However, little is known of the function of KLF15 in adipocytes in vivo. We have now found that the expression of KLF15 in adipose tissue is down-regulated in obese mice, and we therefore generated adipose tissue-specific KLF15 transgenic (aP2-KLF15 Tg) mice to investigate the possible contribution of KLF15 to various pathological conditions associated with obesity in vivo. The aP2-KLF15 Tg mice manifest insulin resistance and are resistant to the development of obesity induced by maintenance on a high fat diet. However, they also exhibit improved glucose tolerance as a result of enhanced insulin secretion. Furthermore, this enhancement of insulin secretion was shown to result from down-regulation of the expression of stearoyl-CoA desaturase 1 (SCD1) in white adipose tissue and a consequent reduced level of oxidative stress. This is supported by the findings that restoration of SCD1 expression in white adipose tissue of aP2-KLF15 Tg mice exhibited increased oxidative stress in white adipose tissue and reduced insulin secretion with hyperglycemia. Our data thus provide an example of cross-talk between white adipose tissue and pancreatic ? cells mediated through modulation of oxidative stress.
Related JoVE Video
Cardiovascular complications of patients with aldosteronism associated with autonomous cortisol secretion.
J. Clin. Endocrinol. Metab.
PUBLISHED: 05-18-2011
Show Abstract
Hide Abstract
Primary aldosteronism (PA) is sometimes associated with the autonomous secretion of cortisol.
Related JoVE Video
p125/Sec23-interacting protein (Sec23ip) is required for spermiogenesis.
FEBS Lett.
PUBLISHED: 04-12-2011
Show Abstract
Hide Abstract
p125/Sec23ip is a phospholipase A(1)-like protein that interacts with Sec23, a coat component of COPII vesicles that bud from endoplasmic reticulum exit sites. To understand its physiological function, we produced p125 knockout mice. The p125 knockout mice grew normally, but males were subfertile. Sperm from p125-deficient mice had round heads and lacked the acrosome, an organelle containing the enzymes responsible for fertilization. p125 was found to be expressed at stages I-XII of spermatogenesis, similar to the expression pattern of proteins involved in acrosome biogenesis. These results suggest that p125 plays an important role in spermiogenesis.
Related JoVE Video
Attenuated expression of menin and p27 (Kip1) in an aggressive case of multiple endocrine neoplasia type 1 (MEN1) associated with an atypical prolactinoma and a malignant pancreatic endocrine tumor.
Endocr. J.
PUBLISHED: 03-25-2011
Show Abstract
Hide Abstract
Tumors in multiple endocrine neoplasia type 1 (MEN1) are generally benign. Since information on the pathogenesis of MEN1 in malignant cases is limited, we conducted genetic analysis and compared the expression of menin, p27(Kip1)(p27)/CDKN1B and p18(Ink4C)(p18)/CDKN2C with levels in benign cases. We describe the case of a 56 year-old male with an atypical prolactinoma and malignant pancreatic neuroenocrine tumor. At age 50, he had undergone transsphenoidal surgery to remove a prolactinoma. However, the tumor relapsed twice. Histological analysis of the recurrent prolactinoma revealed the presence of prolactin, a high MIB-1 index (32.1 %), p53-positive cells (0.2%), and an unusual association with FSH-positive cells. A few years later, he was also found to have a non-functioning pancreatic tumor with probable metastasis to the extradullar region. The metastatic region tested positive for chromogranin and CD56, and negative for prolactin, with 1.2 % of cells p53-positive. Although genetic analyses of the MEN1, p27, and p18 genes demonstrated no mutation, numbers of menin, p27 and p18 immuno-positive cells were significantly down-regulated in the recurrent prolactinoma, but that of p18 was intact in the metastatic region. Furthermore, MEN1 and p27 mRNA levels of the recurrent prolactinoma were down-regulated, particularly the MEN1 mRNA level, compared to levels in 10 cases of benign prolactinoma, while the p18 mRNA level was similar to that of normal pituitary. The tumor in this case may be a subtype of MEN1 showing more aggressive and malignant features probably induced by low levels of menin and p27.
Related JoVE Video
A congenital muscular dystrophy with mitochondrial structural abnormalities caused by defective de novo phosphatidylcholine biosynthesis.
Am. J. Hum. Genet.
PUBLISHED: 03-21-2011
Show Abstract
Hide Abstract
Congenital muscular dystrophy is a heterogeneous group of inherited muscle diseases characterized clinically by muscle weakness and hypotonia in early infancy. A number of genes harboring causative mutations have been identified, but several cases of congenital muscular dystrophy remain molecularly unresolved. We examined 15 individuals with a congenital muscular dystrophy characterized by early-onset muscle wasting, mental retardation, and peculiar enlarged mitochondria that are prevalent toward the periphery of the fibers but are sparse in the center on muscle biopsy, and we have identified homozygous or compound heterozygous mutations in the gene encoding choline kinase beta (CHKB). This is the first enzymatic step in a biosynthetic pathway for phosphatidylcholine, the most abundant phospholipid in eukaryotes. In muscle of three affected individuals with nonsense mutations, choline kinase activities were undetectable, and phosphatidylcholine levels were decreased. We identified the human disease caused by disruption of a phospholipid de novo biosynthetic pathway, demonstrating the pivotal role of phosphatidylcholine in muscle and brain.
Related JoVE Video
Visualization of spatiotemporal energy dynamics of hippocampal neurons by mass spectrometry during a kainate-induced seizure.
PLoS ONE
PUBLISHED: 02-18-2011
Show Abstract
Hide Abstract
We report the use of matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry combined with capillary electrophoresis (CE) mass spectrometry to visualize energy metabolism in the mouse hippocampus by imaging energy-related metabolites. We show the distribution patterns of ATP, ADP, and AMP in the hippocampus as well as changes in their amounts and distribution patterns in a murine model of limbic, kainate-induced seizure. As an acute response to kainate administration, we found massive and moderate reductions in ATP and ADP levels, respectively, but no significant changes in AMP levels--especially in cells of the CA3 layer. The results suggest the existence of CA3 neuron-selective energy metabolism at the anhydride bonds of ATP and ADP in the hippocampal neurons during seizure. In addition, metabolome analysis of energy synthesis pathways indicates accelerated glycolysis and possibly TCA cycle activity during seizure, presumably due to the depletion of ATP. Consistent with this result, the observed energy depletion significantly recovered up to 180 min after kainate administration. However, the recovery rate was remarkably low in part of the data-pixel population in the CA3 cell layer region, which likely reflects acute and CA3-selective neural death. Taken together, the present approach successfully revealed the spatiotemporal energy metabolism of the mouse hippocampus at a cellular resolution--both quantitatively and qualitatively. We aim to further elucidate various metabolic processes in the neural system.
Related JoVE Video
Hair follicular expression and function of group X secreted phospholipase A2 in mouse skin.
J. Biol. Chem.
PUBLISHED: 01-25-2011
Show Abstract
Hide Abstract
Although perturbed lipid metabolism can often lead to skin abnormality, the role of phospholipase A(2) (PLA(2)) in skin homeostasis is poorly understood. In the present study we found that group X-secreted PLA(2) (sPLA(2)-X) was expressed in the outermost epithelium of hair follicles in synchrony with the anagen phase of hair cycling. Transgenic mice overexpressing sPLA(2)-X (PLA2G10-Tg) displayed alopecia, which was accompanied by hair follicle distortion with reduced expression of genes related to hair development, during a postnatal hair cycle. Additionally, the epidermis and sebaceous glands of PLA2G10-Tg skin were hyperplasic. Proteolytic activation of sPLA(2)-X in PLA2G10-Tg skin was accompanied by preferential hydrolysis of phosphatidylethanolamine species with polyunsaturated fatty acids as well as elevated production of some if not all eicosanoids. Importantly, the skin of Pla2g10-deficient mice had abnormal hair follicles with noticeable reduction in a subset of hair genes, a hypoplasic outer root sheath, a reduced number of melanin granules, and unexpected up-regulation of prostanoid synthesis. Collectively, our study highlights the spatiotemporal expression of sPLA(2)-X in hair follicles, the presence of skin-specific machinery leading to sPLA(2)-X activation, a functional link of sPLA(2)-X with hair follicle homeostasis, and compartmentalization of the prostanoid pathway in hair follicles and epidermis.
