JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A single subset of dendritic cells controls the cytokine bias of natural killer T cell responses to diverse glycolipid antigens.
Immunity
PUBLISHED: 01-09-2014
Show Abstract
Hide Abstract
Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8?(+) DEC-205(+) dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of ?-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8?(+) dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses.
Related JoVE Video
Improving Mycobacterium bovis bacillus Calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG) has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT) cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag). We found that the incorporation of the synthetic NKT activating glycolipid ?-galactosylceramide (?-GC) into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of ?-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an ?-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.
Related JoVE Video
Recent Advances in Defining the Immunoproteome of Mycobacterium tuberculosis.
Front Immunol
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Immunity conferred by antigen-specific CD4+ T cells is critical for controlling infection with Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. However, despite research that spans more than a century, many of the characteristics of protective immune responses to Mtb remain elusive. Defining the repertoire of antigenic targets is central to understanding the immune response against this pathogen. Although traditional methods of antigen discovery have identified many immunodominant antigens, they afford limited proteome coverage. Recent advances in proteomic techniques that are based on peptide library and protein microarray technology have enabled interrogation of the entire proteome of Mtb for antigens. Though these techniques have limitations and are still evolving, early studies using these techniques provide an unbiased view of the immune response to Mtb. Here we review proteome-wide approaches to antigen discovery and summarize what these have revealed so far on the composition of the Mtb immunoproteome.
Related JoVE Video
Immunodiagnosis of tuberculosis: a dynamic view of biomarker discovery.
Clin. Microbiol. Rev.
PUBLISHED: 10-07-2011
Show Abstract
Hide Abstract
Infection with Mycobacterium tuberculosis causes a variety of clinical conditions ranging from life-long asymptomatic infection to overt disease with increasingly severe tissue damage and a heavy bacillary burden. Immune biomarkers should follow the evolution of infection and disease because the host immune response is at the core of protection against disease and tissue damage in M. tuberculosis infection. Moreover, levels of immune markers are often affected by the antigen load. We review how the clinical spectrum of M. tuberculosis infection correlates with the evolution of granulomatous lesions and how granuloma structural changes are reflected in the peripheral circulation. We also discuss how antigen-specific, peripheral immune responses change during infection and how these changes are associated with the physiology of the tubercle bacillus. We propose that a dynamic approach to immune biomarker research should overcome the challenges of identifying those asymptomatic and symptomatic stages of infection that require antituberculosis treatment. Implementation of such a view requires longitudinal studies and a systems immunology approach leading to multianalyte assays.
Related JoVE Video
Dynamic antibody responses to the Mycobacterium tuberculosis proteome.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 07-28-2010
Show Abstract
Hide Abstract
Considerable effort has been directed toward controlling tuberculosis, which kills almost two million people yearly. High on the research agenda is the discovery of biomarkers of active tuberculosis (TB) for diagnosis and for monitoring treatment outcome. Rational biomarker discovery requires understanding host-pathogen interactions leading to biomarker expression. Here we report a systems immunology approach integrating clinical data and bacterial metabolic and regulatory information with high-throughput detection in human serum of antibodies to the entire Mycobacterium tuberculosis proteome. Sera from worldwide TB suspects recognized approximately 10% of the bacterial proteome. This result defines the M. tuberculosis immunoproteome, which is rich in membrane-associated and extracellular proteins. Additional analyses revealed that during active tuberculosis (i) antibody responses focused on an approximately 0.5% of the proteome enriched for extracellular proteins, (ii) relative target preference varied among patients, and (iii) responses correlated with bacillary burden. These results indicate that the B cell response tracks the evolution of infection and the pathogen burden and replicative state and suggest functions associated with B cell-rich foci seen in tuberculous lung granulomas. Our integrated proteome-scale approach is applicable to other chronic infections characterized by diverse antibody target recognition.
Related JoVE Video
Proteome-scale antibody responses and outcome of Mycobacterium tuberculosis infection in nonhuman primates and in tuberculosis patients.
J. Infect. Dis.
Show Abstract
Hide Abstract
Biomarkers of progression from latent Mycobacterium tuberculosis infection to active tuberculosis are needed. We assessed correlations between infection outcome and antibody responses in macaques and humans by high-throughput, proteome-scale serological studies.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.