JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
CREB phosphorylation at Ser133 regulates transcription via distinct mechanisms downstream of cAMP and MAPK signalling.
Biochem. J.
PUBLISHED: 01-21-2014
Show Abstract
Hide Abstract
CREB (cAMP-response-element-binding protein) is an important transcription factor for the activation of a number of immediate early genes. CREB is phosphorylated on Ser133 by PKA (protein kinase A), promoting the recruitment of the co-activator proteins CBP (CREB-binding protein) and p300; this has been proposed to increase the transcription of CREB-dependent genes. CREB is also phosphorylated on Ser133 by MSK1/2 (mitogen- and stress-activated kinase 1/2) in cells in response to the activation of MAPK (mitogen-activated protein kinase) signalling; however, the relevance of this to gene transcription has been controversial. To resolve this problem, we created a mouse with a Ser133 to alanine residue mutation in the endogenous Creb gene. Unlike the total CREB knockout, which is perinatally lethal, these mice were viable, but born at less than the expected Mendelian frequency on a C57Bl/6 background. Using embryonic fibroblasts from the S133A-knockin mice we show in the present study that Ser133 phosphorylation downstream of PKA is required for CBP/p300 recruitment. The requirement of Ser133 phosphorylation for the PKA-mediated induction of CREB-dependent genes was, however, promoter-specific. Furthermore, we show that in cells the phosphorylation of CREB on Ser133 by MSKs does not promote strong recruitment of CBP or p300. Despite this, MSK-mediated CREB phosphorylation is critical for the induction of CREB-dependent genes downstream of MAPK signalling.
Related JoVE Video
Dectin-1 regulates IL-10 production via a MSK1/2 and CREB dependent pathway and promotes the induction of regulatory macrophage markers.
PLoS ONE
PUBLISHED: 02-25-2013
Show Abstract
Hide Abstract
In response to infection by fungal pathogens, the innate immune system recognises specific fungal pathogen associated molecular patterns (PAMPs) via pattern recognition receptors including the C-type lectin dectin-1 and members of the Toll Like Receptor (TLR) family. Stimulation of these receptors leads to the induction of both pro- and anti-inflammatory cytokines. The protein kinases MSK1 and 2 are known to be important in limiting inflammatory cytokine production by macrophages in response to the TLR4 agonist LPS. In this study we show that MSKs are also activated in macrophages by the fungal derived ligand zymosan, as well as the dectin-1 specific agonists curdlan and depleted zymosan, via the ERK1/2 and p38? MAPK pathways. Furthermore, we show that MSKs regulate dectin-1 induced IL-10 production, and that this regulation is dependent on the ability of MSKs to phosphorylate the transcription factor CREB. IL-10 secreted in response to zymosan was able to promote STAT3 phosphorylation via an autocrine feedback loop. Consistent with the decreased IL-10 secretion in MSK1/2 knockout macrophages, these cells also had decreased STAT3 tyrosine phosphorylation relative to wild type controls after stimulation with zymosan. We further show that the reduction in IL-10 production in the MSK1/2 macrophages results in increased secretion of IL-12p40 in response to zymosan relative to wild type controls. The production of high levels of IL-10 but low levels of IL-12 has previously been associated with an M2b or regulatory macrophage phenotype, which was initially described in macrophages stimulated with a combination of immune complexes and LPS. We found that zymosan, via dectin-1 activation, also leads to the expression of SphK1 and LIGHT, markers of a regulatory like phenotype in mouse macrophages. The expression of these makers was further reinforced by the high level of IL-10 secreted in response to zymosan stimulation.
Related JoVE Video
Targeted transcriptomic and metabolic profiling reveals temporal bottlenecks in the maize carotenoid pathway that may be addressed by multigene engineering.
Plant J.
PUBLISHED: 02-13-2013
Show Abstract
Hide Abstract
Carotenoids are a diverse group of tetraterpenoid pigments found in plants, fungi, bacteria and some animals. They play vital roles in plants and provide important health benefits to mammals, including humans. We previously reported the creation of a diverse population of transgenic maize plants expressing various carotenogenic gene combinations and exhibiting distinct metabolic phenotypes. Here we performed an in-depth targeted mRNA and metabolomic analysis of the pathway to characterize the specific impact of five carotenogenic transgenes and their interactions with 12 endogenous genes in four transgenic lines representing distinct genotypes and phenotypes. We reconstructed the temporal profile of the carotenoid pathway during endosperm development at the mRNA and metabolic levels (for total and individual carotenoids), and investigated the impact of transgene expression on the endogenous pathway. These studies enabled us to investigate the extent of any interactions between the introduced transgenic and native partial carotenoid pathways during maize endosperm development. Importantly, we developed a theoretical model that explains these interactions, and our results suggest genetic intervention points that may allow the maize endosperm carotenoid pathway to be engineered in a more effective and predictable manner.
