JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
In vivo correlates of molecularly inferred virulence among extraintestinal pathogenic Escherichia coli (ExPEC) in the wax moth Galleria mellonella model system.
Virulence
PUBLISHED: 02-11-2014
Show Abstract
Hide Abstract
In contrast to commensal Escherichia coli, extraintestinal pathogenic E. coli (ExPEC) strains possess an array of virulence-associated genes. We sought to establish the feasibility of using the invertebrate Galleria mellonella (greater wax moth) for assessing ExPEC virulence and to investigate the correlation between genotypic determinants of virulence and in vivo pathogenicity. We observed a correlation between the number of virulence genes and larval survival, such that ExPEC isolates with higher virulence scores killed larvae significantly faster than isolates with lower virulence scores. By correlating genotypic and phenotypic virulence, we provide preliminary validation of this model for future studies investigating ExPEC virulence.
Related JoVE Video
Clinical and molecular correlates of virulence in Escherichia coli causing bloodstream infection following transrectal ultrasound-guided (TRUS) prostate biopsy.
J. Antimicrob. Chemother.
PUBLISHED: 07-05-2013
Show Abstract
Hide Abstract
Prevention and management of Escherichia coli bacteraemia following transrectal ultrasound-guided (TRUS) prostate biopsy has become increasingly complicated by antimicrobial resistance, particularly to fluoroquinolones. Moreover, the globally disseminated, multiresistant sequence type 131 (ST131) E. coli clonal group has recently been described as a major pathogen in the setting of post-biopsy sepsis. Accordingly, we sought to further explore the clinical and molecular epidemiology of post-TRUS biopsy E. coli bacteraemia by comparing the phylogenetic, resistance and virulence characteristics of post-TRUS biopsy E. coli bloodstream isolates with E. coli bloodstream isolates from male patients with spontaneous urosepsis.
Related JoVE Video
Galleria mellonella larvae as an infection model for group A streptococcus.
Virulence
PUBLISHED: 05-07-2013
Show Abstract
Hide Abstract
Group A streptococcus is a strict human pathogen that can cause a wide range of diseases, such as tonsillitis, impetigo, necrotizing fasciitis, toxic shock, and acute rheumatic fever. Modeling human diseases in animals is complicated, and rapid, simple, and cost-effective in vivo models of GAS infection are clearly lacking. Recently, the use of non-mammalian models to model human disease is starting to re-attract attention. Galleria mellonella larvae, also known as wax worms, have been investigated for modeling a number of bacterial pathogens, and have been shown to be a useful model to study pathogenesis of the M3 serotype of GAS. In this study we provide further evidence of the validity of the wax worm model by testing different GAS M-types, as well as investigating the effect of bacterial growth phase and incubation temperature on GAS virulence in this model. In contrast to previous studies, we show that the M-protein, among others, is an important virulence factor that can be effectively modeled in the wax worm. We also highlight the need for a more in-depth investigation of the effects of experimental design and wax worm supply before we can properly vindicate the wax worm model for studying GAS pathogenesis.
Related JoVE Video
Rapid in vivo assessment of drug efficacy against Mycobacterium tuberculosis using an improved firefly luciferase.
J. Antimicrob. Chemother.
PUBLISHED: 04-30-2013
Show Abstract
Hide Abstract
In vivo experimentation is costly and time-consuming, and presents a major bottleneck in anti-tuberculosis drug development. Conventional methods rely on the enumeration of bacterial colonies, and it can take up to 4 weeks for Mycobacterium tuberculosis to grow on agar plates. Light produced by recombinant bacteria expressing luciferase enzymes can be used as a marker of bacterial load, and disease progression can be easily followed non-invasively in live animals by using the appropriate imaging equipment. The objective of this work was to develop a bioluminescence-based mouse model of tuberculosis to assess antibiotic efficacy against M. tuberculosis in vivo.
Related JoVE Video
Population-based incidence and comparative demographics of community-associated and healthcare-associated Escherichia coli bloodstream infection in Auckland, New Zealand, 2005-2011.
BMC Infect. Dis.
PUBLISHED: 04-22-2013
Show Abstract
Hide Abstract
Escherichia coli is a major human pathogen, both in community and healthcare settings. To date however, relatively few studies have defined the population burden of E. coli bloodstream infections. Such information is important in informing strategies around treatment and prevention of these serious infections. Against this background, we performed a retrospective, population-based observational study of all cases of E. coli bacteremia in patients presenting to our hospital between January 2005 and December 2011.
Related JoVE Video
Setting up and monitoring an infection of Dictyostelium discoideum with mycobacteria.
