JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Modeling and simulation using CellDesigner.
Methods Mol. Biol.
PUBLISHED: 06-15-2014
Show Abstract
Hide Abstract
In silico modeling and simulation are effective means to understand how the regulatory systems function in life. In this chapter, we explain how to build a model and run the simulation using CellDesigner, adopting the standards such as SBML and SBGN.
Related JoVE Video
Harnessing Diversity towards the Reconstructing of Large Scale Gene Regulatory Networks.
PLoS Comput. Biol.
PUBLISHED: 11-01-2013
Show Abstract
Hide Abstract
Elucidating gene regulatory network (GRN) from large scale experimental data remains a central challenge in systems biology. Recently, numerous techniques, particularly consensus driven approaches combining different algorithms, have become a potentially promising strategy to infer accurate GRNs. Here, we develop a novel consensus inference algorithm, TopkNet that can integrate multiple algorithms to infer GRNs. Comprehensive performance benchmarking on a cloud computing framework demonstrated that (i) a simple strategy to combine many algorithms does not always lead to performance improvement compared to the cost of consensus and (ii) TopkNet integrating only high-performance algorithms provide significant performance improvement compared to the best individual algorithms and community prediction. These results suggest that a priori determination of high-performance algorithms is a key to reconstruct an unknown regulatory network. Similarity among gene-expression datasets can be useful to determine potential optimal algorithms for reconstruction of unknown regulatory networks, i.e., if expression-data associated with known regulatory network is similar to that with unknown regulatory network, optimal algorithms determined for the known regulatory network can be repurposed to infer the unknown regulatory network. Based on this observation, we developed a quantitative measure of similarity among gene-expression datasets and demonstrated that, if similarity between the two expression datasets is high, TopkNet integrating algorithms that are optimal for known dataset perform well on the unknown dataset. The consensus framework, TopkNet, together with the similarity measure proposed in this study provides a powerful strategy towards harnessing the wisdom of the crowds in reconstruction of unknown regulatory networks.
Related JoVE Video
A versatile platform for multilevel modeling of physiological systems: Template/instance framework for large-scale modeling and simulation.
Conf Proc IEEE Eng Med Biol Soc
PUBLISHED: 10-11-2013
Show Abstract
Hide Abstract
Building multilevel models of physiological systems is a significant and effective method for integrating a huge amount of bio-physiological data and knowledge obtained by earlier experiments and simulations. Since such models tend to be large in size and complicated in structure, appropriate software frameworks for supporting modeling activities are required. A software platform, PhysioDesigner, has been developed, which supports the process of creating multilevel models. Models developed on PhysioDesigner are established in an XML format called PHML. Every physiological entity in a model is represented as a module, and hence a model constitutes an aggregation of modules. When the number of entities of which the model is comprised is large, it is difficult to manage the entities manually, and some semiautomatic assistive functions are necessary. In this article, which focuses particularly on recently developed features of the platform for building large-scale models utilizing a template/instance framework and morphological information, the PhysioDesigner platform is introduced.
Related JoVE Video
Toward an integrated software platform for systems pharmacology.
Biopharm Drug Dispos
PUBLISHED: 09-29-2013
Show Abstract
Hide Abstract
Understanding complex biological systems requires extensive support of computational tools. This is particularly true for systems pharmacology, which aims to understand the action of drugs and their interactions in a systems context. Computational models play important role as they can be viewed as an explicit representation of biological hypotheses to be tested. A series of software and data resources are used for model development, verification, and exploration of possible behaviors of biological systems using the model that may not be possible or not cost effective by experiments. Software platforms play a dominant role in creativity and productivity support and have transformed many industries that can be applied to biology as well. Establishing the software platform shall be the next important step in the field. This article is protected by copyright. All rights reserved.
Related JoVE Video
A comprehensive map of the influenza A virus replication cycle.
BMC Syst Biol
PUBLISHED: 07-01-2013
Show Abstract
Hide Abstract
Influenza is a common infectious disease caused by influenza viruses. Annual epidemics cause severe illnesses, deaths, and economic loss around the world. To better defend against influenza viral infection, it is essential to understand its mechanisms and associated host responses. Many studies have been conducted to elucidate these mechanisms, however, the overall picture remains incompletely understood. A systematic understanding of influenza viral infection in host cells is needed to facilitate the identification of influential host response mechanisms and potential drug targets.
Related JoVE Video
Integrating Pathways of Parkinsons Disease in a Molecular Interaction Map.
Mol. Neurobiol.
