JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Global gene expression during early differentiation of Xenopus (Silurana) tropicalis gonad tissues.
Gen. Comp. Endocrinol.
PUBLISHED: 01-21-2014
Show Abstract
Hide Abstract
African clawed frog Xenopus sp. is used extensively for developmental biology and toxicology research. Amid concerns of environmental pollutants disrupting endocrine systems and causing altered reproductive development in wildlife, eco-toxicology research has led to a focus on linking molecular initiating events to population-level effects. As such, efforts to better understand reproductive development at the molecular level in these model species are warranted. To that end, transcriptomes were characterized in differentiating Xenopus tropicalis gonad tissues at Nieuwkoop and Faber (NF) stage 58 (pro-metamorphosis), NF66 (completion of metamorphosis), 1week post-metamorphosis (1WPM), and 2weeks post-metamorphosis (2WPM). Differential expression analysis between tissue types at each developmental stage revealed a substantial divergence of ovary and testis transcriptomes starting between NF58 and NF66; transcriptomes continued to diverge through 2WPM. Generally, testis-enriched transcripts were expressed at relatively constant levels, while ovary-enriched transcripts were up-regulated within this developmental period. Functional analyses of differentially expressed transcripts allowed linkages to be made between their putative human orthologues and specific cellular processes associated with differentiating gonad tissues. In ovary tissue, genetic programs direct germ cells through meiosis to the diplotene stage when maternal mRNAs are transcribed and trafficked to oocytes for translation following fertilization. In the testis, gene expression is consistent with connective tissue development, tubule formation, and germ cell support (Leydig and Sertoli cells). This dataset exhibited remarkable consistency with transcript profiles previously described in gonad tissues across species, and emphasizes the universal importance of certain transcripts for germ cell development and preparation of these tissues for reproduction.
Related JoVE Video
A method for the determination of genetic sex in the fathead minnow, Pimephales promelas, to support testing of endocrine-active chemicals.
Environ. Sci. Technol.
PUBLISHED: 03-01-2011
Show Abstract
Hide Abstract
Certain endocrine-active toxicants have been reported to completely sex reverse both male and female individuals in amphibian, avian, fish, invertebrate, and reptile species, resulting in a phenotype indistinguishable from unaffected individuals. Detection of low-level sex reversal often requires large numbers of organisms to achieve the necessary statistical power, especially in those species with predominantly genetic sex determination and cryptic/homomorphic sex chromosomes. Here we describe a method for determining the genetic sex in the commonly used ecotoxicological model, the fathead minnow (Pimephales promelas). Analysis of amplified fragment length polymorphisms (AFLP) in a spawn of minnows resulted in detection of 10 sex-linked AFLPs, which were isolated and sequenced. No recombination events were observed with any sex-linked AFLP in the animals examined (n=112). A polymerase chain reaction (PCR) method was then developed that determined the presence of one of these sex-linked polymorphisms for utilization in routine toxicological testing. Analyses of additional spawns from our in-house culture indicate that fathead minnows utilize a XY sex determination strategy and confirm that these markers can be used to genotype sex; however, this method is currently limited to use in laboratory studies in which breeders possess a defined genetic makeup. The genotyping method described herein can be incorporated into endocrine toxicity assays that examine the effects of chemicals on gonad differentiation.
Related JoVE Video
Effects of 4-tert-octylphenol on Xenopus tropicalis in a long term exposure.
Aquat. Toxicol.
