JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Lethal and sublethal effects of azadirachtin and cypermethrin on Habrobracon hebetor (Hymenoptera: Braconidae).
J. Econ. Entomol.
PUBLISHED: 04-30-2014
Show Abstract
Hide Abstract
Habrobracon hebetor Say is an ectoparasitoid of larval stage of various lepidopteran pests. Lethal and sublethal effects of azadirachtin and cypermethrin were evaluated on adult and preimaginal stages of H. hebetor under laboratory conditions. Contact exposure bioassays with adults indicated that the lethal concentration (LC50) of two commercial azadirachtin-containing formulations, NeemGuard and BioNeem, were 43.5 and 10.2 microg a.i./ml, respectively. The LC50 of cypermethrin was 5.4 microg a.i./ml. When larval stage of H. hebetor was exposed to these insecticides with a field recommended concentration of NeemGuard, BioNeem, or cypermethrin by a dip protocol, the emergence rate was reduced by 39.0, 36.6, and 97.6%, respectively. To assay the sublethal effects of these insecticides, adult wasps were exposed to an LC30 concentration of the insecticides, and then demographic parameters of the surviving wasps were determined. Fecundity, fertility, and parameters including the intrinsic rate of increase (r(m)) were affected negatively. The r(m) values following exposure to NeemGuard, BioNeem, cypermethrin, or mock treatment were 0.143, 0.149, 0.160, and 0.179, respectively, female offspring per female per day, respectively. The current study showed that cypermethrin had more acute toxicity on larval and adult stages of H. hebetor compared with azadirachin. The commercial formulations of azadirachtin and cypermethrin negatively affected most of the life table parameters of the parasitoid. Semifield and field studies are needed for obtaining more applicable results on combining H. hebetor and the tested insecticides for an integrated pest management-based strategy for crop protection.
Related JoVE Video
Structure of the OsSERK2 leucine-rich repeat extracellular domain.
Acta Crystallogr. D Biol. Crystallogr.
PUBLISHED: 04-25-2014
Show Abstract
Hide Abstract
Somatic embryogenesis receptor kinases (SERKs) are leucine-rich repeat (LRR)-containing integral membrane receptors that are involved in the regulation of development and immune responses in plants. It has recently been shown that rice SERK2 (OsSERK2) is essential for XA21-mediated resistance to the pathogen Xanthomonas oryzae pv. oryzae. OsSERK2 is also required for the BRI1-mediated, FLS2-mediated and EFR-mediated responses to brassinosteroids, flagellin and elongation factor Tu (EF-Tu), respectively. Here, crystal structures of the LRR domains of OsSERK2 and a D128N OsSERK2 mutant, expressed as hagfish variable lymphocyte receptor (VLR) fusions, are reported. These structures suggest that the aspartate mutation does not generate any significant conformational change in the protein, but instead leads to an altered interaction with partner receptors.
Related JoVE Video
Characterization of Hovi-mEH1, a microsomal epoxide hydrolase from the glassy-winged sharpshooter Homalodisca vitripennis.
Arch. Insect Biochem. Physiol.
PUBLISHED: 05-23-2013
Show Abstract
Hide Abstract
Epoxide hydrolase (EH) is an enzyme in the ?/?-hydrolase fold superfamily that uses a water molecule to transform an epoxide to its corresponding diol. In insects, EHs metabolize among other things critical developmental hormones called juvenile hormones (JHs). EHs also play roles in the detoxification of toxic compounds that are found in the insects diet or environment. In this study, a full-length cDNA encoding an epoxide hydrolase, Hovi-mEH1, was obtained from the xylem-feeding insect Homalodisca vitripennis. H. vitripennis, commonly known as the glassy-winged sharpshooter, is an economically important vector of plant pathogenic bacteria such as Xylella fastidiosa. Hovi-mEH1 hydrolyzed the general EH substrates cis-stilbene oxide and trans-diphenylpropene oxide with specific activities of 47.5 ± 6.2 and 1.3 ± 0.5 nmol of diol formed min?¹ mg?¹, respectively. Hovi-mEH1 metabolized JH III with a Vmax of 29.3 ± 1.6 nmol min?¹ mg?¹, kcat of 0.03 s?¹, and KM of 13.8 ± 2.0 ?M. These Vmax and kcat values are similar to those of known JH metabolizing EHs from lepidopteran and coleopteran insects. Hovi-mEH1 showed 99.1% identity to one of three predicted EH-encoding sequences that were identified in the transcriptome of H. vitripennis. Of these three sequences only Hovi-mEH1 clustered with known JH metabolizing EHs. On the basis of biochemical, phylogenetic, and transcriptome analyses, we hypothesize that Hovi-mEH1 is a biologically relevant JH-metabolizing enzyme in H. vitripennis.