Related JoVE Video
Physiological roles of group X-secreted phospholipase A2 in reproduction, gastrointestinal phospholipid digestion, and neuronal function.
J. Biol. Chem.
PUBLISHED: 01-25-2011
Show Abstract
Hide Abstract
Although the secreted phospholipase A(2) (sPLA(2)) family has been generally thought to participate in pathologic events such as inflammation and atherosclerosis, relatively high and constitutive expression of group X sPLA(2) (sPLA(2)-X) in restricted sites such as reproductive organs, the gastrointestinal tract, and peripheral neurons raises a question as to the roles played by this enzyme in the physiology of reproduction, digestion, and the nervous system. Herein we used mice with gene disruption or transgenic overexpression of sPLA(2)-X to clarify the homeostatic functions of this enzyme at these locations. Our results suggest that sPLA(2)-X regulates 1) the fertility of spermatozoa, not oocytes, beyond the step of flagellar motility, 2) gastrointestinal phospholipid digestion, perturbation of which is eventually linked to delayed onset of a lean phenotype with reduced adiposity, decreased plasma leptin, and improved muscle insulin tolerance, and 3) neuritogenesis of dorsal root ganglia and the duration of peripheral pain nociception. Thus, besides its inflammatory action proposed previously, sPLA(2)-X participates in physiologic processes including male fertility, gastrointestinal phospholipid digestion linked to adiposity, and neuronal outgrowth and sensing.
Related JoVE Video
Triacylglycerol/phospholipid molecular species profiling of fatty livers and regenerated non-fatty livers in cystathionine beta-synthase-deficient mice, an animal model for homocysteinemia/homocystinuria.
Anal Bioanal Chem
PUBLISHED: 01-18-2011
Show Abstract
Hide Abstract
Fatty liver is one of the typical manifestations in homocysteinemia/homocystinuria patients and their genetic animal model, mice lacking cystathionine ?-synthase (Cbs(-/-)). The vast majority of Cbs(-/-) die within 4 weeks after birth via yet unknown mechanisms, whereas a small portion survive to adulthood, escaping fatty degeneration of the liver during lactation periods, through regeneration. To investigate the molecular basis of such fatty changes, we analyzed lipid components in fatty livers of 2-week-old Cbs(-/-) and regenerated non-fatty livers of 8-week-old Cbs(-/-) survivors using a chip-based nanoESI (electrospray ionization)-MS system, which allows quantitative detection of triacylglycerol/phospholipid molecular species. Hepatic levels of all major triacylglycerol species were much higher in Cbs(-/-) than in wild-type mice at 2 weeks, although not at 8 weeks. Levels of some phospholipid species were either up- or downregulated in 2-week-old Cbs(-/-); e.g. saturated (16:0 and 18:0) or mono-unsaturated (16:1 and 18:1) fatty acids-containing phosphatidylcholine/phosphatidylethanolamine species were upregulated, while poly-unsaturated fatty acids-containing phosphatidylcholine (18:2-18:2 and 18:2-20:5), phosphatidylethanolamine (18:1-20:4), and phosphatidylinositol (18:0-20:4) were downregulated. Capillary electrophoresis-MS analysis identified high-level accumulation of S-adenosylmethionine and S-adenosylhomocysteine in fatty livers of 2-week-old Cbs(-/-) but much less in non-fatty livers of 8-week-old Cbs(-/-). Although hepatic S-adenosylmethionine/S-adenosylhomocysteine ratios were comparable between 2-week-old Cbs(-/-) and wild-type, global protein arginine methylation was disturbed in fatty livers of Cbs(-/-). Our results suggest that cellular signaling mediated by altered phospholipid contents might be involved in pathogenesis of fatty liver in Cbs(-/-).
Related JoVE Video
Salamander retina phospholipids and their localization by MALDI imaging mass spectrometry at cellular size resolution.
J. Lipid Res.
PUBLISHED: 12-13-2010
Show Abstract
Hide Abstract
Salamander large cells facilitated identification and localization of lipids by MALDI imaging mass spectrometry. Salamander retina lipid extract showed similarity with rodent retina lipid extract in phospholipid content and composition. Like rodent retina section, distinct layer distributions of phospholipids were observed in the salamander retina section. Phosphatidylcholines (PCs) composing saturated and monounsaturated fatty acids (PC 32:0, PC 32:1, and PC 34:1) were detected mainly in the outer and inner plexiform layers (OPL and IPL), whereas PCs containing polyunsaturated fatty acids (PC 36:4, PC 38:6, and PC 40:6) composed the inner segment (IS) and outer segment (OS). The presence of PCs containing polyunsaturated fatty acids in the OS layer implied that these phospholipids form flexible lipid bilayers, which facilitate phototransduction process occurring in the rhodopsin rich OS layer. Distinct distributions and relative signal intensities of phospholipids also indicated their relative abundance in a particular cell or a cell part. Using salamander large cells, a single cell level localization and identification of biomolecules could be achieved by MALDI imaging mass spectrometry.
Related JoVE Video
Mitochondrial dysfunction and increased reactive oxygen species impair insulin secretion in sphingomyelin synthase 1-null mice.
J. Biol. Chem.
PUBLISHED: 11-29-2010
Show Abstract
Hide Abstract
Sphingomyelin synthase 1 (SMS1) catalyzes the conversion of ceramide to sphingomyelin. Here, we generated and analyzed SMS1-null mice. SMS1-null mice exhibited moderate neonatal lethality, reduced body weight, and loss of fat tissues mass, suggesting that they might have metabolic abnormality. Indeed, analysis on glucose metabolism revealed that they showed severe deficiencies in insulin secretion. Isolated mutant islets exhibited severely impaired ability to release insulin, dependent on glucose stimuli. Further analysis indicated that mitochondria in mutant islet cells cannot up-regulate ATP production in response to glucose. We also observed additional mitochondrial abnormalities, such as hyperpolarized membrane potential and increased levels of reactive oxygen species (ROS) in mutant islets. Finally, when SMS1-null mice were treated with the anti-oxidant N-acetyl cysteine, we observed partial recovery of insulin secretion, indicating that ROS overproduction underlies pancreatic ?-cell dysfunction in SMS1-null mice. Altogether, our data suggest that SMS1 is important for controlling ROS generation, and that SMS1 is required for normal mitochondrial function and insulin secretion in pancreatic ?-cells.
Related JoVE Video
Eosinophils promote resolution of acute peritonitis by producing proresolving mediators in mice.
FASEB J.
PUBLISHED: 10-19-2010
Show Abstract
Hide Abstract
Acute inflammation in healthy individuals is self-limiting and has an active termination program. The mechanisms by which acute inflammation is resolved are of interest. In murine zymosan-induced peritonitis, we found that eosinophils are recruited to the inflamed loci during the resolution phase of acute inflammation. In vivo depletion of eosinophils caused a resolution deficit, namely impaired lymphatic drainage with reduced appearance of phagocytes carrying engulfed zymosan in the draining lymph node, and sustained numbers of polymorphonuclear leukocytes in inflamed tissues. Liquid chromatography-tandem mass spectrometry-based lipidomics of the resolving exudates revealed that locally activated eosinophils in the resolution phase produced proresolving mediators, including protectin D1 (PD1) from docosahexaenoic acid. The resolution deficit caused by eosinophil depletion was rescued by eosinophil restoration or the administration of PD1. Eosinophils deficient in 12/15-lipoxygenase could not rescue the resolution phenotype. The present results indicate that mouse eosinophils and eosinophil-derived lipid mediators, including PD1, have a role in promoting the resolution of acute inflammation, expanding the roles of eosinophils in host defense and resolution.
