JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Neurodevelopmental delays and macrocephaly in 17p13.1 microduplication syndrome.
Am. J. Med. Genet. A
PUBLISHED: 08-13-2014
Show Abstract
Hide Abstract
Microduplication of chromosome 17p13.1 is a rarely reported chromosome abnormality associated with neurodevelopmental delays. We describe two unrelated patients with overlapping microduplications of chromosome 17p13.1. The first patient is a 2-year-old male who presented with neurodevelopmental delays and macrocephaly. He was found to have a de novo 788?kb copy gain of 17p13.2p13.1 and a de novo 134?kb copy gain of 17p13.1. These duplications include multiple candidate genes, including EFNB3, NLGN2, DLG4, GABARAP, and DULLARD, which may be responsible for neurodevelopmental delays in affected individuals. The second patient is a 29-year-old female with mild intellectual disability and relative macrocephaly. She was found to have a 62.5?kb copy gain of chromosome 17p13.1 that includes the DLG4, GABARAP, and DULLARD genes. The DLG4, GABARAP, and DULLARD genes included in the microduplications of both our patients appear to be candidate genes for neurodevelopmental delays and macrocephaly in individuals with 17p13.1 microduplication syndrome. © 2014 Wiley Periodicals, Inc.
Related JoVE Video
Eight years experience from a skeletal dysplasia referral center in a tertiary hospital in Southern India: a model for the diagnosis and treatment of rare diseases in a developing country.
Am. J. Med. Genet. A
PUBLISHED: 06-03-2014
Show Abstract
Hide Abstract
We report on a series of 514 consecutive diagnoses of skeletal dysplasia made over an 8-year period at a tertiary hospital in Kerala, India. The most common diagnostic groups were dysostosis multiplex group (n = 73) followed by FGFR3 (n = 49) and osteogenesis imperfecta and decreased bone density group (n = 41). Molecular confirmation was obtained in 109 cases. Clinical and radiographic evaluation was obtained in close diagnostic collaboration with expert groups abroad through Internet communication for difficult cases. This has allowed for targeted biochemical and molecular studies leading to the correct identification of rare or novel conditions, which has not only helped affected families by allowing for improved genetic counseling and prenatal diagnosis but also resulted in several scientific contributions. We conclude that (1) the spectrum of genetic bone disease in Kerala, India, is similar to that of other parts of the world, but recessive entities may be more frequent because of widespread consanguinity; (2) prenatal detection of skeletal dysplasias remains relatively rare because of limited access to expert prenatal ultrasound facilities; (3) because of the low accessibility to molecular tests, precise clinical-radiographic phenotyping remains the mainstay of diagnosis and counseling and of gatekeeping to efficient laboratory testing; (4) good phenotyping allows, a significant contribution to the recognition and characterization of novel entities. We suggest that the tight collaboration between a local reference center with dedicated personnel and expert diagnostic networks may be a proficient model to bring current diagnostics to developing countries.
Related JoVE Video
Outcomes after hematopoietic stem cell transplantation for children with I-cell disease.
Biol. Blood Marrow Transplant.
PUBLISHED: 05-13-2014
Show Abstract
Hide Abstract
Mucolipidosis type II (MLII), or I-cell disease, is a rare but severe disorder affecting localization of enzymes to the lysosome, generally resulting in death before the 10th birthday. Although hematopoietic stem cell transplantation (HSCT) has been used to successfully treat some lysosomal storage diseases, only 2 cases have been reported on the use of HSCT to treat MLII. For the first time, we describe the combined international experience in the use of HSCT for MLII in 22 patients. Although 95% of the patients engrafted, overall survival was low, with only 6 patients (27%) alive at last follow-up. The most common cause of death post-transplant was cardiovascular complications, most likely due to disease progression. Survivors were globally delayed in development and often required complex medical support, such as gastrostomy tubes for nutrition and tracheostomy with mechanical ventilation. Although HSCT has demonstrated efficacy in treating some lysosomal storage disorders, the neurologic outcome and survival for patents with MLII were poor. Therefore, new medical and cellular therapies should be sought for these patients.
Related JoVE Video
A novel intermediate mucolipidosis II/III?? caused by GNPTAB mutation in the cytosolic N-terminal domain.
Eur. J. Hum. Genet.