Related JoVE Video
Sequencing andDe Novo Assembly of the Transcriptome of the Glassy-Winged Sharpshooter (Homalodisca vitripennis).
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The glassy-winged sharpshooter Homalodisca vitripennis (Hemiptera: Cicadellidae), is a xylem-feeding leafhopper and important vector of the bacterium Xylella fastidiosa; the causal agent of Pierces disease of grapevines. The functional complexity of the transcriptome of H. vitripennis has not been elucidated thus far. It is a necessary blueprint for an understanding of the development of H. vitripennis and for designing efficient biorational control strategies including those based on RNA interference.
Related JoVE Video
Juvenile hormone (JH) esterase of the mosquito Culex quinquefasciatus is not a target of the JH analog insecticide methoprene.
PLoS ONE
PUBLISHED: 09-13-2011
Show Abstract
Hide Abstract
Juvenile hormones (JHs) are essential sesquiterpenes that control insect development and reproduction. JH analog (JHA) insecticides such as methoprene are compounds that mimic the structure and/or biological activity of JH. In this study we obtained a full-length cDNA, cqjhe, from the southern house mosquito Culex quinquefasciatus that encodes CqJHE, an esterase that selectively metabolizes JH. Unlike other recombinant esterases that have been identified from dipteran insects, CqJHE hydrolyzed JH with specificity constant (k(cat)/K(M) ratio) and V(max) values that are common among JH esterases (JHEs). CqJHE showed picomolar sensitivity to OTFP, a JHE-selective inhibitor, but more than 1000-fold lower sensitivity to DFP, a general esterase inhibitor. To our surprise, CqJHE did not metabolize the isopropyl ester of methoprene even when 25 pmol of methoprene was incubated with an amount of CqJHE that was sufficient to hydrolyze 7,200 pmol of JH to JH acid under the same assay conditions. In competition assays in which both JH and methoprene were available to CqJHE, methoprene did not show any inhibitory effects on the JH hydrolysis rate even when methoprene was present in the assay at a 10-fold higher concentration relative to JH. Our findings indicated that JHE is not a molecular target of methoprene. Our findings also do not support the hypothesis that methoprene functions in part by inhibiting the action of JHE.
Related JoVE Video
Juvenile hormone esterase: biochemistry and structure.
J Pestic Sci
PUBLISHED: 06-18-2010
Show Abstract
Hide Abstract
Normal insect development requires a precisely timed, precipitous drop in hemolymph juvenile hormone (JH) titer. This drop occurs through a coordinated halt in JH biosynthesis and increase in JH metabolism. In many species, JH esterase (JHE) is critical for metabolism of the resonance-stabilized methyl ester of JH. JHE metabolizes JH with a high k cat/K M ratio that results primarily from an exceptionally low K M. Here we review the biochemistry and structure of authentic and recombinant JHEs from six insect orders, and present updated diagnostic criteria that help to distinguish JHEs from other carboxylesterases. The use of a JHE-encoding gene to improve the insecticidal efficacy of biopesticides is also discussed.
Related JoVE Video
Function of phenylalanine 259 and threonine 314 within the substrate binding pocket of the juvenile hormone esterase of Manduca sexta.
Biochemistry
PUBLISHED: 03-24-2010
Show Abstract
Hide Abstract
Juvenile hormone (JH) is a key insect developmental hormone that is found at low nanomolar levels in larval insects. The methyl ester of JH is hydrolyzed in many insects by an esterase that shows high specificity for JH. We have previously determined a crystal structure of the JH esterase (JHE) of the tobacco hornworm Manduca sexta (MsJHE) [Wogulis, M., Wheelock, C. E., Kamita, S. G., Hinton, A. C., Whetstone, P. A., Hammock, B. D., and Wilson, D. K. (2006) Biochemistry 45, 4045-4057]. Our molecular modeling indicates that JH fits very tightly within the substrate binding pocket of MsJHE. This tight fit places two noncatalytic amino acid residues, Phe-259 and Thr-314, within the appropriate distance and geometry to potentially interact with the alpha,beta-unsaturated ester and epoxide, respectively, of JH. These residues are highly conserved in numerous biologically active JHEs. Kinetic analyses of mutants of Phe-259 or Thr-314 indicate that these residues contribute to the low K(M) that MsJHE shows for JH. This low K(M), however, comes at the cost of reduced substrate turnover. Neither nucleophilic attack of the resonance-stabilized ester by the catalytic serine nor the availability of a water molecule for attack of the acyl-enzyme intermediate appears to be a rate-determining step in the hydrolysis of JH by MsJHE. We hypothesize that the release of the JH acid metabolite from the substrate binding pocket limits the catalytic cycle. Our findings also demonstrate that chemical bond strength does not necessarily correlate with how reactive the bond will be to metabolism.