Related JoVE Video
Increase of oxidant-related triglycerides and phosphatidylcholines in serum and small intestinal mucosa during development of intestinal polyp formation in Min mice.
Cancer Sci.
PUBLISHED: 10-14-2010
Show Abstract
Hide Abstract
Recent epidemiological studies have shown a positive association of a high-fat diet with the risk of colon cancer. Indeed, increments in the serum levels of triglycerides (TG) and cholesterols are positively related with colon carcinogenesis. We previously reported that an age-dependent hyperlipidemic state is characteristic of Min mice, an animal model for human familial adenomatous polyposis (FAP). However, qualitative and quantitative changes of lipid metabolism are poorly understood in this state. Here, we provide detailed analysis of serum lipids in Min mice using reverse-phased liquid chromatography/electrospray ionization mass spectrometry (RPLC/ESI-MS). We also demonstrate local analysis of lipid droplets in the villi of the small intestine using laser capture microdissection and a sensitive chip-based nanoESI-MS system. As a result, oxidized phosphatidylcholines (PC) such as aldehyde and carboxylic acid types were increased, even at an early stage of intestinal polyp formation in serum. In addition, hydroperoxidizable TG precursors containing linoleic acid (18:2n-6) were deposited at the tip of the villi with aging, and these hydroperoxidized TG were also increased in serum. Meanwhile, increments of the oxidizable TG precursors in serum and small intestinal mucosa were suppressed by treatment with pitavastatin, a novel third generation lipophilic statin. These results suggest that quantitative and qualitative lipid changes such as hydroperoxidizable TG precursors are important in the course of intestinal polyp formation and oxidative stress might lead to the development of intestinal polyp formation in Min mice.
Related JoVE Video
Highly sensitive localization analysis of gangliosides and sulfatides including structural isomers in mouse cerebellum sections by combination of laser microdissection and hydrophilic interaction liquid chromatography/electrospray ionization mass spectrom
Rapid Commun. Mass Spectrom.
PUBLISHED: 09-28-2010
Show Abstract
Hide Abstract
Liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) is suitable for analysis of glycosphingolipids such as fragile gangliosides avoiding the use of the sialic acid elimination. However, it was not possible to distinguish the structural isomers such as GD1a and GD1b with reversed-phase LC/ESI-MS by hydrophobic interaction. Here we report an effective method for targeted analysis of theoretically expanded ganglioside molecular species including structural isomers by hydrophilic interaction liquid chromatography (HILIC)/ESI-MS with multiple reaction monitoring (MRM). As a result of MRM analysis of glycosphingolipid mixtures from porcine brain, each of the lipid classes was detected within 25?min in the following order: sulfatides?>?GM3?>?GM2?>?GM1?>?GD3?>?GD1a?>?GD2?>?GD1b?>?GT1a?>?GT1b?>?GQ1b. For the advanced application, localization analysis of postnatal day 15 (P15) mouse cerebellum layered structures was carried out by combination of MRM and laser microdissection (LMD). As a result, GM3, GD1a, GT1b and GQ1b were abundantly detected in the molecular and granular layers, whereas GM1 was widely presented in each layered structure. These gangliosides were mainly composed of d18:1-18:0 and d18:1-20:0, but GM3 was d18:1-16:0 and d18:1-20:0. Meanwhile, sulfatide molecular species were mostly localized in the myelinated fibers and scarcely found in the molecular layer. These results suggested that our method is suitable to detect a variety of ganglioside classes and sulfatides with high sensitivity at the molecular species level and effective for localization analysis of these glycosphingolipids from mouse brain sections.
Related JoVE Video
Transgenic restoration of long-chain n-3 fatty acids in insulin target tissues improves resolution capacity and alleviates obesity-linked inflammation and insulin resistance in high-fat-fed mice.
Diabetes
PUBLISHED: 09-14-2010
Show Abstract
Hide Abstract
The catabasis of inflammation is an active process directed by n-3 derived pro-resolving lipid mediators. We aimed to determine whether high-fat (HF) diet-induced n-3 deficiency compromises the resolution capacity of obese mice and thereby contributes to obesity-linked inflammation and insulin resistance.
Related JoVE Video
MassBank: a public repository for sharing mass spectral data for life sciences.
J Mass Spectrom
PUBLISHED: 07-13-2010
Show Abstract
Hide Abstract
MassBank is the first public repository of mass spectra of small chemical compounds for life sciences (<3000 Da). The database contains 605 electron-ionization mass spectrometry (EI-MS), 137 fast atom bombardment MS and 9276 electrospray ionization (ESI)-MS(n) data of 2337 authentic compounds of metabolites, 11 545 EI-MS and 834 other-MS data of 10,286 volatile natural and synthetic compounds, and 3045 ESI-MS(2) data of 679 synthetic drugs contributed by 16 research groups (January 2010). ESI-MS(2) data were analyzed under nonstandardized, independent experimental conditions. MassBank is a distributed database. Each research group provides data from its own MassBank data servers distributed on the Internet. MassBank users can access either all of the MassBank data or a subset of the data by specifying one or more experimental conditions. In a spectral search to retrieve mass spectra similar to a query mass spectrum, the similarity score is calculated by a weighted cosine correlation in which weighting exponents on peak intensity and the mass-to-charge ratio are optimized to the ESI-MS(2) data. MassBank also provides a merged spectrum for each compound prepared by merging the analyzed ESI-MS(2) data on an identical compound under different collision-induced dissociation conditions. Data merging has significantly improved the precision of the identification of a chemical compound by 21-23% at a similarity score of 0.6. Thus, MassBank is useful for the identification of chemical compounds and the publication of experimental data.
Related JoVE Video
Mitochondrial dysfunction and reduced prostaglandin synthesis in skeletal muscle of Group VIB Ca2+-independent phospholipase A2gamma-deficient mice.
J. Lipid Res.
PUBLISHED: 07-12-2010
Show Abstract
Hide Abstract
Group VIB Ca(2+)-independent phospholipase A(2)? (iPLA(2)?) is a membrane-bound iPLA(2) enzyme with unique features, such as the utilization of distinct translation initiation sites and the presence of mitochondrial and peroxisomal localization signals. Here we investigated the physiological functions of iPLA(2)? by disrupting its gene in mice. iPLA(2)?-knockout (KO) mice were born with an expected Mendelian ratio and appeared normal and healthy at the age of one month but began to show growth retardation from the age of two months as well as kyphosis and significant muscle weakness at the age of four months. Electron microscopy revealed swelling and reduced numbers of mitochondria and atrophy of myofilaments in iPLA(2)?-KO skeletal muscles. Increased lipid peroxidation and the induction of several oxidative stress-related genes were also found in the iPLA(2)?-KO muscles. These results provide evidence that impairment of iPLA(2)? causes mitochondrial dysfunction and increased oxidative stress, leading to the loss of skeletal muscle structure and function. We further found that the compositions of cardiolipin and other phospholipid subclasses were altered and that the levels of myoprotective prostanoids were reduced in iPLA(2)?-KO skeletal muscle. Thus, in addition to maintenance of homeostasis of the mitochondrial membrane, iPLA(2)? may contribute to modulation of lipid mediator production in vivo.
Related JoVE Video
GM1?/?GD1b?/?GA1 synthase expression results in the reduced cancer phenotypes with modulation of composition and raft-localization of gangliosides in a melanoma cell line.
Cancer Sci.
