JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
An annotated Checklist of the Italian Butterflies and Skippers
(Papilionoidea, Hesperiioidea).
Zootaxa
PUBLISHED: 08-19-2014
Show Abstract
Hide Abstract
We present here an updated checklist of the Italian butterflies (Lepidoptera: Hesperioidea and Papilionoidea) organised in the following sections (tables):1. Introduction, providing a broad outline of the paper.2. Checklist proper, summarised in a table, listing, in separate columns:a. Indications of endemicity (sub-endemic, Italian endemic).b. The relevant Annex in the Habitats Directive (legally protected species).c. Threat levels (in Europe: for threatened species only).d. A serial number (whose format is uniform across all Italian animal groups). This number runs throughout all the following tables (see 3, 4).e. Name, author, date of publication.f. Schematic overall indication of each specie's Italian range (N[orth], S[outh], Si[icily], Sa[rdinia]).3. Nomenclature, containing basic nomenclatural details for all listed genera, species and some of the generally or historically recognised subspecies and synonyms.4. Notes, where a variety of other information is provided, on a name by name (family, subfamily, genus, species, subspecies) basis. All remaining doubts as concerns each individual case are clearly stated.                The number of nominal species listed in the previous edition of this checklist, published almost 20 years ago, was 275, whereas it has raised to 290 in the current list. The status of about a dozen of these remains controversial, as discussed in the text. The present checklist is meant to provide an update of the Italian butterfly fauna, taking into account all relevant publications, and tries to explain all nomenclatural changes that had to be introduced, in the appropriate section. Many detailed comments are offered, when necessary or useful, in the notes.
Related JoVE Video
Variation in butterfly larval acoustics as a strategy to infiltrate and exploit host ant colony resources.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
About 10,000 arthropods live as ants' social parasites and have evolved a number of mechanisms allowing them to penetrate and survive inside the ant nests. Many of them can intercept and manipulate their host communication systems. This is particularly important for butterflies of the genus Maculinea, which spend the majority of their lifecycle inside Myrmica ant nests. Once in the colony, caterpillars of Maculinea "predatory species" directly feed on the ant larvae, while those of "cuckoo species" are fed primarily by attendance workers, by trophallaxis. It has been shown that Maculinea cuckoo larvae are able to reach a higher social status within the colony's hierarchy by mimicking the acoustic signals of their host queen ants. In this research we tested if, when and how myrmecophilous butterflies may change sound emissions depending on their integration level and on stages of their life cycle. We studied how a Maculinea predatory species (M. teleius) can acoustically interact with their host ants and highlighted differences with respect to a cuckoo species (M. alcon). We recorded sounds emitted by Maculinea larvae as well as by their Myrmica hosts, and performed playback experiments to assess the parasites' capacity to interfere with the host acoustic communication system. We found that, although varying between and within butterfly species, the larval acoustic emissions are more similar to queens' than to workers' stridulations. Nevertheless playback experiments showed that ant workers responded most strongly to the sounds emitted by the integrated (i.e. post-adoption) larvae of the cuckoo species, as well as by those of predatory species recorded before any contact with the host ants (i.e. in pre-adoption), thereby revealing the role of acoustic signals both in parasite integration and in adoption rituals. We discuss our findings in the broader context of parasite adaptations, comparing effects of acoustical and chemical mimicry.
Related JoVE Video
Contrasting genetic structure of rear edge and continuous range populations of a parasitic butterfly infected by Wolbachia.
BMC Evol. Biol.
PUBLISHED: 01-14-2013
Show Abstract
Hide Abstract
Climatic oscillations are among the long-term factors shaping the molecular features of animals and plants and it is generally supposed that the rear edges (i.e., the low-latitude limits of distribution of any given specialised species) situated closer to glacial refugia are vital long-term stores of genetic diversity. In the present study, we compared the genetic structure of several populations of an endangered and obligate myrmecophilous butterfly (Maculinea arion) from two distinct and geographically distant parts of its European distribution (i.e., Italy and Poland), which fully represent the ecological and morphological variation occurring across the continent.
Related JoVE Video
Ant pupae employ acoustics to communicate social status in their colonys hierarchy.
Curr. Biol.
PUBLISHED: 01-02-2013
Show Abstract
Hide Abstract
The possession of an efficient communication system and an ability to distinguish between young stages are essential attributes that enable eusocial insects to live in complex integrated societies. Although ants communicate primarily via chemicals, it is increasingly clear that acoustical signals also convey important information, including status, between adults in many species. However, all immature stages were believed to be mute. We confirm that larvae and recently formed pupae of Myrmica ants are mute, yet once they are sclerotized, the pupae possess a fully functioning stridulatory organ. The sounds generated by worker pupae were similar to those of workers but were emitted as single pulses rather than in the long sequences characteristic of adults; both induced the same range and intensity of benevolent behaviors when played back to unstressed workers. Both white and sclerotized pupae have a higher social status than larvae within Myrmica colonies, but the latters status fell significantly after they were made mute. Our results suggest that acoustical signals supplant semiochemicals as a means of identification in sclerotized pupae, perhaps because their hardened integuments block the secretion of brood pheromones or because their developing adult secretions initially differ from overall colony odors.
