JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Mitotic wnt signaling promotes protein stabilization and regulates cell size.
Mol. Cell
PUBLISHED: 02-04-2014
Show Abstract
Hide Abstract
Canonical Wnt signaling is thought to regulate cell behavior mainly by inducing ?-catenin-dependent transcription of target genes. In proliferating cells Wnt signaling peaks in the G2/M phase of the cell cycle, but the significance of this "mitotic Wnt signaling" is unclear. Here we introduce Wnt-dependent stabilization of proteins (Wnt/STOP), which is independent of ?-catenin and peaks during mitosis. We show that Wnt/STOP plays a critical role in protecting proteins, including c-MYC, from GSK3-dependent polyubiquitination and degradation. Wnt/STOP signaling increases cellular protein levels and cell size. Wnt/STOP, rather than ?-catenin signaling, is the dominant mode of Wnt signaling in several cancer cell lines, where it is required for cell growth. We propose that Wnt/STOP signaling slows down protein degradation as cells prepare to divide.
Related JoVE Video
The effect of amyloidogenic peptides on bacterial aging correlates with their intrinsic aggregation propensity.
J. Mol. Biol.
PUBLISHED: 09-23-2011
Show Abstract
Hide Abstract
The formation of aggregates by misfolded proteins is thought to be inherently toxic, affecting cell fitness. This observation has led to the suggestion that selection against protein aggregation might be a major constraint on protein evolution. The precise fitness cost associated with protein aggregation has been traditionally difficult to evaluate. Moreover, it is not known if the detrimental effect of aggregates on cell physiology is generic or depends on the specific structural features of the protein deposit. In bacteria, the accumulation of intracellular protein aggregates reduces cell reproductive ability, promoting cellular aging. Here, we exploit the cell division defects promoted by the intracellular aggregation of Alzheimers-disease-related amyloid ? peptide in bacteria to demonstrate that the fitness cost associated with protein misfolding and aggregation is connected to the protein sequence, which controls both the in vivo aggregation rates and the conformational properties of the aggregates. We also show that the deleterious impact of protein aggregation on bacterial division can be buffered by molecular chaperones, likely broadening the sequential space on which natural selection can act. Overall, the results in the present work have potential implications for the evolution of proteins and provide a robust system to experimentally model and quantify the impact of protein aggregation on cell fitness.
Related JoVE Video
Allosteric communication between the nucleotide binding domains of caseinolytic peptidase B.
J. Biol. Chem.
PUBLISHED: 06-03-2011
Show Abstract
Hide Abstract
ClpB is a hexameric chaperone that solubilizes and reactivates protein aggregates in cooperation with the Hsp70/DnaK chaperone system. Each of the identical protein monomers contains two nucleotide binding domains (NBD), whose ATPase activity must be coupled to exert on the substrate the mechanical work required for its reactivation. However, how communication between these sites occurs is at present poorly understood. We have studied herein the affinity of each of the NBDs for nucleotides in WT ClpB and protein variants in which one or both sites are mutated to selectively impair nucleotide binding or hydrolysis. Our data show that the affinity of NBD2 for nucleotides (K(d) = 3-7 ?m) is significantly higher than that of NBD1. Interestingly, the affinity of NBD1 depends on nucleotide binding to NBD2. Binding of ATP, but not ADP, to NBD2 increases the affinity of NBD1 (the K(d) decreases from ?160-300 to 50-60 ?m) for the corresponding nucleotide. Moreover, filling of the NBD2 ring with ATP allows the cooperative binding of this nucleotide and substrates to the NBD1 ring. Data also suggest that a minimum of four subunits cooperate to bind and reactivate two different aggregated protein substrates.
Related JoVE Video
A quantitative analysis of the effect of nucleotides and the M domain on the association equilibrium of ClpB.
Biochemistry
PUBLISHED: 02-22-2011
Show Abstract
Hide Abstract
ClpB is a hexameric molecular chaperone that, together with the DnaK system, has the ability to disaggregate stress-denatured proteins. The hexamer is a highly dynamic complex, able to reshuffle subunits. To further characterize the biological implications of the ClpB oligomerization state, the association equilibrium of the wild-type (wt) protein and of two deletion mutants, which lack part or the whole M domain, was quantitatively analyzed under different experimental conditions, using several biophysical [analytical ultracentrifugation, composition-gradient (CG) static light scattering, and circular dichroism] and biochemical (ATPase and chaperone activity) methods. We have found that (i) ClpB self-associates from monomers to form hexamers and higher-order oligomers that have been tentatively assigned to dodecamers, (ii) oligomer dissociation is not accompanied by modifications of the protein secondary structure, (iii) the M domain is engaged in intersubunit interactions that stabilize the protein hexamer, and (iv) the nucleotide-induced rearrangement of ClpB affects the protein oligomeric core, in addition to the proposed radial extension of the M domain. The difference in the stability of the ATP- and ADP-bound states [??G(ATP-ADP) = -10 kJ/mol] might explain how nucleotide exchange promotes the conformational change of the protein particle that drives its functional cycle.