PUBLISHED: 07-03-2010
Show Abstract
Hide Abstract
Gangliosides are expressed in neuroectoderm-derived tumors, and seemed to play roles in the regulation of cancer properties. To examine the behavior and roles of individual gangliosides, GM1/GD1b/GA1 synthase cDNA was introduced into the melanoma cell line SK-MEL-37, and changes in tumor phenotypes were analyzed. The transfectant cells showed neo-expression of GD1b, GT1b, and GM1, and reduced expression of GM3, GM2, GD2, and GD3. Function analyses revealed that the transfectant cells had definite reduction in cell growth and invasion. Tyrosine-phosphorylation levels of proteins such as p130Cas and paxillin were also reduced in the transfectants. These results suggested that the expression of GM1/GD1b/GA1 synthase resulted in the suppression of tumor properties. In the analyses of the floating patterns of gangliosides using fractions from sucrose density gradient ultracentrifugation of TritonX-100 extracts, the majority of gangliosides were found in glycolipid-enriched microdomain (GEM)/raft fractions, while GD3, GD1b, and GT1b in the transfectant cells tended to disperse to non-GEM/raft fractions. Furthermore, GD3, GD1b, and GT1b in non-GEM/raft dominantly had unsaturated fatty acids, while those in GEM/rafts contained more saturated forms than in non-GEM/rafts. This might be a mechanism for the decreased tumor properties in the transfectants of GM1/GD1b/GA1 synthase cDNA.
Related JoVE Video
Efficient identification and quantification of peptides containing nitrotyrosine by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry after derivatization.
Chem. Pharm. Bull.
PUBLISHED: 04-23-2010
Show Abstract
Hide Abstract
Protein nitration at tyrosine residues proceeds to form 3-nitrotyrosine; this product is today used as a biomarker of nitrative stress. We have developed an efficient method with which to identify nitrated peptides and to quantify protein nitration levels in different biological samples by a combination of the chemical derivatization of nitrotyrosine-containing peptides and mass spectrometry. Our strategy includes: 1) the protection of both N-terminal amines and epsilon-amines of lysine residues by acetylation with (13)C(0)/(13)C(4)- or D(0)/D(6)-acetic anhydride; 2) the reduction of nitrotyrosine to aminotyrosine with sodium hydrosulfite; and 3) the derivatization of aminotyrosine with 1-(6-methyl[D(0)/D(3)]nicotinoyloxy)succinimide. The utility of our method is demonstrated with nitrotyrosine-containing angiotensin II and bovine serum albumin as the model compounds.
Related JoVE Video
Precise and global identification of phospholipid molecular species by an Orbitrap mass spectrometer and automated search engine Lipid Search.
J Chromatogr A
PUBLISHED: 03-25-2010
Show Abstract
Hide Abstract
In the present research, we have established a new lipidomics approach for the comprehensive and precise identification of molecular species in a crude lipid mixture using a LTQ Orbitrap mass spectrometer (MS) and reverse-phase liquid chromatography (RPLC) combination with our newly developed lipid search engine "Lipid Search". LTQ Orbitrap provides high mass accuracy MS spectra by Fourier-transform (FT) mass spectrometer mode and can perform rapid MS(n) by ion trap (IT) mass spectrometer mode. In this study, the negative ion mode was selected to detect fragment ions from phospholipids, such as fatty acid anions, by MS2 or MS3. We selected the specific detection approach by neutral loss survey-dependent MS3, for the identification of molecular species of phosphatidylcholine, sphingomyelin and phosphatidylserine. Identification of molecular species was performed by using both the high mass accuracy of the mass spectrometric data obtained from FT mode and structural data obtained from fragments in IT mode. Some alkylacyl and alkenylacyl species have the same m/z value as molecular-related ions and fragment ions, thus, direct acid hydrolysis analysis was performed to identify alkylacyl and alkenylacyl species, and then the RPLC-LTQ Orbitrap method was applied. As a result, 290 species from mouse liver and 248 species from mouse brain were identified within six different classes of phospholipid, only those in manually detected and confirmed. Most of all manually detected mass peaks were also automatically detected by "Lipid Search". Adding to differences in molecular species in different classes of phospholipids, many characteristic differences in molecular species were detected in mouse liver and brain. More variable number of saturated and monounsaturated fatty acid-containing molecular species were detected in mouse brain than liver.
Related JoVE Video
Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum.
Cell
PUBLISHED: 03-10-2010
Show Abstract
Hide Abstract
Elucidation of molecular mechanisms that regulate synapse formation is required for the understanding of neural wiring, higher brain functions, and mental disorders. Despite the wealth of in vitro information, fundamental questions about how glutamatergic synapses are formed in the mammalian brain remain unanswered. Glutamate receptor (GluR) delta2 is essential for cerebellar synapse formation in vivo. Here, we show that the N-terminal domain (NTD) of GluRdelta2 interacts with presynaptic neurexins (NRXNs) through cerebellin 1 precursor protein (Cbln1). The synaptogenic activity of GluRdelta2 is abolished in cerebellar primary cultures from Cbln1 knockout mice and is restored by recombinant Cbln1. Knockdown of NRXNs in cerebellar granule cells also hinders the synaptogenic activity of GluRdelta2. Both the NTD of GluRdelta2 and the extracellular domain of NRXN1beta suppressed the synaptogenic activity of Cbln1 in cerebellar primary cultures and in vivo. These results suggest that GluRdelta2 mediates cerebellar synapse formation by interacting with presynaptic NRXNs through Cbln1.
Related JoVE Video
Group III secreted phospholipase A2 regulates epididymal sperm maturation and fertility in mice.
J. Clin. Invest.
PUBLISHED: 02-10-2010
Show Abstract
Hide Abstract
Although lipid metabolism is thought to be important for the proper maturation and function of spermatozoa, the molecular mechanisms that underlie this dynamic process in the gonads remains incompletely understood. Here, we show that group III phospholipase A2 (sPLA2-III), a member of the secreted phospholipase A2 (sPLA2) family, is expressed in the mouse proximal epididymal epithelium and that targeted disruption of the gene encoding this protein (Pla2g3) leads to defects in sperm maturation and fertility. Although testicular spermatogenesis in Pla2g3-/- mice was grossly normal, spermatozoa isolated from the cauda epididymidis displayed hypomotility, and their ability to fertilize intact eggs was markedly impaired. Transmission EM further revealed that epididymal spermatozoa in Pla2g3-/- mice had both flagella with abnormal axonemes and aberrant acrosomal structures. During epididymal transit, phosphatidylcholine in the membrane of Pla2g3+/+ sperm underwent a dramatic shift in its acyl groups from oleic, linoleic, and arachidonic acids to docosapentaenoic and docosahexaenoic acids, whereas this membrane lipid remodeling event was compromised in sperm from Pla2g3-/- mice. Moreover, the gonads of Pla2g3-/- mice contained less 12/15-lipoxygenase metabolites than did those of Pla2g3+/+ mice. Together, our results reveal a role for the atypical sPLA2 family member sPLA2-III in epididymal lipid homeostasis and indicate that its perturbation may lead to sperm dysfunction.
Related JoVE Video
Liquid chromatography/mass spectrometry analysis revealing preferential occurrence of non-arachidonate-containing phosphatidylinositol bisphosphate species in nuclei and changes in their levels during cell cycle.
Rapid Commun. Mass Spectrom.
