JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
S-nitrosation of mitochondrial connexin 43 regulates mitochondrial function.
Basic Res. Cardiol.
PUBLISHED: 08-13-2014
Show Abstract
Hide Abstract
S-nitrosation (SNO) of connexin 43 (Cx43)-formed channels modifies dye uptake in astrocytes and gap junctional communication in endothelial cells. Apart from forming channels at the plasma membrane of several cell types, Cx43 is also located at the inner membrane of myocardial subsarcolemmal mitochondria (SSM), but not in interfibrillar mitochondria (IFM). The absence or pharmacological blockade of mitochondrial Cx43 (mtCx43) reduces dye and potassium uptake. Lack of mtCx43 is associated with loss of endogenous cardioprotection by ischemic preconditioning (IPC), which is mediated by formation of reactive oxygen species (ROS). Whether or not mitochondrial Lucifer Yellow (LY), ion uptake, or ROS generation are affected by SNO of mtCx43 and whether or not cardioprotective interventions affect SNO of mtCx43 remains unknown. In SSM from rat hearts, application of NO donors (48 nmol to 1 mmol) increased LY uptake (0.5 mmol SNAP 38.4 ± 7.1 %, p < 0.05; 1 mmol GSNO 28.1 ± 7.4 %, p < 0.05) and the refilling rate of potassium (SNAP 227.9 ± 30.1 %, p < 0.05; GSNO 122.6 ± 28.1 %, p < 0.05). These effects were absent following blockade of Cx43 hemichannels by carbenoxolone as well as in IFM lacking Cx43. Unlike potassium, the sodium permeability was not affected by application of NO. Furthermore, mitochondrial ROS formation was increased following NO application compared to control SSM (0.5 mmol SNAP 22.9 ± 1.8 %, p < 0.05; 1 mmol GSNO 40.6 ± 7.1 %, p < 0.05), but decreased in NO treated IFM compared to control (0.5 mmol SNAP 14.4 ± 4 %, p < 0.05; 1 mmol GSNO 13.8 ± 4 %, p < 0.05). NO donor administration to isolated SSM increased SNO of mtCx43 by 109.2 ± 15.8 %. Nitrite application (48 nmol) to mice was also associated with elevated SNO of mtCx43 by 59.3 ± 18.2 % (p < 0.05). IPC by four cycles of 5 min of ischemia and 5 min of reperfusion increased SNO of mtCx43 by 41.6 ± 1.7 % (p < 0.05) when compared to control perfused rat hearts. These data suggest that SNO of mtCx43 increases mitochondrial permeability, especially for potassium and leads to increased ROS formation. The increased amount of SNO mtCx43 by IPC or nitrite administration may link NO and Cx43 in the signal transduction cascade of cardioprotective interventions.
Related JoVE Video
Oxidative stress in muscular dystrophy: from generic evidence to specific sources and targets.
J. Muscle Res. Cell. Motil.
PUBLISHED: 02-19-2014
Show Abstract
Hide Abstract
Muscular dystrophies (MDs) are a heterogeneous group of diseases that share a common end-point represented by muscular wasting. MDs are caused by mutations in a variety of genes encoding for different molecules, including extracellular matrix, transmembrane and membrane-associated proteins, cytoplasmic enzymes and nuclear proteins. However, it is still to be elucidated how genetic mutations can affect the molecular mechanisms underlying the contractile impairment occurring in these complex pathologies. The intracellular accumulation of reactive oxygen species (ROS) is widely accepted to play a key role in contractile derangements occurring in the different forms of MDs. However, scarce information is available concerning both the most relevant sources of ROS and their major molecular targets. This review focuses on (i) the sources of ROS, with a special emphasis on monoamine oxidase, a mitochondrial enzyme, and (ii) the targets of ROS, highlighting the relevance of the oxidative modification of myofilament proteins.
Related JoVE Video
Signaling by S-nitrosylation in the heart.