PUBLISHED: 02-14-2011
Show Abstract
Hide Abstract
Endocrine disrupting chemicals that activate the estrogen receptor are routinely detected in the environment and are a concern for the health of both exposed humans and indigenous wildlife. We exposed the western clawed frog (Xenopus tropicalis) to the weak estrogen octylphenol from Nieuwkoop-Faber (NF) stage 46 tadpoles through adulthood in order to document the effects of a weak estrogen on the life history of an amphibian species. Frogs were exposed to 1, 3.3, 11 and 36 ?g/L octylphenol in a continuous flow-through water system. Just prior to completion of metamorphosis (NF 65), a random subsample of froglets was collected and assessed, while the remaining frogs received continued exposure through 31 weeks of exposure when the remaining animals were sampled. Significant induction of the female egg yolk protein precursor vitellogenin was observed in the high treatment at the larval subsampling for both males and females, but not at the final sampling for either sex. No significant deviation from the control sex ratio was observed for either sampling period, suggesting minimal to no effect of octylphenol exposure on gonad differentiation. No effects in the adult frogs were observed for mortality, body mass and size, liver somatic index, estradiol and testosterone serum levels, sperm counts, or oocyte counts. The development and growth of oviducts, a female-specific secondary sex characteristic, was observed in males exposed to octylphenol. These results indicate that octylphenol exposure can induce vitellogenin in immature froglets and the development of oviducts in male adult frogs. The lack of effect observed on the developing gonads suggests that in amphibians, secondary sex characteristics are more susceptible to impact from estrogenic compounds than the developing gonads.
Related JoVE Video
Thyroid-stimulating hormone (TSH): measurement of intracellular, secreted, and circulating hormone in Xenopus laevis and Xenopus tropicalis.
Gen. Comp. Endocrinol.
PUBLISHED: 02-03-2011
Show Abstract
Hide Abstract
Thyroid-stimulating hormone (TSH) is an important regulator of the hypothalamic-pituitary-thyroid (HPT) axis in Xenopus laevis. To evaluate the role of this hormone on developing tadpoles, immunologically-based Western blots and sandwich ELISAs were developed for measuring intracellular (within pituitaries), secreted (ex vivo pituitary culture), and circulating (serum) amounts. Despite the small size of the tadpoles, these methods were able to easily measure intracellular and secreted TSH, and circulating TSH was measurable in situations where high levels were induced. The method was validated after obtaining a highly purified and enriched TSH sample using anti-TSH-? antibodies conjugated to magnetic beads. Subsequent mass-spectrometric analysis of the bands from SDS-PAGE and Western procedures identified the presence of amino acid sequences corresponding to TSH subunits. The purified sample was also used to prepare standard curves for quantitative analysis. The Western and ELISA methods had limits of detection in the low nanogram range. While the majority of the developmental work for these methods was done with X. laevis, the methods also detected TSH in Xenopus tropicalis. To our knowledge this is the first report of a specific detection method for TSH in these species, and the first to measure circulating TSH in amphibians. Examples of the utility of the methods include measuring a gradual increase in pituitary TSH at key stages of development, peaking at stages 58-62; the suppression of TSH secretion from cultured pituitaries in the presence of thyroid hormone (T4); and increases in serum TSH following thyroidectomy.
Related JoVE Video
Control of pituitary thyroid-stimulating hormone synthesis and secretion by thyroid hormones during Xenopus metamorphosis.
Gen. Comp. Endocrinol.
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
We used ex vivo and in vivo experiments with Xenopus laevis tadpoles to examine the hypothesis that the set-point for negative feedback on pituitary thyroid-stimulating hormone (TSH) synthesis and secretion by thyroid hormones (THs) increases as metamorphosis progresses to allow for the previously documented concomitant increase in serum TH concentrations and pituitary TSH mRNA expression during this transformative process. First, pituitaries from climactic tadpoles were cultured for up to 96 h to characterize the ability of pituitary explants to synthesize and secrete TSH? in the absence of hypothalamic and circulating hormones. Next, pituitary explants from tadpoles NF stages 54-66 were exposed to physiologically-relevant concentrations of THs to determine whether stage-specific differences exist in pituitary sensitivity to negative feedback by THs. Finally, in vivo exposures of tadpoles to THs were conducted to confirm the results of the ex vivo experiments. When pituitaries from climactic tadpoles were removed from the influence of endogenous hormones, TSH? mRNA expression increased late or not at all whereas the rate of TSH? secreted into media increased dramatically, suggesting that TSH secretion, but not TSH mRNA expression, is under the negative regulation of an endogenous signal during the climactic stages of metamorphosis. Pituitaries from pre- and prometamorphic tadpoles were more sensitive to TH-induced inhibition of TSH? mRNA expression and secretion than pituitaries from climactic tadpoles. The observed decrease in sensitivity of pituitary TSH? mRNA expression to negative feedback by THs from premetamorphosis to metamorphic climax was confirmed by in vivo experiments in which tadpoles were reared in water containing THs. Based on the results of this study, a model is proposed to explain the seemingly paradoxical, concurrent rise in serum TH concentrations and pituitary TSH mRNA expression during metamorphosis in larval anurans.