Methods Mol. Biol.
PUBLISHED: 03-16-2013
Show Abstract
Hide Abstract
Mycobacterium marinum is the causative agent of fish and amphibian tuberculosis in the wild. It is a genetically close cousin of Mycobacterium tuberculosis, and thereby the infection process remarkably shares many of the hallmarks of M. tuberculosis infection in human, at both the cellular and organism levels. Therefore, M. marinum is used as a model for the study of mycobacterial infection in various host organisms. Recently, the Dictyostelium-M. marinum system has been shown to be a valuable model that recapitulates the main features of the intracellular fate of M. marinum including phagosome maturation arrest, as well as its particular cell-to-cell dissemination mode. We present here a "starter kit" of detailed methods that allows to establish an infection of Dictyostelium with M. marinum and to monitor quantitatively the intracellular bacterial growth.
Related JoVE Video
Xentry, a new class of cell-penetrating peptide uniquely equipped for delivery of drugs.
Sci Rep
PUBLISHED: 01-18-2013
Show Abstract
Hide Abstract
Here we describe an entirely new class of cell-penetrating peptide (CPP) represented by the short peptide Xentry (LCLRPVG) derived from an N-terminal region of the X-protein of the hepatitis B virus. Xentry permeates adherent cells using syndecan-4 as a portal for entry, and is uniquely restricted from entering syndecan-deficient, non-adherent cells, such as resting blood cells. Intravenous injection of Xentry alone or conjugated to ?-galactosidase led to its delivery to most tissues in mice, except circulating blood cells. There was a predilection for uptake by epithelia. Anti-B-raf antibodies and siRNAs linked to Xentry were capable of killing B-raf-dependent melanoma cells. Xentry represents a new class of CPP with properties that are potentially advantageous for life science and therapeutic applications.
Related JoVE Video
Non-Invasive Monitoring of Streptococcus pyogenes Vaccine Efficacy Using Biophotonic Imaging.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Streptococcus pyogenes infection of the nasopharynx represents a key step in the pathogenic cycle of this organism and a major focus for vaccine development, requiring robust models to facilitate the screening of potentially protective antigens. One antigen that may be an important target for vaccination is the chemokine protease, SpyCEP, which is cell surface-associated and plays a role in pathogenesis. Biophotonic imaging (BPI) can non-invasively characterize the spatial location and abundance of bioluminescent bacteria in vivo. We have developed a bioluminescent derivative of a pharyngeal S. pyogenes strain by transformation of an emm75 clinical isolate with the luxABCDE operon. Evaluation of isogenic recombinant strains in vitro and in vivo confirmed that bioluminescence conferred a growth deficit that manifests as a fitness cost during infection. Notwithstanding this, bioluminescence expression permitted non-invasive longitudinal quantitation of S. pyogenes within the murine nasopharynx albeit with a detection limit corresponding to approximately 10(5) bacterial colony forming units (CFU) in this region. Vaccination of mice with heat killed streptococci, or with SpyCEP led to a specific IgG response in the serum. BPI demonstrated that both vaccine candidates reduced S. pyogenes bioluminescence emission over the course of nasopharyngeal infection. The work suggests the potential for BPI to be used in the non-invasive longitudinal evaluation of potential S. pyogenes vaccines.
Related JoVE Video
Effects of ascent to high altitude on human antimycobacterial immunity.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity.
Related JoVE Video
Characterization of a mouse-adapted Staphylococcus aureus strain.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
More effective antibiotics and a protective vaccine are desperately needed to combat the superbug Staphylococcus aureus. While in vivo pathogenicity studies routinely involve infection of mice with human S. aureus isolates, recent genetic studies have demonstrated that S. aureus lineages are largely host-specific. The use of such animal-adapted S. aureus strains may therefore be a promising approach for developing more clinically relevant animal infection models. We have isolated a mouse-adapted S. aureus strain (JSNZ) which caused a severe outbreak of preputial gland abscesses among male C57BL/6J mice. We aimed to extensively characterize this strain on a genomic level and determine its virulence potential in murine colonization and infection models. JSNZ belongs to the MLST type ST88, rare among human isolates, and lacks an hlb-converting phage encoding human-specific immune evasion factors. Naive mice were found to be more susceptible to nasal and gastrointestinal colonization with JSNZ than with the human-derived Newman strain. Furthermore, naïve mice required antibiotic pre-treatment to become colonized with Newman. In contrast, JSNZ was able to colonize mice in the absence of antibiotic treatment suggesting that this strain can compete with the natural flora for space and nutrients. In a renal abscess model, JSNZ caused more severe disease than Newman with greater weight loss and bacterial burden. In contrast to most other clinical isolates, JSNZ can also be readily genetically modified by phage transduction and electroporation. In conclusion, the mouse-adapted strain JSNZ may represent a valuable tool for studying aspects of mucosal colonization and for screening novel vaccines and therapies directed at preventing colonization.
