JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Pathoadaptive mutations in Salmonella enterica isolated after serial passage in mice.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
How pathogenic bacteria adapt and evolve in the complex and variable environment of the host remains a largely unresolved question. Here we have used whole genome sequencing of Salmonella enterica serovar Typhimurium LT2 populations serially passaged in mice to identify mutations that adapt bacteria to systemic growth in mice. We found unique pathoadaptive mutations in two global regulators, phoQ and stpA, which increase the competitive indexes of the bacteria 3- to 5-fold. Also, all mouse-adapted lineages had changed the orientation of the hin invertable element, resulting in production of a FliC type of flagellum. Competition experiments in mice with locked flagellum mutants showed that strains expressing the FliC type of flagellum had a 5-fold increase in competitive index as compared to those expressing FljB type flagellum. Combination of the flagellum cassette inversion with the stpA mutation increased competitive indexes up to 20-fold. These experiments show that Salmonella can rapidly adapt to a mouse environment by acquiring a few mutations of moderate individual effect that when combined confer substantial increases in growth.
Related JoVE Video
Genomic signatures of strain selection and enhancement in Bacillus atrophaeus var. globigii, a historical biowarfare simulant.
PLoS ONE
PUBLISHED: 02-15-2011
Show Abstract
Hide Abstract
Despite the decades-long use of Bacillus atrophaeus var. globigii (BG) as a simulant for biological warfare (BW) agents, knowledge of its genome composition is limited. Furthermore, the ability to differentiate signatures of deliberate adaptation and selection from natural variation is lacking for most bacterial agents. We characterized a lineage of BGwith a long history of use as a simulant for BW operations, focusing on classical bacteriological markers, metabolic profiling and whole-genome shotgun sequencing (WGS).
Related JoVE Video
Genomic comparison of Escherichia coli O104:H4 isolates from 2009 and 2011 reveals plasmid, and prophage heterogeneity, including shiga toxin encoding phage stx2.
PLoS ONE
Show Abstract
Hide Abstract
In May of 2011, an enteroaggregative Escherichia coli O104:H4 strain that had acquired a Shiga toxin 2-converting phage caused a large outbreak of bloody diarrhea in Europe which was notable for its high prevalence of hemolytic uremic syndrome cases. Several studies have described the genomic inventory and phylogenies of strains associated with the outbreak and a collection of historical E. coli O104:H4 isolates using draft genome assemblies. We present the complete, closed genome sequences of an isolate from the 2011 outbreak (2011C-3493) and two isolates from cases of bloody diarrhea that occurred in the Republic of Georgia in 2009 (2009EL-2050 and 2009EL-2071). Comparative genome analysis indicates that, while the Georgian strains are the nearest neighbors to the 2011 outbreak isolates sequenced to date, structural and nucleotide-level differences are evident in the Stx2 phage genomes, the mer/tet antibiotic resistance island, and in the prophage and plasmid profiles of the strains, including a previously undescribed plasmid with homology to the pMT virulence plasmid of Yersinia pestis. In addition, multiphenotype analysis showed that 2009EL-2071 possessed higher resistance to polymyxin and membrane-disrupting agents. Finally, we show evidence by electron microscopy of the presence of a common phage morphotype among the European and Georgian strains and a second phage morphotype among the Georgian strains. The presence of at least two stx2 phage genotypes in host genetic backgrounds that may derive from a recent common ancestor of the 2011 outbreak isolates indicates that the emergence of stx2 phage-containing E. coli O104:H4 strains probably occurred more than once, or that the current outbreak isolates may be the result of a recent transfer of a new stx2 phage element into a pre-existing stx2-positive genetic background.
Related JoVE Video
Detection of Burkholderia pseudomallei O-antigen serotypes in near-neighbor species.
BMC Microbiol.
Show Abstract
Hide Abstract
Burkholderia pseudomallei is the etiological agent of melioidosis and a CDC category B select agent with no available effective vaccine. Previous immunizations in mice have utilized the lipopolysaccharide (LPS) as a potential vaccine target because it is known as one of the most important antigenic epitopes in B. pseudomallei. Complicating this strategy are the four different B. pseudomallei LPS O-antigen types: A, B, B2, and rough. Sero-crossreactivity is common among O-antigens of Burkholderia species. Here, we identified the presence of multiple B. pseudomallei O-antigen types and sero-crossreactivity in its near-neighbor species.
Related JoVE Video
Genetic barcodes for improved environmental tracking of an anthrax simulant.
Appl. Environ. Microbiol.
Show Abstract
Hide Abstract
The development of realistic risk models that predict the dissemination, dispersion and persistence of potential biothreat agents have utilized nonpathogenic surrogate organisms such as Bacillus atrophaeus subsp. globigii or commercial products such as Bacillus thuringiensis subsp. kurstaki. Comparison of results from outdoor tests under different conditions requires the use of genetically identical strains; however, the requirement for isogenic strains limits the ability to compare other desirable properties, such as the behavior in the environment of the same strain prepared using different methods. Finally, current methods do not allow long-term studies of persistence or reaerosolization in test sites where simulants are heavily used or in areas where B. thuringiensis subsp. kurstaki is applied as a biopesticide. To create a set of genetically heterogeneous yet phenotypically indistinguishable strains so that variables intrinsic to simulations (e.g., sample preparation) can be varied and the strains can be tested under otherwise identical conditions, we have developed a strategy of introducing small genetic signatures ("barcodes") into neutral regions of the genome. The barcodes are stable over 300 generations and do not impact in vitro growth or sporulation. Each barcode contains common and specific tags that allow differentiation of marked strains from wild-type strains and from each other. Each tag is paired with specific real-time PCR assays that facilitate discrimination of barcoded strains from wild-type strains and from each other. These uniquely barcoded strains will be valuable tools for research into the environmental fate of released organisms by providing specific artificial detection signatures.
Related JoVE Video
Comparative genomics of 2009 seasonal plague (Yersinia pestis) in New Mexico.
PLoS ONE
Show Abstract
Hide Abstract
Plague disease caused by the gram-negative bacterium Yersinia pestis routinely affects animals and occasionally humans, in the western United States. The strains native to the North American continent are thought to be derived from a single introduction in the late 19(th) century. The degree to which these isolates have diverged genetically since their introduction is not clear, and new genomic markers to assay the diversity of North American plague are highly desired. To assay genetic diversity of plague isolates within confined geographic areas, draft genome sequences were generated by 454 pyrosequencing from nine environmental and clinical plague isolates. In silico assemblies of Variable Number Tandem Repeat (VNTR) loci were compared to laboratory-generated profiles for seven markers. High-confidence SNPs and small Insertion/Deletions (Indels) were compared to previously sequenced Y. pestis isolates. The resulting panel of mutations allowed clustering of the strains and tracing of the most likely evolutionary trajectory of the plague strains. The sequences also allowed the identification of new putative SNPs that differentiate the 2009 isolates from previously sequenced plague strains and from each other. In addition, new insertion points for the abundant insertion sequences (IS) of Y. pestis are present that allow additional discrimination of strains; several of these new insertions potentially inactivate genes implicated in virulence. These sequences enable whole-genome phylogenetic analysis and allow the unbiased comparison of closely related isolates of a genetically monomorphic pathogen.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.