Related JoVE Video
Inhibition of thyroid hormone release from cultured amphibian thyroid glands by methimazole, 6-propylthiouracil, and perchlorate.
Toxicol. Sci.
PUBLISHED: 06-07-2010
Show Abstract
Hide Abstract
Thyroid gland explant cultures from prometamorphic Xenopus laevis tadpoles were evaluated for their utility in assessing chemicals for thyroid hormone (TH) synthesis disruption. The response of cultured thyroid glands to bovine thyroid stimulating hormone (bTSH) and the TH synthesis inhibitors methimazole, 6-propylthiouracil, and perchlorate was determined. Thyroid glands continuously exposed for 12 days to graded concentrations of bTSH released thyroxine (T4) in a dose-dependent manner. Over time, the glands appeared to reach a constant daily rate of T4 release. This suggested that the T4 stores in the glands were initially depleted but continuous release was maintained by synthesis of new hormone. The potency of methimazole, 6-propylthiouracil, and perchlorate for inhibiting T4 release was determined using glands cotreated with a single maximally effective bTSH concentration and graded concentrations of chemical. Inhibition of T4 release was dose dependent for all three chemicals. Perchlorate was the most potent inhibitor of T4 release. Methimazole and 6-propylthiouracil exhibited lower potency than perchlorate but similar potency to each other. The IC(50) (mean ± SD) for inhibition of T4 release by the thyroid glands was 1.2 ± 0.55, 8.6 ± 1.3, and 13 ± 4.0 ?M for perchlorate, 6-propylthiouracil, and methimazole, respectively. This model system shows promise as a tool to evaluate the potency of chemicals that inhibit T4 release from thyroid glands and may be predictive of in vivo T4 synthesis inhibition in prometamorphic tadpoles.
Related JoVE Video
In vivo assessment and potential diagnosis of xenobiotics that perturb the thyroid pathway: Proteomic analysis of Xenopus laevis brain tissue following exposure to model T4 inhibitors.
Comp. Biochem. Physiol. Part D Genomics Proteomics
PUBLISHED: 03-24-2010
Show Abstract
Hide Abstract
As part of a multi-endpoint systems approach to develop comprehensive methods for assessing endocrine stressors in vertebrates, differential protein profiling was used to investigate expression patterns in the brain of the amphibian model (Xenopus laevis) following in vivo exposure to a suite of T4 synthesis inhibitors. We specifically address the application of Two Dimensional Polyacrylamide Gel Electrophoresis (2D PAGE), Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) and LC-MS/MS to assess changes in relative protein expression levels. 2D PAGE and iTRAQ proved to be effective complementary techniques for distinguishing protein changes in the developing amphibian brain in response to T4 synthesis inhibition. This information served to evaluate the use of distinctive protein profiles as a potential mechanism to screen chemicals for endocrine activity in anurans. Regulatory pathways associated with proteins expressed as a result of chemical effect are reported. To our knowledge, this is also the first account of the anuran larvae brain proteome characterization using proteomic technologies. Correlation of protein changes to other cellular and organism-level responses will aid in the development of a more rapid and cost-effective, non-mammalian screening assay for thyroid axis-disrupting chemicals.
Related JoVE Video
Characterization of thyroid hormone transporter expression during tissue-specific metamorphic events in Xenopus tropicalis.
Gen. Comp. Endocrinol.