Related JoVE Video
MSK1 and MSK2 inhibit lipopolysaccharide-induced prostaglandin production via an interleukin-10 feedback loop.
Mol. Cell. Biol.
PUBLISHED: 02-04-2013
Show Abstract
Hide Abstract
Prostaglandin production is catalyzed by cyclooxygenase 2 (cox-2). We demonstrate here that MSK1 and MSK2 (MSK1/2) can exert control on the induction of cox-2 mRNA by Toll-like receptor (TLR) agonists. In the initial phase of cox-2 induction, MSK1/2 knockout macrophages confirmed a role for MSK in the positive regulation of transcription. However, at later time points both lipopolysaccharide (LPS)-induced prostaglandin and cox-2 protein levels were increased in MSK1/2 knockout. Further analysis found that while MSKs promoted cox-2 mRNA transcription, following longer LPS stimulation MSKs also promoted degradation of cox-2 mRNA. This was found to be the result of an interleukin 10 (IL-10) feedback mechanism, with endogenously produced IL-10 promoting cox-2 degradation. The ability of IL-10 to do this was dependent on the mRNA binding protein TTP through a p38/MK2-mediated mechanism. As MSKs regulate IL-10 production in response to LPS, MSK1/2 knockout results in reduced IL-10 secretion and therefore reduced feedback from IL-10 on cox-2 mRNA stability. Following LPS stimulation, this increased mRNA stability correlated to an elevated induction of both of cox-2 protein and prostaglandin secretion in MSK1/2 knockout macrophages relative to that in wild-type cells. This was not restricted to isolated macrophages, as a similar effect of MSK1/2 knockout was seen on plasma prostaglandin E2 (PGE2) levels following intraperitoneal injection of LPS.
Related JoVE Video
Synergistic metabolism in hybrid corn indicates bottlenecks in the carotenoid pathway and leads to the accumulation of extraordinary levels of the nutritionally important carotenoid zeaxanthin.
Plant Biotechnol. J.
PUBLISHED: 08-29-2010
Show Abstract
Hide Abstract
Lutein and zeaxanthin cannot be synthesized de novo in humans, and although lutein is abundant in fruit and vegetables, good dietary sources of zeaxanthin are scarce. Certain corn varieties provide adequate amounts because the ratio of endosperm ?:? lycopene cyclase activity favours the ?-carotene/zeaxanthin branch of the carotenoid pathway. We previously described a transgenic corn line expressing the early enzymes in the pathway (including lycopene ?-cyclase) and therefore accumulating extraordinary levels of ?-carotene. Here, we demonstrate that introgressing the transgenic mini-pathway into wild-type yellow endosperm varieties gives rise to hybrids in which the ?:? ratio is altered additively. Where the ?:? ratio in the genetic background is high, introgression of the mini-pathway allows zeaxanthin production at an unprecedented 56 ?g/g dry weight. This result shows that metabolic synergy between endogenous and heterologous pathways can be used to enhance the levels of nutritionally important metabolites.
Related JoVE Video
High-value products from transgenic maize.
Biotechnol. Adv.
PUBLISHED: 05-03-2010
Show Abstract
Hide Abstract
Maize (also known as corn) is a domesticated cereal grain that has been grown as food and animal feed for tens of thousands of years. It is currently the most widely grown crop in the world, and is used not only for food/feed but also to produce ethanol, industrial starches and oils. Maize is now at the beginning of a new agricultural revolution, where the grains are used as factories to synthesize high-value molecules. In this article we look at the diversity of high-value products from maize, recent technological advances in the field and the emerging regulatory framework that governs how transgenic maize plants and their products are grown, used and traded.
Related JoVE Video
Simultaneous expression of Arabidopsis ?-hydroxyphenylpyruvate dioxygenase and MPBQ methyltransferase in transgenic corn kernels triples the tocopherol content.
Transgenic Res.
PUBLISHED: 04-01-2010
Show Abstract
Hide Abstract
The quantity and composition of tocopherols (compounds with vitamin E activity) vary widely among different plant species reflecting the expression, activity and substrate specificity of enzymes in the corresponding metabolic pathway. Two Arabidopsis cDNA clones corresponding to ?-hydroxyphenylpyruvate dioxygenase (HPPD) and 2-methyl-6-phytylplastoquinol methyltransferase (MPBQ MT) were constitutively expressed in corn to further characterize the pathway and increase the kernel tocopherol content. Transgenic kernels contained up to 3 times as much ?-tocopherol as their wild type counterparts whereas other tocopherol isomers remained undetectable. Biofortification by metabolic engineering offers a sustainable alternative to vitamin E supplementation for the improvement of human health.
Related JoVE Video
The regulation of carotenoid pigmentation in flowers.
Arch. Biochem. Biophys.