PUBLISHED: 01-14-2010
Show Abstract
Hide Abstract
Phosphatidylinositol phosphates (PtdInsPs) are present within the nucleus, as well as in the membrane. In this mass spectrometry study, different acyl-containing species of endonuclear PtdInsPs were analyzed in order to clearly understand the role of individual molecular species. A (34:1) acyl-containing phosphatidylinositol bisphosphate [PtdInsP(2)(34:1)] and PtdInsP(2)(36:1) were preferentially detected in envelope-less nuclei prepared from various cultured human cells, while PtdInsP(2)(38:4) was not a major component within these nuclei. A significant amount of PtdInsP(2)(34:0) was detected in the HeLa cell nucleus, but not in the A431 and THP-1 cell nuclei. During the cell cycle in HeLa cells, PtdInsP(2)(34:0) levels increased in the early G1 phase, and then gradually decreased through S phase, while PtdInsP(2)(34:1) levels tended to decrease only in late G1 phase and PtdInsP(2)(38:4) did not change significantly. Thus, individual PtdInsP(2) species apparently play different roles in nuclear events based on individual regulation of endonuclear levels. The non-arachidonate-containing species were also detected in normal human blood and fluids, suggesting that these minor species may have unique functions in the human body. The techniques used in this study will be applied to clinical studies on a PtdInsPs metabolism.
Related JoVE Video
The anti-inflammatory and proresolving mediator resolvin E1 protects mice from bacterial pneumonia and acute lung injury.
J. Immunol.
PUBLISHED: 12-09-2009
Show Abstract
Hide Abstract
Whereas pneumonia is the most common cause of death and disability worldwide, most cases of pneumonia spontaneously resolve. Mechanisms that promote pneumonia resolution remain to be determined. Resolvin E1 (RvE1) is an endogenous mediator that displays proresolving actions in sterile inflammation. In this study, we developed a new model of aspiration pneumonia to evaluate the effect of RvE1 on acute lung injury caused by acid aspiration and subsequent bacterial challenge. Mice received hydrochloric acid into the left lung followed by the enteric pathogen Escherichia coli. I.v. administration of RvE1 (approximately 0.005 mg/kg) prior to acid injury selectively decreased lung neutrophil accumulation by 55% and enhanced clearance of E. coli. RvE1 significantly decreased lung tissue levels of several proinflammatory chemokines and cytokines, including IL-1beta, IL-6, HMGB-1, MIP-1alpha, MIP-1beta, keratinocyte-derived chemokine, and MCP-1, in a manner independent of the anti-inflammatory mediators IL-10 and lipoxin A4. In addition, animals treated with RvE1 had a marked improvement in survival. These findings in experimental aspiration pneumonia have uncovered protective roles for RvE1 in pathogen-mediated inflammation that are both anti-inflammatory for neutrophils and protective for host defense, suggesting that RvE1 represents the first candidate for a novel therapeutic strategy for acute lung injury and pneumonia that harnesses natural resolution mechanisms.
Related JoVE Video
Separation and quantification of sn-1 and sn-2 fatty acid positional isomers in phosphatidylcholine by RPLC-ESIMS/MS.
J. Biochem.
PUBLISHED: 10-30-2009
Show Abstract
Hide Abstract
Endogenous phosphatidylcholine in biological membranes exists as isomers with acyl moieties at the sn-1 or sn-2 positions of the glycerol backbone. However, detailed biochemical information on these positional isomers is not generally available. This study is the first report on the separation and identification of positional isomers of endogenous phosphatidylcholine using reversed-phase LC-ESIMS/MS. The separation of positional isomers in PC was achieved by using ultra performance LC, which uses a high-resolution HPLC system. To identify positional isomers in individual PC species, their lyso-PC-related fragments and fatty acids, which were obtained by MS/MS analysis in the negative ion mode, were used. From the application results of biological samples, the lipid extracts of mouse brain were found to be abundant in PC containing 22:6 at the sn-1 position of the glycerol backbone. However, the lipid extracts from mouse heart and liver were not abundant in positional isomers. This achievement demonstrates that the relative amounts of positional isomers in various tissues or molecular species differ. These results will be useful for the clarification of the biological mechanisms of remodelling enzymes such as phospholipase and acyltransferase. Thus, our report provides a novel and critical milestone in understanding how molecular composition of phospholipids is established and their biological roles.
Related JoVE Video
Peroxisome dependency of alkyl-containing GPI-anchor biosynthesis in the endoplasmic reticulum.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-07-2009
Show Abstract
Hide Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) play various roles in cell-cell and cell-environment interactions. GPI is synthesized in the endoplasmic reticulum (ER) from phosphatidylinositol (PI) through step-wise reactions including transfers of monosaccharides and preassembled GPI is transferred en bloc to proteins. Cellular PI contains mostly diacyl glycerol and unsaturated fatty acid in the sn-2 position, whereas mammalian GPI-APs have mainly 1-alkyl-2-acyl PI and almost exclusively stearic acid, a saturated chain, at the sn-2 position. The latter characteristic is the result of fatty acid remodeling occurring in the Golgi, generating GPI-anchors compatible with raft membrane. The former characteristic is the result of diacyl to alkyl-acyl change occurring in the third GPI intermediate, glucosaminyl-inositolacylated-PI (GlcN-acyl-PI). Here we investigated the origin of the sn-1 alkyl-chain in GPI-APs. Using cell lines defective in the peroxisomal alkyl-phospholipid biosynthetic pathway, we demonstrated that generation of alkyl-containing GPI is dependent upon the peroxisomal pathway. We further demonstrated that in cells defective in the peroxisome pathway, the chain composition of the diacyl glycerol moiety in GlcN-acyl-PI is different from those in the first intermediate N-acetylglucosaminyl-PI and cellular PI, indicating that not only diacyl to alkyl-acyl change but also diacyl to diacyl change occurs in GlcN-acyl-PI. We therefore propose a biosynthetic step within GlcN-acyl-PI in which the diacyl glycerol (or diacyl phosphatidic acid) part is replaced by diradyl glycerol (or diradyl phosphatidic acid). These results highlight cooperation of three organelles, the ER, the Golgi, and the peroxisome, in the generation of the lipid portion of GPI-APs.
Related JoVE Video
Qualitative and quantitative analyses of phospholipids by LC-MS for lipidomics.
Methods Mol. Biol.
PUBLISHED: 09-19-2009
Show Abstract
Hide Abstract
In this chapter we are going to mention about three different approaches in lipidomics and how to effectively profile or calculate the amounts of phospholipids from major molecular species up to minor ones. 1) Precise identification and profiling of individual molecular species of phospholipids by data-dependent LC-ESIMS/MS combination with "Lipid Search". We have been using this method as a global analysis of phospholipid. We usually applied this method at least once for new biological samples. We constructed an automated search engine, "Lipid Search", for identification and profiling of phospholipids. Once after applying this analysis, a specified retention time can be obtained for each elution peak of individual phospholipid molecular species. Thus, reproducible identification results can be effectively obtained by our search engine from the data obtained by single LC or combination of LC with specified head group survey by using precursor ion scanning or neutral loss scanning. 2) An effective analytical method of LC-ESIMS for the identification of acidic phospholipids such as phosphatidic acid and phosphatidylserine. This is an approach of how to obtain sharp chromatographic peaks for acidic lipids such as phosphatidic acid and phosphatidylserine that are normally detected as broad elution peaks. With this improvement very small amount of molecular species in minor acidic phospholipids were effectively obtained. 3) Identification and profiling of molecular species in focused phospholipids. Third one is a combination analysis of focused methods such as precursor ion scanning or neutral loss scanning and high efficient LC separation. As reported previously, different combinations of fatty acids on sn-1 and sn-2 can be mostly detected as separate peaks by reverse phase LC-ESIMS. Detection limit of precursor ion scanning or neutral loss scanning is more than ten times higher than that of the method without LC separation, because of decreased ion suppression. We will mention about application of this methods for focused analysis on phosphatidylethanolamine-plasmalogens.
Related JoVE Video
Synthesis and evaluation of lysophosphatidylserine analogues as inducers of mast cell degranulation. Potent activities of lysophosphatidylthreonine and its 2-deoxy derivative.