PUBLISHED: 03-22-2010
Show Abstract
Hide Abstract
Thyroid hormone (TH) induces the dramatic morphological and physiological changes that together comprise amphibian metamorphosis. TH-responsive tissues vary widely with developmental timing of TH-induced changes. How larval tadpole tissues are able to employ distinct metamorphic programs in a developmental stage- and TH-dependent manner is still unknown. Recently, several proteins capable of transporting TH have been identified. TH action and metabolism occurs primarily intracellularly, highlighting the importance of TH transporters. We examined the hypothesis that TH transporter expression and tissue distribution play an important role in mediating TH-induced metamorphic events. Xenopus tropicalis homologs for known TH transporting OATP, MCT and LAT family proteins were identified and gene specific qRT-PCR primers were developed. Total RNA was extracted from tissues representing three unique developmental fates including: growth/differentiation (hind limb), death/resorption (gill, tail) and remodeling (brain, liver, kidney). For growing and resorbing tissues, results showed the general trend of low initial expression levels of MCT8 and MCT10 transporters, followed by a several-fold increase of expression as the tissue undergoes TH-dependent metamorphic changes. The expression pattern in remodeling tissues was less uniform: a general decrease in transporter expression was observed in the liver, while the kidney and brain exhibited a range of expression patterns for several TH transporters. Collectively, these developmental expression patterns are consistent with TH transporting proteins playing a role in the effects of TH in peripheral tissues.
Related JoVE Video
Genotyping sex in the amphibian, Xenopus (Silurana) tropicalis, for endocrine disruptor bioassays.
Aquat. Toxicol.
PUBLISHED: 01-13-2010
Show Abstract
Hide Abstract
Endocrine disrupting compounds have been shown to alter gonad differentiation in both male and female individuals in amphibian, avian, fish, invertebrate, and reptile species. In some cases, these affected individuals are completely sex reversed and are morphologically indistinguishable from normal individuals of the opposite sex. Detecting shifts in sex ratios following chemical exposure often requires large numbers of organisms to achieve the necessary statistical power, especially in those species with genetic sex determination and homomorphic sex chromosomes (such as amphibians and many fish). The ability to assess the genetic sex of individuals would allow for detection of sex reversal (genotype-phenotype mismatches) that have greater statistical power compared to examining changes in sex ratios. Utilizing amplified fragment length polymorphisms (AFLPs), we developed a method for genotyping sex in the amphibian, Xenopus (Silurana) tropicalis, that can be incorporated into endocrine disruptor screening assays that examine the effects of chemicals on gonad differentiation. AFLPs from 512 primer pairs were assessed in one spawn of X. tropicalis. Each primer pair yielded, on average, 100 fragments. In total 17 sex-linked AFLPs were identified, isolated, and sequenced. A recombination map of these AFLPs was generated using over 300 individuals with four AFLPs having a recombination rate of 0% with regard to sex. A BLASTn search of the X. tropicalis genome using these AFLP sequences resulted in identification of sex-linked scaffolds. Areas of these scaffolds were searched for additional polymorphisms that could be utilized for genotyping sex. Retrospective and prospective strategies for incorporating genotyping sex in endocrine disruptor bioassays with X. tropicalis were developed. A Monte Carlo simulation comparing analyzing data as sex ratio shifts versus assessment of sex reversal using genotyping demonstrates the increase in statistical power that can be obtained by genotyping sex in studies dealing with altered gonad differentiation. This approach to identifying sex-linked markers and developing sex genotyping methods is applicable to other species with genetic sex determination.
Related JoVE Video
Early temporal effects of three thyroid hormone synthesis inhibitors in Xenopus laevis.
Aquat. Toxicol.