Related JoVE Video
RNAi effects on actin mRNAs in Homalodisca vitripennis cells.
J RNAi Gene Silencing
PUBLISHED: 02-10-2010
Show Abstract
Hide Abstract
The xylem feeding leafhopper Homalodisaca vitripennis (H. vitripennis) is an unusually robust and efficient vector of Xylella fastidiosa, a Gram-negative bacterium which causes several very important plant diseases. Here we investigated RNA interference (RNAi) to target actin, a key component of insect cells and whole bodies, in H. vitripennis cells. RNAi effectors were delivered via lipid based transfection and real-time RT-PCR, RNA hybridization, and microscopic analyses were employed to verify RNAi effects. When actin dsRNAs were used, a 10-fold decrease in the target H. vitripennis actin mRNA level was seen in cells. Altered phenotypic effects also were evident in transfected cells, as were small interfering RNAs, hallmarks of RNAi. The use of H. vitripennis cells and RNAi offers new opportunities to research hemipterans, the most important insect vectors of plant pathogens.
Related JoVE Video
Effect of starvation upon baculovirus replication in larval Bombyx mori and Heliothis virescens.
J. Invertebr. Pathol.
PUBLISHED: 01-30-2010
Show Abstract
Hide Abstract
The progression of baculovirus (BmNPV, BmCysPD, AcMNPV or AcAaIT) infection in larval Bombyx mori and Heliothis virescens (1st, 3rd or 5th instar) was investigated following various starvation regimes. When the larvae were starved for 12 or 24h immediately following inoculation, the median lethal time to death (LT(50)) was delayed by 9.5-19.2h in comparison to non-starved controls. This corresponded to a delay of 10-23% depending upon the larval stage and virus that was used for inoculation. When a 24h-long starvation period was initiated at 1 or 2 days post inoculation (p.i.), a statistically significant difference in LT(50) was not found indicating that the early stages of infection are more sensitive to the effects of starvation. Viral titers in the hemolymph of 5th instar B. mori that were starved for 24h immediately following inoculation were 10-fold lower (p<0.01) than that found in non-starved control larvae. Histochemical analyses indicated that virus transmission was reduced in 5th instar B. mori that were starved for 24h immediately following inoculation in comparison to non-starved control larvae. In general, the mass of larvae that were starved immediately after inoculation was 30% lower than that of non-starved control insects. Our findings indicate that starvation of the larval host at the time of baculovirus exposure has a negative effect on the rate baculovirus transmission and pathogenesis.
Related JoVE Video
Cloning and characterization of a microsomal epoxide hydrolase from Heliothis virescens.
Insect Biochem. Mol. Biol.
Show Abstract
Hide Abstract
Epoxide hydrolases (EHs) are ?/?-hydrolase fold superfamily enzymes that convert epoxides to 1,2-trans diols. In insects EHs play critical roles in the metabolism of toxic compounds and allelochemicals found in the diet and for the regulation of endogenous juvenile hormones (JHs). In this study we obtained a full-length cDNA, hvmeh1, from the generalist feeder Heliothis virescens that encoded a highly active EH, Hv-mEH1. Of the 10 different EH substrates that were tested, Hv-mEH1 showed the highest specific activity (1180 nmol min(-1) mg(-1)) for a 1,2-disubstituted epoxide-containing fluorescent substrate. This specific activity was more than 25- and 3900-fold higher than that for the general EH substrates cis-stilbene oxide and trans-stilbene oxide, respectively. Although phylogenetic analysis placed Hv-mEH1 in a clade with some lepidopteran JH metabolizing EHs (JHEHs), JH III was a relatively poor substrate for Hv-mEH1. Hv-mEH1 showed a unique substrate selectivity profile for the substrates tested in comparison to those of MsJHEH, a well-characterized JHEH from Manduca sexta, and hmEH, a human microsomal EH. Hv-mEH1 also showed unique enzyme inhibition profiles to JH-like urea, JH-like secondary amide, JH-like primary amide, and non-JH-like primary amide compounds in comparison to MsJHEH and hmEH. Although Hv-mEH1 is capable of metabolizing JH III, our findings suggest that this enzymatic activity does not play a significant role in the metabolism of JH in the caterpillar. The ability of Hv-mEH1 to rapidly hydrolyze 1,2-disubstituted epoxides suggests that it may play roles in the metabolism of fatty acid epoxides such as those that are commonly found in the diet of Heliothis.