J. Med. Chem.
PUBLISHED: 09-12-2009
Show Abstract
Hide Abstract
In response to various exogenous stimuli, mast cells (MCs) release a wide variety of inflammatory mediators stored in their cytoplasmic granules and this release initiates subsequent allergic reactions. Lysophosphatidylserine (lysoPS) has been known as an exogenous inducer to potentiate histamine release from MCs, though even at submicromolar concentrations. In this study, through SAR studies on lysoPS against MC degranulation, we identified lysoPT, a threonine-containing lysophospholipid and its 2-deoxy derivative as novel strong agonists. LysoPT and its 2-deoxy derivative induced histamine release from MCs both in vitro and in vivo at a concentration less than one-tenth that of lysoPS. Notably, lysoPT did not activate a recently proposed lysoPS receptor on MCs, GPR34, demonstrating the presence of another undefined receptor reactive to both lysoPS and lysoPT that is involved in MC degranulation. Thus, the present strong agonists, lysoPT and its 2-deoxy derivative, will be useful tools to understand the mechanisms of lysoPS-induced activation of degranulation of MCs.
Related JoVE Video
Zebrafish and mouse alpha2,3-sialyltransferases responsible for synthesizing GM4 ganglioside.
J. Biol. Chem.
PUBLISHED: 06-19-2009
Show Abstract
Hide Abstract
We have previously reported that fish pathogens causing vibriosis specifically adhere to GM4 on the epithelial cells of fish intestinal tracts (Chisada, S., Horibata, Y., Hama, Y., Inagaki, M., Furuya, N., Okino, N., and Ito, M. (2005) Biochem. Biophys. Res. Commun. 333, 367-373). To identify the gene encoding the enzyme for GM4 synthesis in the fish intestinal tract, a phylogenetic tree of vertebrate ST3GalVs, including Danio rerio and Oryzias latipes, was generated in which two putative subfamilies of fish ST3GalVs were found. Two putative ST3GalVs of zebrafish (zST3GalV-1 and -2), each belonging to different subfamilies, were cloned from the zebrafish cDNA library. Interestingly, zST3GalV-1 synthesized GM3 (NeuAcalpha2-3Galbeta1-4Glcbeta1-1Cer) but not GM4, whereas zSTGalV-2 synthesized both gangliosides in vitro when expressed in CHO-K1 and RPMI1846 cells. Flow cytometric analysis using anti-GM4 antibody revealed that the transformation of RPMI1846 cells with zST3GalV-2 but not zST3GalV-1 cDNA increased the cell-surface expression of GM4. Whole mount in situ hybridization showed that the zST3GalV-2 transcript was strongly expressed in the gastrointestinal tract, whereas zST3GalV-1 was expressed in the brain and esophagus but not gastrointestinal tract in 3-day post-fertilization embryos. It has long been a matter of controversy which enzyme is responsible for the synthesis of GM4 in mammals. We found that three isoforms of mouse ST3GalV (mST3GalV) having different N-terminal sequences can synthesize GM4 as well as GM3 when expressed in RPMI1846 and CHO-K1 cells. Furthermore, mST3GalV knock-out mice were found to lack GM4 synthase activity and GM4 in contrast to wild-type mice. These results clearly indicate that zST3GalV-2 and mST3GalV are the enzymes responsible for the synthesis of GM4 in zebrafish and mice, respectively.
Related JoVE Video
Essential role of the TRIC-B channel in Ca2+ handling of alveolar epithelial cells and in perinatal lung maturation.
Development
PUBLISHED: 06-10-2009
Show Abstract
Hide Abstract
TRIC channels function as monovalent cation-specific channels that mediate counter ion movements coupled with ryanodine receptor-mediated Ca(2+) release from intracellular stores in muscle cells. Mammalian tissues differentially contain two TRIC channel subtypes: TRIC-A is abundantly expressed in excitable cells, whereas TRIC-B is ubiquitously expressed throughout tissues. Here, we report the physiological role of TRIC-B channels in mouse perinatal development. TRIC-B-knockout neonates were cyanotic owing to respiratory failure and died shortly after birth. In the mutant neonates, the deflated lungs exhibited severe histological defects, and alveolar type II epithelial cells displayed ultrastructural abnormalities. The metabolic conversion of glycogen into phospholipids was severely interrupted in the mutant type II cells, and surfactant phospholipids secreted into the alveolar space were insufficient in the mutant neonates. Moreover, the mutant type II cells were compromised for Ca(2+) release mediated by inositol-trisphosphate receptors, despite Ca(2+) overloading in intracellular stores. Our results indicate that TRIC-B channels take an active part in Ca(2+) signalling to establish specialised functions in type II cells and are thus essential for perinatal lung maturation.
Related JoVE Video
Analysis of oxidized phosphatidylcholines as markers for oxidative stress, using multiple reaction monitoring with theoretically expanded data sets with reversed-phase liquid chromatography/tandem mass spectrometry.
J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.
PUBLISHED: 05-12-2009
Show Abstract
Hide Abstract
Recently, it was reported that oxidized phosphatidylcholine shows biological activities via scavenger receptor CD36 or Toll-like receptor 4 (TLR4)-TRIF. Thus, the analysis of oxidized phospholipids is essential in understanding these biological roles. Here, we report an analytical method for oxidized phosphatidylcholines using multiple reaction monitoring (MRM) with theoretically expanded data sets. This analytical method was performed by a quadrupole linear ion trap mass spectrometer with ultra performance LC (UPLC). To investigate whether this established analytical method was applicable to biological samples, we performed variation analysis of oxidized PCs using a myocardial ischemia-reperfusion model. Most oxidized PCs were detected in higher amounts in the ischemic myocardium than in the non-ischemic myocardium. From these application results, this established method is a valuable tool for the global analysis of oxidized PCs. In the future, our study can provide further understanding of how oxidized phospholipids are produced and are correlated to various diseases.
Related JoVE Video
Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry.
J. Lipid Res.
PUBLISHED: 05-05-2009
Show Abstract
Hide Abstract
Previous studies have shown that MALDI-imaging mass spectrometry (IMS) can be used to visualize the distribution of various biomolecules, especially lipids, in the cells and tissues. In this study, we report the cell-selective distribution of PUFA-containing glycerophospholipids (GPLs) in the mouse brain. We established a practical experimental procedure for the IMS of GPLs. We demonstrated that optimization of the composition of the matrix solution and spectrum normalization to the total ion current (TIC) is critical. Using our procedure, we simultaneously differentiated and visualized the localizations of specific molecular species of GPLs in mouse brain sections. The results showed that PUFA-containing phosphatidylcholines (PCs) were distributed in a cell-selective manner: arachidonic acid- and docosahexaenoic acid-containing PCs were seen in the hippocampal neurons and cerebellar Purkinje cells, respectively. Furthermore, these characteristic localizations of PUFA-PCs were formed during neuronal maturation. The phenomenon of brain cell-selective production of specific PUFA-GPLs will help elucidate the potential physiological functions of PUFAs in specific brain regions.
Related JoVE Video
Lysophosphatidylmethanol is a pan lysophosphatidic acid receptor agonist and is produced by autotaxin in blood.