PUBLISHED: 01-08-2010
Show Abstract
Hide Abstract
Thyroid axis disruption is an important consideration when evaluating risks associated with chemicals. Bioassay methods that include thyroid-related endpoints have been developed in a variety of species, including amphibians, whose metamorphic development is thyroid hormone (TH)-dependent. Inhibition of TH synthesis in these species leads to developmental delay, and assays designed to capture these effects take several weeks to complete. In an effort to develop a shorter term approach, the early responses of various endpoints were evaluated in Xenopus laevis throughout 8d of exposure to three TH synthesis inhibitors: methimazole (100mg/L), 6-propylthiouracil (6-PTU) (20mg/L), and perchlorate (4 mg/L). Endpoints included thyroid gland histology and cell numbers, circulating TH concentrations, and thyroidal TH and associated iodo-compounds. Thyroidal 3,5-diodo-L-tyrosine (DIT) and thyroxine (T4) were significantly reduced from day 2 onward by all three chemicals, while 3-monoiodo-L-tyrosine (MIT) was significantly reduced by methimazole and perchlorate, but not by 6-PTU. These reductions were the earliest indicators of TH synthesis inhibition. Histological effects were apparent on day 4 and became more exaggerated through day 8. However, reductions in circulating T4 and increases in thyroid gland cell numbers were not apparent until day 6. Reductions of thyroidal MIT, DIT, and T4 and circulating T4 are indicative of inhibitory effects of the chemicals on TH synthesis. Changes in thyroid histology and cell number represent compensatory effects modulated by circulating TSH. These observations establish a basis for the development of short term amphibian-based methods to evaluate thyroid axis effects using a suite of diagnostic endpoints.
Related JoVE Video
Reproductive maturation of the tropical clawed frog: Xenopus tropicalis.
Gen. Comp. Endocrinol.
PUBLISHED: 05-06-2009
Show Abstract
Hide Abstract
The tropical clawed frog, Xenopus tropicalis, is a relatively new model species being used in developmental biology and amphibian toxicology studies. In order to increase our understanding of reproductive maturation and the role of steroid hormones in X. tropicalis, we collected baseline reproductive data in this species from metamorphosis to adulthood. One cohort of frogs was maintained for 42 weeks post-metamorphosis (PM) with endpoints representative of important reproductive parameters collected at 1- or 2-week intervals. These endpoints were then correlated to titers of either estradiol or testosterone. Male frogs exhibited nuptial pads, starting at 8 weeks (PM) when measureable concentrations of circulating testosterone (5.3 ng/mL plasma) first appeared. Testosterone concentrations remained above this level at all later time points, but were highly variable among individuals. Testes sizes in males reached their peak at 22 weeks PM (21 mg) with sperm counts peaking at the same time (25 million sperm/male). In females, estradiol becomes elevated in the blood at 16 weeks PM (1.5 ng/mL plasma) which corresponds with the presences of vitellogenin (4.4 mg/mL plasma), vitellogenic oocytes in the ovary, ovarian growth, and oviduct growth. Vitellogenic oocytes increased in number up to 15,000 per female at 30 weeks PM and accounted for 75% of the total number of oocytes present in the ovary. The ovary and oviducts continued to grow in mass until 30 weeks PM at which point they had reached sizes of 3.6g and 0.8 g, respectively. These data indicate that male and female X. tropicalis reach reproductive maturation at 22 and 30 weeks PM, respectively. Results from this study are valuable for the design of amphibian toxicology assays and increase our understanding of the reproductive biology of this relatively new model species.
Related JoVE Video
Sex reversal of the amphibian, Xenopus tropicalis, following larval exposure to an aromatase inhibitor.
Aquat. Toxicol.
PUBLISHED: 01-29-2009
Show Abstract
Hide Abstract
Aromatase is a steroidogenic enzyme that catalyzes the conversion of androgens to estrogens in vertebrates. Modulation of this enzymes activity by xenobiotic exposure has been shown to adversely affect gonad differentiation in a number of diverse species. We hypothesized that exposure to the aromatase inhibitor, fadrozole, during the larval development of the tropical clawed frog, Xenopus tropicalis, would result in masculinization of the developing female gonad. Tadpoles were exposed to fadrozole at nominal concentrations from 1 to 64 microg/L in a flow-through system from < 24 h post-fertilization (Nieuwkoop Faber (NF) stage 15-20) to metamorphosis (NF stage 66). At metamorphosis, morphologically examined gonads indicated complete masculinization of all tadpoles at concentrations of 16 microg/L and above and a significant bias in sex ratio towards males at concentrations of 1 microg/L and above. No effects on time to metamorphosis, body mass, or body length were observed. A random subsample of frogs was raised to reproductive maturity (39 weeks post-fertilization) in control water. All frogs exposed as tadpoles to 16 microg/L fadrozole or greater possessed testes at sexual maturity. Intersexed gonads characterized by the presence of both testicular and ovarian tissue were observed in 12% of frogs in the 4 microg/L treatment. No differences in estradiol, testosterone, or vitellogenin plasma concentrations were observed in exposed males or females compared to controls. Females in the 4 microg/L treatment possessed a significantly greater percentage of pre-vitellogenic oocytes than controls and were significantly smaller in body mass. No differences in sperm counts were observed in exposed males compared to controls. Results from this study demonstrate that larval exposure to an aromatase inhibitor can result in the complete masculinization of female gonads. These masculinized females are phenotypically indistinguishable from normal males at adulthood. Lower levels of aromatase inhibition resulted in intersexed gonads and possible female reproductive impairment at adulthood. These results indicate that exposure of amphibians to xenobiotics capable of inhibiting aromatase would result in adverse reproductive consequences.