J. Mol. Cell. Cardiol.
PUBLISHED: 01-06-2014
Show Abstract
Hide Abstract
Nitric oxide is a gaseous signaling molecule that is well-known for the Nobel prize-winning research that defined nitric oxide as a physiological regulator of blood pressure in the cardiovascular system. Nitric oxide can signal via the classical pathway involving activation of guanylyl cyclase or by a post-translational modification, referred to as S-nitrosylation (SNO) that can occur on cysteine residues of proteins. As proteins with cysteine residues are common, this allows for amplification of the nitric oxide signaling. This review will focus on the possible mechanisms through which SNO can alter protein function in cardiac cells, and the role of SNO occupancy in these mechanisms. The specific mechanisms that regulate protein SNO, including redox-dependent processes, will also be discussed. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".
Related JoVE Video
Cyclophilin d modulates mitochondrial acetylome.
Circ. Res.
PUBLISHED: 09-23-2013
Show Abstract
Hide Abstract
Mice lacking cyclophilin D (CypD(-/-)), a mitochondrial chaperone protein, have altered cardiac metabolism. As acetylation has been shown to regulate metabolism, we tested whether changes in protein acetylation might play a role in these metabolic changes in CypD(-/-) hearts.
Related JoVE Video
Oxidation of myofibrillar proteins in human heart failure.
J. Am. Coll. Cardiol.
PUBLISHED: 01-15-2011
Show Abstract
Hide Abstract
We investigated the incidence and contribution of the oxidation/nitrosylation of tropomyosin and actin to the contractile impairment and cardiomyocyte injury occurring in human end-stage heart failure (HF) as compared with nonfailing donor hearts.
Related JoVE Video
Mitochondrial injury and protection in ischemic pre- and postconditioning.
Antioxid. Redox Signal.
PUBLISHED: 11-30-2010
Show Abstract
Hide Abstract
Mitochondrial damage is a determining factor in causing loss of cardiomyocyte function and viability, yet a mild degree of mitochondrial dysfunction appears to underlie cardioprotection against injury caused by postischemic reperfusion. This review is focused on two major mechanisms of mitochondrial dysfunction, namely, oxidative stress and opening of the mitochondrial permeability transition pore. The formation of reactive oxygen species in mitochondria will be analyzed with regard to factors controlling mitochondrial permeability transition pore opening. Finally, these mitochondrial processes are analyzed with respect to cardioprotection afforded by ischemic pre- and postconditioning.
Related JoVE Video
Oxidative stress by monoamine oxidases is causally involved in myofiber damage in muscular dystrophy.
Hum. Mol. Genet.
PUBLISHED: 08-17-2010
Show Abstract
Hide Abstract
Several studies documented the key role of oxidative stress and abnormal production of reactive oxygen species (ROS) in the pathophysiology of muscular dystrophies (MDs). The sources of ROS, however, are still controversial as well as their major molecular targets. This study investigated whether ROS produced in mitochondria by monoamine oxidase (MAO) contributes to MD pathogenesis. Pargyline, an MAO inhibitor, reduced ROS accumulation along with a beneficial effect on the dystrophic phenotype of Col6a1(-/-) mice, a model of Bethlem myopathy and Ullrich congenital MD, and mdx mice, a model of Duchenne MD. Based on our previous observations on oxidative damage of myofibrillar proteins in heart failure, we hypothesized that MAO-dependent ROS might impair contractile function in dystrophic muscles. Indeed, oxidation of myofibrillar proteins, as probed by formation of disulphide cross-bridges in tropomyosin, was detected in both Col6a1(-/-) and mdx muscles. Notably, pargyline significantly reduced myofiber apoptosis and ameliorated muscle strength in Col6a1(-/-) mice. This study demonstrates a novel and determinant role of MAO in MDs, adding evidence of the pivotal role of mitochondria and suggesting a therapeutic potential for MAO inhibition.