PUBLISHED: 01-31-2013
Show Abstract
Hide Abstract
Mucolipidosis (ML) II and ML III?/? are allelic autosomal recessive metabolic disorders due to mutations in GNPTAB. The gene encodes the enzyme UDP-GlcNAc-1-phosphotransferase (GNPT), which is critical to proper trafficking of lysosomal acid hydrolases. The ML phenotypic spectrum is dichotomous. Criteria set for defining ML II and ML III?/? are inclusive for all but the few patients with phenotypes that span the archetypes. Clinical and biochemical findings of the intermediate ML in eight patients with the c.10A>C missense mutation in GNPTAB are presented to define this intermediate ML and provide a broader insight into ML pathogenesis. Extensive clinical information, including radiographic examinations at various ages, was obtained from a detailed study of all patients. GNPTAB was sequenced in probands and parents. GNPT activity was measured and cathepsin D sorting assays were performed in fibroblasts. Intermediate ML patients who share the c.10A>C/p.K4Q mutation in GNPTAB demonstrate a distinct, consistent phenotype similar to ML II in physical and radiographic features and to ML III?/? in psychomotor development and life expectancy. GNPT activity is reduced to 7-12% but the majority of newly synthesized cathepsin D remains intracellular. The GNPTAB c.10A>C/p.K4Q missense allele results in an intermediate ML II/III with distinct clinical and biochemical characteristics. This delineation strengthens the utility of the discontinuous genotype-phenotype correlation in ML II and ML III?/? and prompts additional studies on the tissue-specific pathogenesis in GNPT-deficient ML.European Journal of Human Genetics advance online publication, 18 September 2013; doi:10.1038/ejhg.2013.207.
Related JoVE Video
Mucolipidosis type III ?/?: the first characterization of this rare disease by autopsy.
Arch. Pathol. Lab. Med.
PUBLISHED: 04-07-2011
Show Abstract
Hide Abstract
We report findings from an autopsy of a 45-year-old woman with the rare lysosomal storage disease mucolipidosis type III ?/?. Her disease manifested most notably as multiple bone and cartilage problems with tracheal and bronchial malacia. Principal autopsy findings included gross abnormalities in bone and cartilage with corresponding microscopic cytoplasmic lysosomal granules. These cytoplasmic granules were also seen in histologic preparations of the brain, myocardium, heart valves, and fibroblasts of the liver and skin by light and electron microscopy. By electron microscopy there were scattered, diffuse vesicular cytoplasmic granules in neurons and glia and an increase in lysosomal structures with fine electron lucent granularity in the above tissue types. Our findings help elaborate current understanding of this disease and differentiate it from the mucopolysaccharidoses and related disorders. To our knowledge, this is the first report to document pathologic findings in a patient with mucolipidosis type III ?/? by autopsy.
Related JoVE Video
The natural history and osteodystrophy of mucolipidosis types II and III.
J Paediatr Child Health
PUBLISHED: 03-29-2010
Show Abstract
Hide Abstract
To assess the natural history and impact of the secondary bone disease observed in patients with mucolipidosis (ML) II and III.
Related JoVE Video
Clinical utility of the X-chromosome array.
Am. J. Med. Genet. A
Show Abstract
Hide Abstract
Previous studies have limited the use of specific X-chromosome array designed platforms to the evaluation of patients with intellectual disability. In this retrospective analysis, we reviewed the clinical utility of an X-chromosome array in a variety of scenarios. We divided patients according to the indication for the test into four defined categories: (1) autism spectrum disorders and/or developmental delay and/or intellectual disability (ASDs/DD/ID) with known family history of neurocognitive disorders; (2) ASDs/DD/ID without known family history of neurocognitive disorders; (3) breakpoint definition of an abnormality detected by a different cytogenetic test; and (4) evaluation of suspected or known X-linked conditions. A total of 59 studies were ordered with 27 copy number variants detected in 25 patients (25/59?=?42%). The findings were deemed pathogenic/likely pathogenic (16/59?=?27%), benign (4/59?=?7%) or uncertain (7/59?=?12%). We place particular emphasis on the utility of this test for the diagnostic evaluation of families affected with X-linked conditions and how it compares to whole genome arrays in this setting. In conclusion, the X-chromosome array frequently detects genomic alterations of the X chromosome and it has advantages when evaluating some specific X-linked conditions. However, careful interpretation and correlation with clinical findings is needed to determine the significance of such changes. When the X-chromosome array was used to confirm a suspected X-linked condition, it had a yield of 63% (12/19) and was useful in the evaluation and risk assessment of patients and families.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.