Related JoVE Video
Inhibition of the thyroid hormone pathway in Xenopus laevis by 2-mercaptobenzothiazole.
Aquat. Toxicol.
Show Abstract
Hide Abstract
Determining the effects of chemicals on the thyroid system is an important aspect of evaluating chemical safety from an endocrine disrupter perspective. Since there are numerous chemicals to test and limited resources, prioritizing chemicals for subsequent in vivo testing is critical. 2-Mercaptobenzothiazole (MBT), a high production volume chemical, was tested and shown to inhibit thyroid peroxidase (TPO) enzyme activity in vitro, a key enzyme necessary for the synthesis of thyroid hormone. To determine the thyroid disrupting activity of MBT in vivo, Xenopus laevis larvae were exposed using 7- and 21-day protocols. The 7-day protocol used 18-357 ?g/L MBT concentrations and evaluated: metamorphic development, thyroid histology, circulating T4, circulating thyroid stimulating hormone, thyroidal sodium-iodide symporter gene expression, and thyroidal T4, T3, and related iodo-amino acids. The 21-day protocol used 23-435 ?g/L MBT concentrations and evaluated metamorphic development and thyroid histology. Both protocols demonstrated that MBT is a thyroid disrupting chemical at the lowest concentrations tested. These studies complement the in vitro study used to identify MBT as a high priority for in vivo testing, supporting the utility/predictive potential of a tiered approach to testing chemicals for TPO activity inhibition. The 7-day study, with more comprehensive, sensitive, and diagnostic endpoints, provides information at intermediate biological levels that enables linking various endpoints in a robust and integrated pathway for thyroid hormone disruption associated with TPO inhibition.
Related JoVE Video
Trenbolone causes mortality and altered sexual differentiation in Xenopus tropicalis during larval development.
Environ. Toxicol. Chem.
Show Abstract
Hide Abstract
Trenbolone is an androgen agonist used in cattle production and has been measured in aquatic systems associated with concentrated animal-feeding operations. In this study, the authors characterized the effects of aqueous exposure to 17?-trenbolone during larval Xenopus tropicalis development. Trenbolone exposure resulted in increased mortality of post-Nieuwkoop-Faber stage 58 tadpoles at concentrations ?100?ng/L. Morphological observations and the timing of this mortality are consistent with hypertrophy of the larynx. Development of nuptial pads, a male secondary sex characteristic, was induced in tadpoles of both sexes at 100?ng/L. Effects on time to complete metamorphosis or body sizes were not observed; however, grow-outs placed in clean media for six weeks were significantly smaller in body size at 78?ng/L. Effects on sex ratios were equivocal, with the first experiment showing a significant shift in sex ratio toward males at 78?ng/L. In the second experiment, no significant effects were observed up to 100?ng/L, although overall sex ratios were similar. Histological assessment of gonads at metamorphosis showed half with normal male phenotypes and half that possessed a mixed-sex phenotype at 100?ng/L. Hypertrophy of the Wolffian ducts was also observed at this concentration. These results indicate that larval 17?-trenbolone exposure results in effects down to 78?ng/L, illustrating potential effects from exposure to androgenic compounds in anurans.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.