Related JoVE Video
Inactivation of the CovR/S virulence regulator impairs infection in an improved murine model of Streptococcus pyogenes naso-pharyngeal infection.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Streptococcus pyogenes is a leading cause of pharyngeal infection, with an estimated 616 million cases per year. The human nasopharynx represents the major reservoir for all S. pyogenes infection, including severe invasive disease. To investigate bacterial and host factors that influence S. pyogenes infection, we have devised an improved murine model of nasopharyngeal colonization, with an optimized dosing volume to avoid fulminant infections and a sensitive host strain. In addition we have utilized a refined technique for longitudinal monitoring of bacterial burden that is non-invasive thereby reducing the numbers of animals required. The model was used to demonstrate that the two component regulatory system, CovR/S, is required for optimum infection and transmission from the nasopharynx. There is a fitness cost conferred by covR/S mutation that is specific to the nasopharynx. This may explain why S. pyogenes with altered covR/S have not become prevalent in community infections despite possessing a selective advantage in invasive infection.
Related JoVE Video
Rapid measurement of antituberculosis drug activity in vitro and in macrophages using bioluminescence.
J. Antimicrob. Chemother.
PUBLISHED: 11-17-2011
Show Abstract
Hide Abstract
Tuberculosis drug development is hampered by the slow growth of Mycobacterium tuberculosis. Bioluminescence, light produced by an enzymatic reaction, constitutes a rapid and highly sensitive measurement of cell metabolic function that can be used as an indirect marker of cell viability in drug screening assays. The aim of this work was to validate and standardize the use of luminescent M. tuberculosis strains to test the activity of antibacterial drugs in vitro and inside macrophages in a 96-well format.
Related JoVE Video
Citrobacter rodentium is an unstable pathogen showing evidence of significant genomic flux.
PLoS Pathog.
PUBLISHED: 02-18-2011
Show Abstract
Hide Abstract
Citrobacter rodentium is a natural mouse pathogen that causes attaching and effacing (A/E) lesions. It shares a common virulence strategy with the clinically significant human A/E pathogens enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC) and is widely used to model this route of pathogenesis. We previously reported the complete genome sequence of C. rodentium ICC168, where we found that the genome displayed many characteristics of a newly evolved pathogen. In this study, through PFGE, sequencing of isolates showing variation, whole genome transcriptome analysis and examination of the mobile genetic elements, we found that, consistent with our previous hypothesis, the genome of C. rodentium is unstable as a result of repeat-mediated, large-scale genome recombination and because of active transposition of mobile genetic elements such as the prophages. We sequenced an additional C. rodentium strain, EX-33, to reveal that the reference strain ICC168 is representative of the species and that most of the inactivating mutations were common to both isolates and likely to have occurred early on in the evolution of this pathogen. We draw parallels with the evolution of other bacterial pathogens and conclude that C. rodentium is a recently evolved pathogen that may have emerged alongside the development of inbred mice as a model for human disease.
Related JoVE Video
Noninvasive biophotonic imaging for studies of infectious disease.
FEMS Microbiol. Rev.
PUBLISHED: 10-19-2010
Show Abstract
Hide Abstract
According to World Health Organization estimates, infectious organisms are responsible for approximately one in four deaths worldwide. Animal models play an essential role in the development of vaccines and therapeutic agents but large numbers of animals are required to obtain quantitative microbiological data by tissue sampling. Biophotonic imaging (BPI) is a highly sensitive, nontoxic technique based on the detection of visible light, produced by luciferase-catalysed reactions (bioluminescence) or by excitation of fluorescent molecules, using sensitive photon detectors. The development of bioluminescent/fluorescent microorganisms therefore allows the real-time noninvasive detection of microorganisms within intact living animals. Multiple imaging of the same animal throughout an experiment allows disease progression to be followed with extreme accuracy, reducing the number of animals required to yield statistically meaningful data. In the study of infectious disease, the use of BPI is becoming widespread due to the novel insights it can provide into established models, as well as the impact of the technique on two of the guiding principles of using animals in research, namely reduction and refinement. Here, we review the technology of BPI, from the instrumentation through to the generation of a photonic signal, and illustrate how the technique is shedding light on infection dynamics in vivo.
Related JoVE Video
Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized far-red reporters.