PUBLISHED: 03-22-2010
Show Abstract
Hide Abstract
Carotenoids fulfill many processes that are essential for normal growth and development in plants, but they are also responsible for the breathtaking variety of red-to-yellow colors we see in flowers and fruits. Although such visual diversity helps to attract pollinators and encourages herbivores to distribute seeds, humans also benefit from the aesthetic properties of flowers and an entire floriculture industry has developed on the basis that new and attractive varieties can be produced. Over the last decade, much has been learned about the impact of carotenoid metabolism on flower color development and the molecular basis of flower color. A number of different regulatory mechanisms have been described ranging from the transcriptional regulation of genes involved in carotenoid synthesis to the control of carotenoid storage in sink organs. This means we can now explain many of the natural colorful varieties we see around us and also engineer plants to produce flowers with novel and exciting varieties that are not provided by nature.
Related JoVE Video
Promoter diversity in multigene transformation.
Plant Mol. Biol.
PUBLISHED: 03-11-2010
Show Abstract
Hide Abstract
Multigene transformation (MGT) is becoming routine in plant biotechnology as researchers seek to generate more complex and ambitious phenotypes in transgenic plants. Every nuclear transgene requires its own promoter, so when coordinated expression is required, the introduction of multiple genes leads inevitably to two opposing strategies: different promoters may be used for each transgene, or the same promoter may be used over and over again. In the former case, there may be a shortage of different promoters with matching activities, but repetitious promoter use may in some cases have a negative impact on transgene stability and expression. Using illustrative case studies, we discuss promoter deployment strategies in transgenic plants that increase the likelihood of successful and stable multiple transgene expression.
Related JoVE Video
Cloning and functional characterization of the maize carotenoid isomerase and ?-carotene hydroxylase genes and their regulation during endosperm maturation.
Transgenic Res.
PUBLISHED: 02-26-2010
Show Abstract
Hide Abstract
In order to gain further insight into the partly-characterized carotenoid biosynthetic pathway in corn (Zea mays L.), we cloned cDNAs encoding the enzymes carotenoid isomerase (CRTISO) and ?-carotene hydroxylase (BCH) using endosperm mRNA isolated from inbred line B73. For both enzymes, two distinct cDNAs were identified mapping to different chromosomes. The two crtiso cDNAs (Zmcrtiso1 and Zmcrtiso2) mapped to unlinked genes each containing 12 introns, a feature conserved among all crtiso genes studied thus far. ZmCRTISO1 was able to convert tetra-cis prolycopene to all-trans lycopene but could not isomerize the 15-cis double bond of 9,15,9-tri-cis-?-carotene. ZmCRTISO2 is inactivated by a premature termination codon in B73 corn, but importantly the mutation is absent in other corn cultivars and the active enzyme showed the same activity as ZmCRTISO1. The two bch cDNAs (Zmbch1 and Zmbch2) mapped to unlinked genes each coding sequences containing five introns. ZmBCH1 was able to convert ?-carotene into ?-cryptoxanthin and zeaxanthin, but ZmBCH2 was able to form ?-cryptoxanthin alone and had a lower overall activity than ZmBCH1. All four genes were expressed during endosperm development, with mRNA levels rising in line with carotenoid accumulation (especially zeaxanthin and lutein) until 25 DAP. Thereafter, expression declined for three of the genes, with only Zmcrtiso2 mRNA levels maintained by 30 DAP. We discuss the impact of paralogs with different expression profiles and functions on the regulation of carotenoid synthesis in corn.
Related JoVE Video
When more is better: multigene engineering in plants.
Trends Plant Sci.
PUBLISHED: 06-29-2009
Show Abstract
Hide Abstract
The genomics revolution has taught us that a great deal of information can be derived from studying many genes or proteins at the same time. We are beginning to see this approach blossoming in applied research. Instead of attempting to generate useful transgenic plants by introducing single genes, we now see an increasing number of researchers embracing multigene transfer (MGT) as an approach to generate plants with more ambitious phenotypes. MGT allows researchers to achieve goals that were once impossible - the import of entire metabolic pathways, the expression of entire protein complexes, the development of transgenic crops simultaneously engineered to produce a spectrum of added-value compounds. The potential appears limitless.
Related JoVE Video
Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 04-27-2009
Show Abstract
Hide Abstract
Vitamin deficiency affects up to 50% of the worlds population, disproportionately impacting on developing countries where populations endure monotonous, cereal-rich diets. Transgenic plants offer an effective way to increase the vitamin content of staple crops, but thus far it has only been possible to enhance individual vitamins. We created elite inbred South African transgenic corn plants in which the levels of 3 vitamins were increased specifically in the endosperm through the simultaneous modification of 3 separate metabolic pathways. The transgenic kernels contained 169-fold the normal amount of beta-carotene, 6-fold the normal amount of ascorbate, and double the normal amount of folate. Levels of engineered vitamins remained stable at least through to the T3 homozygous generation. This achievement, which vastly exceeds any realized thus far by conventional breeding alone, opens the way for the development of nutritionally complete cereals to benefit the worlds poorest people.
