JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A Double Hit CD10-Negative B-Cell Lymphoma with t(3;8)(q27;q24) Leading to Juxtaposition of the BCL6 and MYC Loci Associated with Good Clinical Outcome.
Case Rep Hematol
PUBLISHED: 08-08-2014
Show Abstract
Hide Abstract
The WHO classification of lymphomas allows for a group of diseases that have features intermediate between those of Burkitt lymphoma and diffuse large B-cell lymphoma. These are a diverse group of diseases whose genetics and clinical course are yet to be fully described. We report an unusual case of high grade B-cell lymphoma, intermediate between DLBCL and BL, lacking CD10 expression in which the chromosomal translocation t(3;8)(q27;q24) was found to be the sole chromosomal abnormality. FISH analysis demonstrated juxtaposition of the BCL6 and MYC loci without obvious involvement of the IGH locus, suggesting constitutive MYC expression due to promoter substitution. The patient responded to intensive chemotherapy and remains in remission two years after finishing therapy.
Related JoVE Video
Recurrent mutation of JAK3 in T-cell prolymphocytic leukemia.
Genes Chromosomes Cancer
PUBLISHED: 01-21-2014
Show Abstract
Hide Abstract
T-cell prolymphocytic leukemia (T-PLL) is an aggressive post-thymic T-cell malignancy characterized by the recurrent inv(14)(q11q32)/t(14;14)(q11;q32) or t(X;14)(q28;q11) leading to activation of either the TCL1 or MTCP1 gene, respectively. However, these primary genetic events are insufficient to drive leukemogenesis. Recently, activating mutations in JAK3 have been identified in other T-cell malignancies. Since JAK3 is essential for T-cell maturation, we analyzed a cohort of 32 T-PLL patients for mutational hot spots in the JAK3 gene using a step-wise screening approach. We identified 14 mutations in 11 of 32 patients (34%). The most frequently detected mutation in our cohort was M511I (seen in 57% of cases) previously described as an activating change in other T-cell malignancies. Three patients carried two mutations in JAK3. In two patients M511I and R657Q were simultaneously detected and in another patient V674F and V678L. In the latter case we could demonstrate that the mutations were on the same allele in cis. Protein modeling and homology analyses of mutations present in other members of the JAK family suggested that these mutations likely activate JAK3, possibly by disrupting the activation loop and the interface between N and C lobes, increasing the accessibility of the catalytic loop. In addition, four of the 21 patients lacking a JAK3 point mutation presented an aberrant karyotype involving the chromosomal band 19p13 harboring the JAK3 locus. The finding of recurrent activating JAK3 mutations in patients with T-PLL could enable the use of JAK3 inhibitors to treat patients with this unfavorable malignancy who otherwise have a very poor prognosis.
Related JoVE Video
A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia.
Nat. Genet.
PUBLISHED: 08-20-2013
Show Abstract
Hide Abstract
Genome-wide association studies (GWAS) of chronic lymphocytic leukemia (CLL) have shown that common genetic variation contributes to the heritable risk of CLL. To identify additional CLL susceptibility loci, we conducted a GWAS and performed a meta-analysis with a published GWAS totaling 1,739 individuals with CLL (cases) and 5,199 controls with validation in an additional 1,144 cases and 3,151 controls. A combined analysis identified new susceptibility loci mapping to 3q26.2 (rs10936599, P = 1.74 × 10(-9)), 4q26 (rs6858698, P = 3.07 × 10(-9)), 6q25.2 (IPCEF1, rs2236256, P = 1.50 × 10(-10)) and 7q31.33 (POT1, rs17246404, P = 3.40 × 10(-8)). Additionally, we identified a promising association at 5p15.33 (CLPTM1L, rs31490, P = 1.72 × 10(-7)) and validated recently reported putative associations at 5p15.33 (TERT, rs10069690, P = 1.12 × 10(-10)) and 8q22.3 (rs2511714, P = 2.90 × 10(-9)). These findings provide further insights into the genetic and biological basis of inherited genetic susceptibility to CLL.
Related JoVE Video
Precision medicines for B-cell leukaemias and lymphomas; progress and potential pitfalls.
Br. J. Haematol.