Related JoVE Video
Wnt signaling: multivesicular bodies hold GSK3 captive.
Cell
PUBLISHED: 12-25-2010
Show Abstract
Hide Abstract
Two key events in Wnt signal transduction, receptor endocytosis and inactivation of Glycogen Synthase Kinase 3 (GSK3), remain incompletely understood. Taelman et al. (2010) discover that Wnt signaling inactivates GSK3 by sequestering the enzyme in multivesicular bodies, thus linking these two events and providing a new framework for understanding Wnt signaling.
Related JoVE Video
Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling.
Science
PUBLISHED: 01-23-2010
Show Abstract
Hide Abstract
Wnt/beta-catenin signaling is important in stem cell biology, embryonic development, and disease, including cancer. However, the mechanism of Wnt signal transmission, notably how the receptors are activated, remains incompletely understood. We found that the prorenin receptor (PRR) is a component of the Wnt receptor complex. PRR functions in a renin-independent manner as an adaptor between Wnt receptors and the vacuolar H+-adenosine triphosphatase (V-ATPase) complex. Moreover, PRR and V-ATPase were required to mediate Wnt signaling during antero-posterior patterning of Xenopus early central nervous system development. The results reveal an unsuspected role for the prorenin receptor, V-ATPase activity, and acidification during Wnt/beta-catenin signaling.
Related JoVE Video
Nucleotide utilization requirements that render ClpB active as a chaperone.
FEBS Lett.
PUBLISHED: 01-12-2010
Show Abstract
Hide Abstract
ClpB is a member of the AAA+ superfamily that forms a ring-shaped homohexamer. Each protomer contains two nucleotide binding domains arranged in two rings that hydrolyze ATP. We extend here previous studies on ClpB nucleotide utilization requirements by using an experimental approach that maximizes random incorporation of different subunits into the protein hexamer. Incorporation of one subunit unable to bind or hydrolyze ATP knocks down the chaperone activity, while the wt hexamer can accommodate two mutant subunits that hydrolyze ATP in only one protein ring. Four subunits seem to build the functional cooperative unit, provided that one of the protein rings contains active nucleotide binding sites.
Related JoVE Video
DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface.
FEBS Lett.
PUBLISHED: 07-31-2009
Show Abstract
Hide Abstract
Intracellular protein aggregates formed under severe thermal stress can be reactivated by the concerted action of the Hsp70 system and Hsp100 chaperones. We analyzed here the interaction of DnaJ/DnaK and ClpB with protein aggregates. We show that aggregate properties modulate chaperone binding, which in turn determines aggregate reactivation efficiency. ClpB binding strictly depends on previous DnaK association with the aggregate. The affinity of ClpB for the aggregate-DnaK complex is low (K(d)=5-10 microM), indicating a weak interaction. Therefore, formation of the DnaK-ClpB bichaperone network is a three step process. After initial DnaJ binding, the cochaperone drives association of DnaK to aggregates, and in the third step, as shown here, DnaK mediates ClpB interaction with the aggregate surface.
Related JoVE Video
Mitotic and mitogenic Wnt signalling.
EMBO J.
Show Abstract
Hide Abstract
Canonical Wnt signalling plays an important role in development, tissue homeostasis, and cancer. At the cellular level, canonical Wnt signalling acts by regulating cell fate, cell growth, and cell proliferation. With regard to proliferation, there is increasing evidence for a complex interaction between canonical Wnt signalling and the cell cycle. Mitogenic Wnt signalling regulates cell proliferation by promoting G1 phase. In mitosis, components of the Wnt signalling cascade function directly in spindle formation. Moreover, Wnt signalling is strongly activated in mitosis, suggesting that mitotic Wnt signalling plays an important role to orchestrate a cell division program. Here, we review the complex interplay between Wnt signalling and the cell cycle.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.