Related JoVE Video
When the rule becomes the exception. no evidence of gene flow between two Zerynthia cryptic butterflies suggests the emergence of a new model group.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
There is increasing evidence that most parapatric cryptic/sister taxa are reproductively compatible across their areas of contact. Consequently, the biological species concept, which assumes absence of interbreeding, is becoming a not so effective criterion in evolutionary ecology. Nevertheless, the few parapatric sister taxa showing complete reproductive barriers represent interesting models to study speciation processes and the evolution of reproductive isolation. In this study, we examined contact populations in northwestern Italy of two butterfly species, Zerynthia polyxena and Z. cassandra, characterized by different genitalic morphotypes. We studied levels of divergence among 21 populations distributed from Sicily to France using three genetic markers (the mitochondrial COI and ND1 genes and the nuclear wingless gene) and genitalic geometric morphometrics. Moreover, we performed species distribution modelling to estimate different climatic requirements of Z. polyxena and Z. cassandra. We projected climatic data into glacial maximum scenarios in order to verify if and to which extent glacial cycles could have contributed to speciation processes. Genetic and morphometric analyses identified two main groups. All specimens showed a concordant pattern of diversification, including those individuals sampled in the contact area. Haplotype distribution and climatic models showed that during glacial maxima both species experienced a strong range contraction and presumably remained separated into different microrefugia in southern France, in the Italian Peninsula and on the islands of Elba and Sicily. Long term separation was probably favoured by reduced dispersal ability and high phylopatry, while genitalic diversification probably favoured interbreeding avoidance. Conversely, the aposematic wing pattern remained almost identical. We compared our results with those obtained in other species and concluded that Z. polyxena and Z. cassandra represent a valuable model in the study of speciation.
Related JoVE Video
Corruption of ant acoustical signals by mimetic social parasites: Maculinea butterflies achieve elevated status in host societies by mimicking the acoustics of queen ants.
Commun Integr Biol
PUBLISHED: 06-30-2010
Show Abstract
Hide Abstract
Recent recordings of the stridulations of Myrmica ants revealed that their queens made distinctive sounds from their workers, although the acoustics of queens and workers, respectively, were the same in different species of Myrmica. Queen recordings induced enhanced protective behavior when played to workers in the one species tested. Larvae and pupae of the butterfly genus Maculinea inhabit Myrmica colonies as social parasites, and both stages generate sounds that mimic those of a Myrmica queen, inducing similar superior treatments from workers as their model. We discuss how initial penetration and acceptance as a colony member is achieved by Maculinea through mimicking the species-specific semio-chemicals of their hosts, and how acoustical mimicry is then employed to elevate the parasites membership of that society towards the highest attainable level in their hosts hierarchy. We postulate that, if acoustics is as well developed a means of communication in certain ants as these studies suggest, then others among an estimated 10,000 species of ant social parasite may supplement their well-known use of chemical and tactile mimicry to trick host ants with mimicry of host acoustical systems.
Related JoVE Video
Relative importance of density-dependent regulation and environmental stochasticity for butterfly population dynamics.
Oecologia
PUBLISHED: 05-04-2009
Show Abstract
Hide Abstract
The relative contribution of density-dependent regulation and environmental stochasticity to the temporal dynamics of animal populations is one of the central issues of ecology. In insects, the primary role of the latter factor, typically represented by weather patterns, is widely accepted. We have evaluated the impact of density dependence as well as density-independent factors, including weather and mowing regime, on annual fluctuations of butterfly populations. As model species, we used Maculinea alcon and M. teleius living in sympatry and, consequently, we also analysed the effect of their potential competition. Density dependence alone explained 62 and 42% of the variation in the year-to-year trends of M. alcon and M. teleius, respectively. The cumulative Akaike weight of models with density dependence, which can be interpreted as the probability that this factor should be contained in the most appropriate population dynamics model, exceeded 0.97 for both species. In contrast, the impacts of inter-specific competition, mowing regime and weather were much weaker, with their cumulative weights being in the range of 0.08-0.21; in addition, each of these factors explained only 2-5% of additional variation in Maculinea population trends. Our results provide strong evidence for density-dependent regulation in Maculinea, while the influence of environmental stochasticity is rather minor. In the light of several recent studies on other butterflies that detected significant density-dependent effects, it would appear that density-dependent regulation may be more widespread in this group than previously thought, while the role of environmental stochasticity has probably been overestimated. We suggest that this misconception is the result of deficiencies in the design of most butterfly population studies in the past, including (1) a strong focus on adults and a neglect of the larval stage in which density-dependent effects are most likely to occur; (2) an almost exclusive reliance on transect count results that may confound the impact of environmental stochasticity on butterfly numbers with its impact on adult longevity.
Related JoVE Video
Queen ants make distinctive sounds that are mimicked by a butterfly social parasite.
Science
PUBLISHED: 02-07-2009
Show Abstract
Hide Abstract
Ants dominate terrestrial ecosystems through living in complex societies whose organization is maintained via sophisticated communication systems. The role of acoustics in information exchange may be underestimated. We show that Myrmica schencki queens generate distinctive sounds that elicit increased benevolent responses from workers, reinforcing their supreme social status. Although fiercely defended by workers, ant societies are infiltrated by specialist insects that exploit their resources. Sounds produced by pupae and larvae of the parasitic butterfly Maculinea rebeli mimic those of queen ants more closely than those of workers, enabling them to achieve high status within ant societies. We conclude that acoustical mimicry provides another route for infiltration for approximately 10,000 species of social parasites that cheat ant societies.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.