J. Biochem.
PUBLISHED: 05-04-2009
Show Abstract
Hide Abstract
Lysophosphatidic acid (LPA) is a simple phospholipid but has numerous biological effects through a series of G-protein-coupled receptors specific to LPA. In general, LPA is short-lived when applied in vivo, which hinders most pharmacological experiments. In our continuing study to identify stable LPA analogues capable of in vivo applications, we identified here lysophosphatidylmethanol (LPM) as a stable and pan-LPA receptor agonist. A synthetic LPM activated all five LPA receptors (LPA(1-5)), and stimulates both cell proliferation and LPA-receptor-dependent cell motility. In addition, LPM showed a hypertensive effect in rodent when applied in vivo. We found that, when fetal calf serum was incubated in the presence of methanol, formation of LPM occurred rapidly, whereas it was completely blocked by depletion of autotaxin (ATX), a plasma enzyme that converts lysophosphatidylcholine (LPC) to LPA. When recombinant ATX was incubated with LPC in the presence of methanol, both LPM and LPA were produced with a ratio of 1:10, showing that ATX has transphosphatidylation activity in addition to its lysophospholipase D activity. Administration of methanol in mice resulted in the formation of several micromoles of LPM in plasma, which is much higher than that of LPA. The present study identified LPM as a novel and stable lysophospholipid mediator with LPA-like activities and ATX as a potential synthetic enzyme for LPM.
Related JoVE Video
Identification and characterization of a novel lysophosphatidic acid receptor, p2y5/LPA6.
J. Biol. Chem.
PUBLISHED: 04-22-2009
Show Abstract
Hide Abstract
p2y5 is an orphan G protein-coupled receptor that is closely related to the fourth lysophosphatidic acid (LPA) receptor, LPA4. Here we report that p2y5 is a novel LPA receptor coupling to the G13-Rho signaling pathway. "LPA receptor-null" RH7777 and B103 cells exogenously expressing p2y5 showed [3H]LPA binding, LPA-induced [35S]guanosine 5-3-O-(thio)triphosphate binding, Rho-dependent alternation of cellular morphology, and Gs/13 chimeric protein-mediated cAMP accumulation. LPA-induced contraction of human umbilical vein endothelial cells was suppressed by small interfering RNA knockdown of endogenously expressed p2y5. We also found that 2-acyl-LPA had higher activity to p2y5 than 1-acyl-LPA. A recent study has suggested that p2y5 is an LPA receptor essential for human hair growth. We confirmed that p2y5 is a functional LPA receptor and propose to designate this receptor LPA6.
Related JoVE Video
Global analysis of triacylglycerols including oxidized molecular species by reverse-phase high resolution LC/ESI-QTOF MS/MS.
J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.
PUBLISHED: 03-26-2009
Show Abstract
Hide Abstract
Recently, global analysis of triacylglycerols (TAGs) has become increasingly important in studies of abnormality of lipid metabolism in metabolic syndrome. TAGs consist of various molecular species, caused by their three fatty acyl chains with a large variety of carbon chain lengths and degrees of unsaturation. Therefore, most previously reported methods have been insufficient in global detection of TAGs including their structural isomers and TAGs with oxidized or odd number acyl carbon chain. Here we report an effective method for global analysis of TAG molecular species from complex lipid mixtures of mouse liver and white adipose tissue (WAT) using reverse-phased high resolution liquid chromatography (LC) coupled with electrospray ionization (ESI)-quadrapole/time of flight hybrid mass spectrometer (QTOF-MS). For effective profiling of TAG molecular species, sensitive two-dimensional (2D) maps were constructed and individual structures were correctly identified by the elution profile and MS/MS. As a result, TAGs including their structural isomers and TAGs with an odd number acyl carbon chain were separated and detected effectively on the 2D map as compared with conventional high performance LC. It was also found that our 2D profiling method was useful in searching characteristic molecular species globally. In mouse WAT, novel oxidized TAGs, which were mainly formed by hydroperoxidation of one of their linoleic acyl chains, were effectively detected in comparison with TAG molecular species of mouse liver.
Related JoVE Video
Glucocorticoid protects rodent hearts from ischemia/reperfusion injury by activating lipocalin-type prostaglandin D synthase-derived PGD2 biosynthesis.
J. Clin. Invest.
PUBLISHED: 03-18-2009
Show Abstract
Hide Abstract
Lipocalin-type prostaglandin D synthase (L-PGDS), which was originally identified as an enzyme responsible for PGD2 biosynthesis in the brain, is highly expressed in the myocardium, including in cardiomyocytes. However, the factors that control expression of the gene encoding L-PGDS and the pathophysiologic role of L-PGDS in cardiomyocytes are poorly understood. In the present study, we demonstrate that glucocorticoids, which act as repressors of prostaglandin biosynthesis in most cell types, upregulated the expression of L-PGDS together with cytosolic calcium-dependent phospholipase A2 and COX2 via the glucocorticoid receptor (GR) in rat cardiomyocytes. Accordingly, PGD2 was the most prominently induced prostaglandin in vivo in mouse hearts and in vitro in cultured rat cardiomyocytes after exposure to GR-selective agonists. In isolated Langendorff-perfused mouse hearts, dexamethasone alleviated ischemia/reperfusion injury. This cardioprotective effect was completely abrogated by either pharmacologic inhibition of COX2 or disruption of the gene encoding L-PGDS. In in vivo ischemia/reperfusion experiments, dexamethasone reduced infarct size in wild-type mice. This cardioprotective effect of dexamethasone was markedly reduced in L-PGDS-deficient mice. In cultured rat cardiomyocytes, PGD2 protected against cell death induced by anoxia/reoxygenation via the D-type prostanoid receptor and the ERK1/2-mediated pathway. Taken together, these results suggest what we believe to be a novel interaction between glucocorticoid-GR signaling and the cardiomyocyte survival pathway mediated by the arachidonic acid cascade.
Related JoVE Video
GPI glycan remodeling by PGAP5 regulates transport of GPI-anchored proteins from the ER to the Golgi.
Cell
PUBLISHED: 03-06-2009
Show Abstract
Hide Abstract
Many eukaryotic proteins are attached to the cell surface via glycosylphosphatidylinositol (GPI) anchors. How GPI-anchored proteins (GPI-APs) are trafficked from the endoplasmic reticulum (ER) to the cell surface is poorly understood, but the GPI moiety has been postulated to function as a signal for sorting and transport. Here, we established mutant cells that were selectively defective in transport of GPI-APs from the ER to the Golgi. We identified a responsible gene, designated PGAP5 (post-GPI-attachment to proteins 5). PGAP5 belongs to a dimetal-containing phosphoesterase family and catalyzed the remodeling of the glycan moiety on GPI-APs. PGAP5 catalytic activity is a prerequisite for the efficient exit of GPI-APs from the ER. Our data demonstrate that GPI glycan acts as an ER-exit signal and suggest that glycan remodeling mediated by PGAP5 regulates GPI-AP transport in the early secretory pathway.
Related JoVE Video
Thioesterase activity and subcellular localization of acylprotein thioesterase 1/lysophospholipase 1.
Biochim. Biophys. Acta
PUBLISHED: 01-13-2009
Show Abstract
Hide Abstract
Acylprotein thioesterase 1 (APT1), also known as lysophospholipase 1, is an important enzyme responsible for depalmitoylation of palmitoyl proteins. To clarify the substrate selectivity and the intracellular function of APT1, we performed kinetic analyses and competition assays using a recombinant human APT1 (hAPT1) and investigated the subcellular localization. For this purpose, an assay for thioesterase activity against a synthetic palmitoyl peptide using liquid chromatography/mass spectrometry was established. The thioesterase activity of hAPT1 was most active at neutral pH, and did not require Ca(2+) for its maximum activity. The K(M) values for thioesterase and lysophospholipase (against lysophosphatidylcholine) activities were 3.49 and 27.3 microM, and the V(max) values were 27.3 and 1.62 micromol/min/mg, respectively. Thus, hAPT1 revealed much higher thioesterase activity than lysophospholipase activity. One activity was competitively inhibited by another substrate in the presence of both substrates. Immunocytochemical and Western blot analyses revealed that endogenous and overexpressed hAPT1 were mainly localized in the cytosol, while some signals were detected in the plasma membrane, the nuclear membrane and ER in HEK293 cells. These results suggest that eliminating palmitoylated proteins and lysophospholipids from cytosol is one of the functions of hAPT1.