PUBLISHED: 01-24-2013
Show Abstract
Hide Abstract
There is now a plethora of new precision medicines for B-cell malignancy including classical kinase inhibitors, rationally designed inhibitors of anti-apoptotic proteins and antibody or antibody drug/toxin conjugates with functional properties. Some are showing spectacular single agent activity in early phase clinical studies and may reduce or, in combination, even obviate the need for chemotherapy. Nevertheless, significant problems remain if these medicines are to be introduced into routine clinical practice in a rational and affordable manner. Firstly, precision medicines must be carefully matched in a mechanistic fashion with specific subtypes of disease. Whilst sensitivity may be predicted by the detection of key mutations or by expression of target molecules, for therapies that depend on intact intracellular signalling pathways, functional assessment on viable primary malignant cells will be necessary using assays that faithfully mimic in vivo conditions. A second, but no less important challenge is to define mechanism-based synergistic combinations associated with minimal toxicities rather than simply adding new precision medicines to existing chemotherapeutic regimens. Finally, a closer, open, two-way interaction between academic medicine and the pharmaceutical industry will be necessary to achieve these aims. Implementing such changes would change radically how and where patients with B-cell malignancies are managed.
Related JoVE Video
A syn-anti conformational difference allows SRSF2 to recognize guanines and cytosines equally well.
EMBO J.
PUBLISHED: 06-15-2011
Show Abstract
Hide Abstract
SRSF2 (SC35) is a key player in the regulation of alternative splicing events and binds degenerated RNA sequences with similar affinity in nanomolar range. We have determined the solution structure of the SRSF2 RRM bound to the 5-UCCAGU-3 and 5-UGGAGU-3 RNA, both identified as SRSF2 binding sites in the HIV-1 tat exon 2. RNA recognition is achieved through a novel sandwich-like structure with both termini forming a positively charged cavity to accommodate the four central nucleotides. To bind both RNA sequences equally well, SRSF2 forms a nearly identical network of intermolecular interactions by simply flipping the bases of the two consecutive C or G nucleotides into either anti or syn conformation. We validate this unusual mode of RNA recognition functionally by in-vitro and in-vivo splicing assays and propose a 5-SSNG-3 (S=C/G) high-affinity binding consensus sequence for SRSF2. In conclusion, in addition to describe for the first time the RNA recognition mode of SRSF2, we provide the precise consensus sequence to identify new putative binding sites for this splicing factor.
Related JoVE Video
Molecular basis of purine-rich RNA recognition by the human SR-like protein Tra2-?1.
Nat. Struct. Mol. Biol.
PUBLISHED: 03-13-2011
Show Abstract
Hide Abstract
Tra2-?1 is a unique splicing factor as its single RNA recognition motif (RRM) is located between two RS (arginine-serine) domains. To understand how this protein recognizes its RNA target, we solved the structure of Tra2-?1 RRM in complex with RNA. The central 5-AGAA-3 motif is specifically recognized by residues from the ?-sheet of the RRM and by residues from both extremities flanking the RRM. The structure suggests that RNA binding by Tra2-?1 induces positioning of the two RS domains relative to one another. By testing the effect of Tra2-?1 and RNA mutations on the splicing of SMN2 exon 7, we validated the importance of the RNA-protein contacts observed in the structure for the function of Tra2-?1 and determined the functional sequence of Tra2-?1 in SMN2 exon 7. Finally, we propose a model for the assembly of multiple RNA binding proteins on this exon.
Related JoVE Video
CARM1 but not its enzymatic activity is required for transcriptional coactivation of NF-kappaB-dependent gene expression.
J. Mol. Biol.
PUBLISHED: 06-10-2009
Show Abstract
Hide Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) belongs to the protein arginine methyltransferase family. It was reported to methylate histone as well as non-histone proteins and thus to be involved in transcriptional activation and mRNA degradation/stability. Here we report the genetic complementation of carm1-/- cells with wild-type CARM1 or an enzymatic inactive mutant of CARM1 to investigate the requirement of CARM1 and its enzymatic activity for nuclear factor kappaB (NF-kappaB)-dependent gene expression. Using custom microarray and quantitative reverse transcription PCR, we could define a subset of NF-kappaB target genes that required CARM1 for their proper expression. Although several tumor necrosis factor-alpha- and phorbol-12-myristate-13-acetate/ionomycin-induced NF-kappaB target genes are CARM1 dependent, CARM1 enzymatic activity was dispensable for gene expression. Interestingly, CARM1 was not required for the stimulus-dependent recruitment of RelA/p65 to chromatin, suggesting that CARM1 is rather contributing in protein complex stabilization. Together, our results confirm the importance of CARM1 as transcriptional cofactor without the involvement of its catalytic activity.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.