Related JoVE Video
Increased inducible nitric oxide synthase and arginase II expression in heart failure: no net nitrite/nitrate production and protein S-nitrosylation.
Am. J. Physiol. Heart Circ. Physiol.
PUBLISHED: 05-28-2010
Show Abstract
Hide Abstract
Our objective was to address the balance of inducible nitric oxide (NO) synthase (iNOS) and arginase and their contribution to contractile dysfunction in heart failure (HF). Excessive NO formation is thought to contribute to contractile dysfunction; in macrophages, increased iNOS expression is associated with increased arginase expression, which competes with iNOS for arginine. With substrate limitation, iNOS may become uncoupled and produce reactive oxygen species (ROS). In rabbits, HF was induced by left ventricular (LV) pacing (400 beats/min) for 3 wk. iNOS mRNA [quantitative real-time PCR (qRT-PCR)] and protein expression (confocal microscopy) were detected, and arginase II expression was quantified with Western blot; serum arginine and myocardial nitrite and nitrate concentrations were determined by chemiluminescence, and protein S-nitrosylation with Western blot. Superoxide anions were quantified with dihydroethidine staining. HF rabbits had increased LV end-diastolic diameter [20.0 + or - 0.5 (SE) vs. 17.2 + or - 0.3 mm in sham] and decreased systolic fractional shortening (11.1 + or - 1.4 vs. 30.6 + or - 0.7% in sham; both P < 0.05). Myocardial iNOS mRNA and protein expression were increased, however, not associated with increased myocardial nitrite or nitrate concentrations or protein S-nitrosylation. The serum arginine concentration was decreased (124.3 + or - 5.6 vs. 155.4 + or - 12.0 micromol/l in sham; P < 0.05) at a time when cardiac arginase II expression was increased (0.06 + or - 0.01 vs. 0.02 + or - 0.01 arbitrary units in sham; P < 0.05). Inhibition of iNOS with 1400W attenuated superoxide anion formation and contractile dysfunction in failing hearts. Concomitant increases in iNOS and arginase expression result in unchanged NO species and protein S-nitrosylation; with substrate limitation, uncoupled iNOS produces superoxide anions and contributes to contractile dysfunction.
Related JoVE Video
CypD(-/-) hearts have altered levels of proteins involved in Krebs cycle, branch chain amino acid degradation and pyruvate metabolism.
J. Mol. Cell. Cardiol.
Show Abstract
Hide Abstract
Cyclophilin D (CypD) is a mitochondrial chaperone that has been shown to regulate the mitochondrial permeability transition pore (MPTP). MPTP opening is a major determinant of mitochondrial dysfunction and cardiomyocyte death during ischemia/reperfusion (I/R) injury. Mice lacking CypD have been widely used to study regulation of the MPTP, and it has been shown recently that genetic depletion of CypD correlates with elevated levels of mitochondrial Ca(2+). The present study aimed to characterize the metabolic changes in CypD(-/-) hearts. Initially, we used a proteomics approach to examine protein changes in CypD(-/-) mice. Using pathway analysis, we found that CypD(-/-) hearts have alterations in branched chain amino acid metabolism, pyruvate metabolism and the Krebs cycle. We tested whether these metabolic changes were due to inhibition of electron transfer from these metabolic pathways into the electron transport chain. As we found decreased levels of succinate dehydrogenase and electron transfer flavoprotein in the proteomics analysis, we examined whether activities of these enzymes might be altered. However, we found no alterations in their activities. The proteomics study also showed a 23% decrease in carnitine-palmitoyltransferase 1 (CPT1), which prompted us to perform a metabolomics analysis. Consistent with the decrease in CPT1, we found a significant decrease in C4/Ci4, C5-OH/C3-DC, C12:1, C14:1, C16:1, and C20:3 acyl carnitines in hearts from CypD(-/-) mice. In summary, CypD(-/-) hearts exhibit changes in many metabolic pathways and caution should be used when interpreting results from these mice as due solely to inhibition of the MPTP.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.