PLoS ONE
PUBLISHED: 01-26-2010
Show Abstract
Hide Abstract
Fluorescent reporter proteins have proven useful for imaging techniques in many organisms. We constructed optimized expression systems for several fluorescent proteins from the far-red region of the spectrum and analyzed their utility in several mycobacterial species. Plasmids expressing variants of the Discosoma Red fluorescent protein (DsRed) from the Mycobacterium bovis hsp60 promoter were unstable; in contrast expression from the Mycobacterium smegmatis rpsA promoter was stable. In Mycobacterium tuberculosis expression of several of the far-red reporters was readily visualised by eye and three reporters (mCherry, tdTomato, and Turbo-635) fluoresced at a high intensity. Strains expressing mCherry showed no fitness defects in vitro or in macrophages. Treatment of cells with antibiotics demonstrated that mCherry could also be used as a reporter for cell death, since fluorescence decreased in the presence of a bactericidal compound, but remained stable in the presence of a bacteriostatic compound. mCherry was functional under hypoxic conditions; using mCherry we demonstrated that the P(mtbB) is expressed early in hypoxia and progressively down-regulated. mCherry and other far-red fluorescent proteins will have multiple uses in investigating the biology of mycobacteria, particularly under non-replicating, or low cell density conditions, as well as providing a novel means of detecting cell death rapidly.
Related JoVE Video
Optimisation of bioluminescent reporters for use with mycobacteria.
PLoS ONE
PUBLISHED: 01-20-2010
Show Abstract
Hide Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, still represents a major public health threat in many countries. Bioluminescence, the production of light by luciferase-catalyzed reactions, is a versatile reporter technology with multiple applications both in vitro and in vivo. In vivo bioluminescence imaging (BLI) represents one of its most outstanding uses by allowing the non-invasive localization of luciferase-expressing cells within a live animal. Despite the extensive use of luminescent reporters in mycobacteria, the resultant luminescent strains have not been fully applied to BLI.
Related JoVE Video
Bioluminescent monitoring of in vivo colonization and clearance dynamics by light-emitting bacteria.
Methods Mol. Biol.
PUBLISHED: 08-18-2009
Show Abstract
Hide Abstract
Bioluminescence is an excellent reporter system for analysing bacterial colonization and clearance dynamics in vivo. Many bacterial species have been rendered bioluminescent, allowing the sensitive detection of bacterial burden and metabolic activity in real-time and in situ in living animals. In this chapter we describe the protocols for characterizing in vivo infection models using bioluminescent bacteria: from real-time imaging in living animals by bioluminescence imaging (BLI) to ex vivo BLI of harvested organs and tissues and, finally, to quantification of bacterial numbers in organ and tissue homogenates by luminometry and viable counts. While the lux operon from Photorhabdus luminescens is ideally suited for use in such models, there may be times when alternative luciferases, such as those from the firefly (luc) or marine copepods (Gluc), may be more appropriate. Here we describe the protocols required to monitor colonization and clearance dynamics using bioluminescent bacteria that are lux-, luc-, or Gluc-positive.
Related JoVE Video
Impact of immunization against SpyCEP during invasive disease with two streptococcal species: Streptococcus pyogenes and Streptococcus equi.
Vaccine
PUBLISHED: 06-05-2009
Show Abstract
Hide Abstract
Currently there is no licensed vaccine against the human pathogen Streptococcus pyogenes. The highly conserved IL-8 cleaving S. pyogenes cell envelope proteinase SpyCEP is surface expressed and is a potential vaccine candidate. A recombinant N-terminal part of SpyCEP (CEP) was expressed and purified. AntiCEP antibodies were found to neutralize the IL-8 cleaving activity of SpyCEP. CEP-immunized mice had reduced bacterial dissemination from focal S. pyogenes intramuscular infection and intranasal infection. We also identified a functional SpyCEP-homolog protease SeCEP, expressed by the equine pathogen Streptococcus equi, which was able to cleave both human and equine IL-8. CEP-immunized mice also demonstrated reduced bacterial dissemination from S. equi intramuscular infection. Therefore immunization against SpyCEP may provide protection against other streptococci species with homologous proteases.
Related JoVE Video
A new in vivo model to test anti-tuberculosis drugs using fluorescence imaging.
J. Antimicrob. Chemother.
Show Abstract
Hide Abstract
The current method for testing new drugs against tuberculosis in vivo is the enumeration of bacteria in organs by cfu assay. Owing to the slow growth rate of Mycobacterium tuberculosis (Mtb), these assays can take months to complete. Our aim was to develop a more efficient, fluorescence-based imaging assay to test new antibiotics in a mouse model using Mtb reporter strains.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.