Related JoVE Video
LPIAT1 regulates arachidonic acid content in phosphatidylinositol and is required for cortical lamination in mice.
Mol. Biol. Cell
Show Abstract
Hide Abstract
Dietary arachidonic acid (AA) has roles in growth, neuronal development, and cognitive function in infants. AA is remarkably enriched in phosphatidylinositol (PI), an important constituent of biological membranes in mammals; however, the physiological significance of AA-containing PI remains unknown. In an RNA interference-based genetic screen using Caenorhabditis elegans, we recently cloned mboa-7 as an acyltransferase that selectively incorporates AA into PI. Here we show that lysophosphatidylinositol acyltransferase 1 (LPIAT1, also known as MBOAT7), the closest mammalian homologue, plays a crucial role in brain development in mice. Lpiat1(-/-) mice show almost no LPIAT activity with arachidonoyl-CoA as an acyl donor and show reduced AA contents in PI and PI phosphates. Lpiat1(-/-) mice die within a month and show atrophy of the cerebral cortex and hippocampus. Immunohistochemical analysis reveals disordered cortical lamination and delayed neuronal migration in the cortex of E18.5 Lpiat1(-/-) mice. LPIAT1 deficiency also causes disordered neuronal processes in the cortex and reduced neurite outgrowth in vitro. Taken together, these results demonstrate that AA-containing PI/PI phosphates play an important role in normal cortical lamination during brain development in mice.
Related JoVE Video
Self-enhancement of hepatitis C virus replication by promotion of specific sphingolipid biosynthesis.
PLoS Pathog.
Show Abstract
Hide Abstract
Lipids are key components in the viral life cycle that affect host-pathogen interactions. In this study, we investigated the effect of HCV infection on sphingolipid metabolism, especially on endogenous SM levels, and the relationship between HCV replication and endogenous SM molecular species. We demonstrated that HCV induces the expression of the genes (SGMS1 and 2) encoding human SM synthases 1 and 2. We observed associated increases of both total and individual sphingolipid molecular species, as assessed in human hepatocytes and in the detergent-resistant membrane (DRM) fraction in which HCV replicates. SGMS1 expression had a correlation with HCV replication. Inhibition of sphingolipid biosynthesis with a hepatotropic serine palmitoyltransferase (SPT) inhibitor, NA808, suppressed HCV-RNA production while also interfering with sphingolipid metabolism. Further, we identified the SM molecular species that comprise the DRM fraction and demonstrated that these endogenous SM species interacted with HCV nonstructural 5B polymerase to enhance viral replication. Our results reveal that HCV alters sphingolipid metabolism to promote viral replication, providing new insights into the formation of the HCV replication complex and the involvement of host lipids in the HCV life cycle.
Related JoVE Video
The ?-secretase inhibitor DAPT increases the levels of gangliosides at neuritic terminals of differentiating PC12 cells.
Neurosci. Lett.
Show Abstract
Hide Abstract
Mutations in presenilins are the major cause of early onset familial Alzheimer disease. It has recently been argued that clinical presenilin mutations work as loss-of-function but not toxic gain-of-function. To investigate whether presenilins are involved in the regulation of the distribution of neuronal membrane lipids, we treated neuronally differentiated PC12 cells with DAPT, an inhibitor of presenilin-dependent ?-secretase, and performed lipid analyses of neuritic terminals, which is an initial site of A? deposition in brains, using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) in combination with multiple reaction monitoring (MRM). With DAPT treatment, levels of sphingomyelin, phosphatidylcholine, and cholesterol remained unchanged. However, DAPT treatment increased the ganglioside levels in PC12 neuritic terminals. Together with a previous finding that accumulation of gangliosides at neuritic terminals facilitates A? assembly and deposition, the present data suggest that the loss-of-function of presenilins, i.e., a decrease in ?-secretase activity, has an impact on neuronal membrane architecture in a way that eventually exacerbates Alzheimer pathology.
Related JoVE Video
KCNJ5 mutations in aldosterone- and cortisol-co-secreting adrenal adenomas.
Endocr. J.
Show Abstract
Hide Abstract
Adrenal aldosterone-producing adenomas (APA) are rarely associated with the clear co-secretion of cortisol. Somatic mutations of the potassium channel KCNJ5 gene, with the hotspots G151R and L168R, have been recently identified in patients with APA. However, whether APAs that secrete cortisol have these mutations remains unclear. We examined three patients with APAs showing clear autonomous secretion of cortisol who possessed a 1 mg dexamethasone suppression test (DST) with a failure of the serum cortisol level to drop below 3.0 ?g/dL, a morning plasma ACTH level of less than 10 pg/mL, and suppressed accumulation in the intact adrenal on (131)I- adosterol scintigraphy, or postoperative adrenal insufficiency. Laparoscopic adrenectomy revealed all tumors to be golden yellow, and histological examination confirmed them to be adrenocortical adenomas. All these patients required replacement therapy with hydrocortisone after surgery. Sequencing demonstrated that 2 of three cases showed a mutation of the KCNJ5 gene, one with c.451G>A, p.G151R and one with c.503T>G, p.L168R. Furthermore, the mRNA levels of steroidogenic enzymes including CYP11B1, CYP11B2, HSD3B2, CYP17A1, CYP11A1 and KCNJ5 in the 3 cases did not differ from those in 8 pure APAs not showing any of the above conditions for autonomous cortisol secretion. In addition, all 8 pure APAs harbored mutations of the KCNJ5 gene. These findings suggested that at least some aldosterone- and cortisol-co-secreting adrenal tumors have mutations of the KCNJ5 gene, suggesting the origin to be APA, and pure APAs may show a high incidence of KCNJ5 mutations.
Related JoVE Video
NR4A1 (Nur77) mediates thyrotropin-releasing hormone-induced stimulation of transcription of the thyrotropin ? gene: analysis of TRH knockout mice.
PLoS ONE
Show Abstract
Hide Abstract
Thyrotropin-releasing hormone (TRH) is a major stimulator of thyrotropin-stimulating hormone (TSH) synthesis in the anterior pituitary, though precisely how TRH stimulates the TSH? gene remains unclear. Analysis of TRH-deficient mice differing in thyroid hormone status demonstrated that TRH was critical for the basal activity and responsiveness to thyroid hormone of the TSH? gene. cDNA microarray and K-means cluster analyses with pituitaries from wild-type mice, TRH-deficient mice and TRH-deficient mice with thyroid hormone replacement revealed that the largest and most consistent decrease in expression in the absence of TRH and on supplementation with thyroid hormone was shown by the TSH? gene, and the NR4A1 gene belonged to the same cluster as and showed a similar expression profile to the TSH? gene. Immunohistochemical analysis demonstrated that NR4A1 was expressed not only in ACTH- and FSH- producing cells but also in thyrotrophs and the expression was remarkably reduced in TRH-deficient pituitary. Furthermore, experiments in vitro demonstrated that incubation with TRH in GH4C1 cells increased the endogenous NR4A1 mRNA level by approximately 50-fold within one hour, and this stimulation was inhibited by inhibitors for PKC and ERK1/2. Western blot analysis confirmed that TRH increased NR4A1 expression within 2 h. A series of deletions of the promoter demonstrated that the region between bp -138 and +37 of the TSH? gene was responsible for the TRH-induced stimulation, and Chip analysis revealed that NR4A1 was recruited to this region. Conversely, knockdown of NR4A1 by siRNA led to a significant reduction in TRH-induced TSH? promoter activity. Furthermore, TRH stimulated NR4A1 promoter activity through the TRH receptor. These findings demonstrated that 1) TRH is a highly specific regulator of the TSH? gene, and 2) TRH mediated induction of the TSH? gene, at least in part by sequential stimulation of the NR4A1-TSH? genes through a PKC and ERK1/2 pathway.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.