PUBLISHED: 04-15-2013
Show Abstract
Hide Abstract
Parkinsons disease (PD) is a major neurodegenerative chronic disease, most likely caused by a complex interplay of genetic and environmental factors. Information on various aspects of PD pathogenesis is rapidly increasing and needs to be efficiently organized, so that the resulting data is available for exploration and analysis. Here we introduce a computationally tractable, comprehensive molecular interaction map of PD. This map integrates pathways implicated in PD pathogenesis such as synaptic and mitochondrial dysfunction, impaired protein degradation, alpha-synuclein pathobiology and neuroinflammation. We also present bioinformatics tools for the analysis, enrichment and annotation of the map, allowing the research community to open new avenues in PD research. The PD map is accessible at http://minerva.uni.lu/pd_map .
Related JoVE Video
Software for systems biology: from tools to integrated platforms.
Nat. Rev. Genet.
PUBLISHED: 11-03-2011
Show Abstract
Hide Abstract
Understanding complex biological systems requires extensive support from software tools. Such tools are needed at each step of a systems biology computational workflow, which typically consists of data handling, network inference, deep curation, dynamical simulation and model analysis. In addition, there are now efforts to develop integrated software platforms, so that tools that are used at different stages of the workflow and by different researchers can easily be used together. This Review describes the types of software tools that are required at different stages of systems biology research and the current options that are available for systems biology researchers. We also discuss the challenges and prospects for modelling the effects of genetic changes on physiology and the concept of an integrated platform.
Related JoVE Video
Some insights into analytical bias involved in the application of grab sampling for volatile organic compounds: a case study against used Tedlar bags.
ScientificWorldJournal
PUBLISHED: 06-25-2011
Show Abstract
Hide Abstract
In this study, we have examined the patterns of VOCs released from used Tedlar bags that were once used for the collection under strong source activities. In this way, we attempted to account for the possible bias associated with the repetitive use of Tedlar bags. To this end, we selected the bags that were never heated. All of these target bags were used in ambient temperature (typically at or below 30°C). These bags were also dealt carefully to avoid any mechanical abrasion. This study will provide the essential information regarding the interaction between VOCs and Tedlar bag materials as a potential source of bias in bag sampling approaches.
Related JoVE Video
Discrete diffusion models to study the effects of Mg2+ concentration on the PhoPQ signal transduction system.
BMC Genomics
PUBLISHED: 12-01-2010
Show Abstract
Hide Abstract
The challenge today is to develop a modeling and simulation paradigm that integrates structural, molecular and genetic data for a quantitative understanding of physiology and behavior of biological processes at multiple scales. This modeling method requires techniques that maintain a reasonable accuracy of the biological process and also reduces the computational overhead. This objective motivates the use of new methods that can transform the problem from energy and affinity based modeling to information theory based modeling. To achieve this, we transform all dynamics within the cell into a random event time, which is specified through an information domain measure like probability distribution. This allows us to use the "in silico" stochastic event based modeling approach to find the molecular dynamics of the system.
Related JoVE Video
Connecting the dots: role of standardization and technology sharing in biological simulation.
Drug Discov. Today
PUBLISHED: 09-14-2010
Show Abstract
Hide Abstract
The role of biological modeling and simulation in enhancing productivity across the drug discovery pipeline has been increasingly appreciated over the past decade by the pharmaceutical industry. However, adoption of in silico modeling and simulation techniques has been sparse due to skepticism in the associated pay-offs and knowledge gap in research. While biological simulations have been successfully applied in specific projects, a standardized, community-wide platform is imperative for making the final leap of faith across the domain. This review outlines the issues and challenges involved in fostering a private-public collaborative effort for the development of standard modeling and biosimulation platforms and concludes with insights into possible mechanisms for integrating an in silico pipeline into the drug discovery and development process.
Related JoVE Video
A comprehensive molecular interaction map of the budding yeast cell cycle.
Mol. Syst. Biol.
PUBLISHED: 07-28-2010
Show Abstract
Hide Abstract
With the accumulation of data on complex molecular machineries coordinating cell-cycle dynamics, coupled with its central function in disease patho-physiologies, it is becoming increasingly important to collate the disparate knowledge sources into a comprehensive molecular network amenable to systems-level analyses. In this work, we present a comprehensive map of the budding yeast cell-cycle, curating reactions from ?600 original papers. Toward leveraging the map as a framework to explore the underlying network architecture, we abstract the molecular components into three planes--signaling, cell-cycle core and structural planes. The planar view together with topological analyses facilitates network-centric identification of functions and control mechanisms. Further, we perform a comparative motif analysis to identify around 194 motifs including feed-forward, mutual inhibitory and feedback mechanisms contributing to cell-cycle robustness. We envisage the open access, comprehensive cell-cycle map to open roads toward community-based deeper understanding of cell-cycle dynamics.