Related JoVE Video
Development of pyrethroid-like fluorescent substrates for glutathione S-transferase.
Anal. Biochem.
Show Abstract
Hide Abstract
The availability of highly sensitive substrates is critical for the development of precise and rapid assays for detecting changes in glutathione S-transferase (GST) activity that are associated with GST-mediated metabolism of insecticides. In this study, six pyrethroid-like compounds were synthesized and characterized as substrates for insect and mammalian GSTs. All of the substrates were esters composed of the same alcohol moiety, 7-hydroxy-4-methylcoumarin, and acid moieties that structurally mimic some commonly used pyrethroid insecticides, including cypermethrin and cyhalothrin. CpGSTD1, a recombinant Delta class GST from the mosquito Culex pipiens pipiens, metabolized our pyrethroid-like substrates with both chemical and geometric preference (i.e., the cis-isomers were metabolized at 2- to 5-fold higher rates than the corresponding trans-isomers). A GST preparation from mouse liver also metabolized most of our pyrethroid-like substrates with both chemical and geometric preference but at 10- to 170-fold lower rates. CpGSTD1 and mouse GSTs metabolized 1-chloro-2,4-dinitrobenezene (CDNB), a general GST substrate, at more than 200-fold higher rates than our novel pyrethroid-like substrates. There was a 10-fold difference in the specificity constant (k(cat)/K(M) ratio) of CpGSTD1 for CDNB and those of CpGSTD1 for cis-DCVC and cis-TFMCVC, suggesting that cis-DCVC and cis-TFMCVC may be useful for the detection of GST-based metabolism of pyrethroids in mosquitoes.
Related JoVE Video
The baculovirus uses a captured host phosphatase to induce enhanced locomotory activity in host caterpillars.
PLoS Pathog.
Show Abstract
Hide Abstract
The baculovirus is a classic example of a parasite that alters the behavior or physiology of its host so that progeny transmission is maximized. Baculoviruses do this by inducing enhanced locomotory activity (ELA) that causes the host caterpillars to climb to the upper foliage of plants. We previously reported that this behavior is not induced in silkworms that are infected with a mutant baculovirus lacking its protein tyrosine phosphatase (ptp) gene, a gene likely captured from an ancestral host. Here we show that the product of the ptp gene, PTP, associates with baculovirus ORF1629 as a virion structural protein, but surprisingly phosphatase activity associated with PTP was not required for the induction of ELA. Interestingly, the ptp knockout baculovirus showed significantly reduced infectivity of larval brain tissues. Collectively, we show that the modern baculovirus uses the host-derived phosphatase to establish adequate infection for ELA as a virion-associated structural protein rather than as an enzyme.
Related JoVE Video
RNA interference is induced in the glassy winged sharpshooter Homalodisca vitripennis by actin dsRNA.
Pest Manag. Sci.
Show Abstract
Hide Abstract
The glassy winged sharpshooter, Homalodisca vitripennis, is an unusually robust and efficient leafhopper vector of Xylella fastidiosa. X. fastidiosa is the causative agent of Pierces disease, almond scorch, citrus variegated chlorosis and other serious plant diseases. The present study was conducted to establish whether RNA interference (RNAi) was induced in nymphal H. vitripennis that were injected with actin dsRNAs and other dsRNAs.
Related JoVE Video
Cloning and characterization of two glutathione S-transferases from pyrethroid-resistant Culex pipiens.
Pest Manag. Sci.
Show Abstract
Hide Abstract
The Marin strain of Culex pipiens Say is a pyrethroid-resistant population that was collected in Marin County, California, in 2001 and subsequently maintained in the laboratory under regular permethrin exposure.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.