Related JoVE Video
Metabolic engineering of ketocarotenoid biosynthesis in higher plants.
Arch. Biochem. Biophys.
PUBLISHED: 04-07-2009
Show Abstract
Hide Abstract
Ketocarotenoids such as astaxanthin and canthaxanthin have important applications in the nutraceutical, cosmetic, food and feed industries. Astaxanthin is derived from beta-carotene by 3-hydroxylation and 4-ketolation at both ionone end groups. These reactions are catalyzed by beta-carotene hydroxylase and beta-carotene ketolase, respectively. The hydroxylation reaction is widespread in higher plants, but ketolation is restricted to a few bacteria, fungi, and some unicellular green algae. The recent cloning and characterization of beta-carotene ketolase genes in conjunction with the development of effective co-transformation strategies permitting facile co-integration of multiple transgenes in target plants provided essential resources and tools to produce ketocarotenoids in planta by genetic engineering. In this review, we discuss ketocarotenoid biosynthesis in general, and characteristics and functional properties of beta-carotene ketolases in particular. We also describe examples of ketocarotenoid engineering in plants and we conclude by discussing strategies to efficiently convert beta-carotene to astaxanthin in transgenic plants.
Related JoVE Video
PGE(2) induces macrophage IL-10 production and a regulatory-like phenotype via a protein kinase A-SIK-CRTC3 pathway.
J. Immunol.
Show Abstract
Hide Abstract
The polarization of macrophages into a regulatory-like phenotype and the production of IL-10 plays an important role in the resolution of inflammation. We show in this study that PGE(2), in combination with LPS, is able to promote an anti-inflammatory phenotype in macrophages characterized by high expression of IL-10 and the regulatory markers SPHK1 and LIGHT via a protein kinase A-dependent pathway. Both TLR agonists and PGE(2) promote the phosphorylation of the transcription factor CREB on Ser(133). However, although CREB regulates IL-10 transcription, the mutation of Ser(133) to Ala in the endogenous CREB gene did not prevent the ability of PGE(2) to promote IL-10 transcription. Instead, we demonstrate that protein kinase A regulates the phosphorylation of salt-inducible kinase 2 on Ser(343), inhibiting its ability to phosphorylate CREB-regulated transcription coactivator 3 in cells. This in turn allows CREB-regulated transcription coactivator 3 to translocate to the nucleus where it serves as a coactivator with the transcription factor CREB to induce IL-10 transcription. In line with this, we find that either genetic or pharmacological inhibition of salt-inducible kinases mimics the effect of PGE(2) on IL-10 production.
Related JoVE Video
Transgenic rice grains expressing a heterologous ?-hydroxyphenylpyruvate dioxygenase shift tocopherol synthesis from the ? to the ? isoform without increasing absolute tocopherol levels.
Transgenic Res.
Show Abstract
Hide Abstract
We generated transgenic rice plants overexpressing Arabidopsis thaliana ?-hydroxyphenylpyruvate dioxygenase (HPPD), which catalyzes the first committed step in vitamin E biosynthesis. Transgenic grains accumulated marginally higher levels of total tocochromanols than controls, reflecting a small increase in absolute tocotrienol synthesis (but no change in the relative abundance of the ? and ? isoforms). In contrast, there was no change in the absolute tocopherol level, but a significant shift from the ? to the ? isoform. These data confirm HPPD is not rate limiting, and that increasing flux through the early pathway reveals downstream bottlenecks that act as metabolic tipping points.
Related JoVE Video
Combinatorial genetic transformation of cereals and the creation of metabolic libraries for the carotenoid pathway.
Methods Mol. Biol.
Show Abstract
Hide Abstract
Combinatorial nuclear transformation is used to generate populations of transgenic plants containing random selections from a collection of input transgenes. This is a useful approach because it provides the means to test different combinations of genes without the need for separate transformation experiments, allowing the comprehensive analysis of metabolic pathways and other genetic systems requiring the coordinated expression of multiple genes. The principle of combinatorial nuclear transformation is demonstrated in this chapter through protocols developed in our laboratory that allow combinations of genes encoding enzymes in the carotenoid biosynthesis pathway to be introduced into rice and a white-endosperm variety of corn. These allow the accumulation of carotenoids to be screened initially by the colour of the endosperm, which ranges from white through various shades of yellow and orange depending on the types and quantities of carotenoids present. The protocols cover the preparation of DNA-coated metal particles, the transformation of corn and rice plants by particle bombardment, the regeneration of transgenic plants, the extraction of carotenoids from plant tissues, and their analysis by high-performance liquid chromatography.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.