Related JoVE Video
A comprehensive map of the mTOR signaling network.
Mol. Syst. Biol.
PUBLISHED: 07-13-2010
Show Abstract
Hide Abstract
The mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation. mTOR signaling is frequently dysregulated in oncogenic cells, and thus an attractive target for anticancer therapy. Using CellDesigner, a modeling support software for graphical notation, we present herein a comprehensive map of the mTOR signaling network, which includes 964 species connected by 777 reactions. The map complies with both the systems biology markup language (SBML) and graphical notation (SBGN) for computational analysis and graphical representation, respectively. As captured in the mTOR map, we review and discuss our current understanding of the mTOR signaling network and highlight the impact of mTOR feedback and crosstalk regulations on drug-based cancer therapy. This map is available on the Payao platform, a Web 2.0 based community-wide interactive process for creating more accurate and information-rich databases. Thus, this comprehensive map of the mTOR network will serve as a tool to facilitate systems-level study of up-to-date mTOR network components and signaling events toward the discovery of novel regulatory processes and therapeutic strategies for cancer.
Related JoVE Video
Payao: a community platform for SBML pathway model curation.
Bioinformatics
PUBLISHED: 04-05-2010
Show Abstract
Hide Abstract
Payao is a community-based, collaborative web service platform for gene-regulatory and biochemical pathway model curation. The system combines Web 2.0 technologies and online model visualization functions to enable a collaborative community to annotate and curate biological models. Payao reads the models in Systems Biology Markup Language format, displays them with CellDesigner, a process diagram editor, which complies with the Systems Biology Graphical Notation, and provides an interface for model enrichment (adding tags and comments to the models) for the access-controlled community members. Availability and implementation: Freely available for model curation service at http://www.payaologue.org. Web site implemented in Seaser Framework 2.0 with S2Flex2, MySQL 5.0 and Tomcat 5.5, with all major browsers supported.
Related JoVE Video
The Systems Biology Graphical Notation.
Nat. Biotechnol.
PUBLISHED: 08-07-2009
Show Abstract
Hide Abstract
Circuit diagrams and Unified Modeling Language diagrams are just two examples of standard visual languages that help accelerate work by promoting regularity, removing ambiguity and enabling software tool support for communication of complex information. Ironically, despite having one of the highest ratios of graphical to textual information, biology still lacks standard graphical notations. The recent deluge of biological knowledge makes addressing this deficit a pressing concern. Toward this goal, we present the Systems Biology Graphical Notation (SBGN), a visual language developed by a community of biochemists, modelers and computer scientists. SBGN consists of three complementary languages: process diagram, entity relationship diagram and activity flow diagram. Together they enable scientists to represent networks of biochemical interactions in a standard, unambiguous way. We believe that SBGN will foster efficient and accurate representation, visualization, storage, exchange and reuse of information on all kinds of biological knowledge, from gene regulation, to metabolism, to cellular signaling.
Related JoVE Video
Consistent design schematics for biological systems: standardization of representation in biological engineering.
J R Soc Interface
PUBLISHED: 06-03-2009
Show Abstract
Hide Abstract
The discovery by design paradigm driving research in synthetic biology entails the engineering of de novo biological constructs with well-characterized input-output behaviours and interfaces. The construction of biological circuits requires iterative phases of design, simulation and assembly, leading to the fabrication of a biological device. In order to represent engineered models in a consistent visual format and further simulating them in silico, standardization of representation and model formalism is imperative. In this article, we review different efforts for standardization, particularly standards for graphical visualization and simulation/annotation schemata adopted in systems biology. We identify the importance of integrating the different standardization efforts and provide insights into potential avenues for developing a common framework for model visualization, simulation and sharing across various tools. We envision that such a synergistic approach would lead to the development of global, standardized schemata in biology, empowering deeper understanding of molecular mechanisms as well as engineering of novel biological systems.
Related JoVE Video
CTen: a web-based platform for identifying enriched cell types from heterogeneous microarray data.
BMC Genomics
Show Abstract
Hide Abstract
Interpreting in vivo sampled microarray data is often complicated by changes in the cell population demographics. To put gene expression into its proper biological context, it is necessary to distinguish differential gene transcription from artificial gene expression induced by changes in the cellular demographics.
Related JoVE Video
AlzPathway: a comprehensive map of signaling pathways of Alzheimers disease.
BMC Syst Biol
Show Abstract
Hide Abstract
Alzheimers disease (AD) is the most common cause of dementia among the elderly. To clarify pathogenesis of AD, thousands of reports have been accumulating. However, knowledge of signaling pathways in the field of AD has not been compiled as a database before.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.