JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Predicting potential responses to future climate in an alpine ungulate: interspecific interactions exceed climate effects.
Glob Chang Biol
PUBLISHED: 03-04-2014
Show Abstract
Hide Abstract
The altitudinal shifts of many montane populations are lagging behind climate change. Understanding habitual, daily behavioural rhythms, and their climatic and environmental influences, could shed light on the constraints on long-term upslope range-shifts. In addition, behavioural rhythms can be affected by interspecific interactions, which can ameliorate or exacerbate climate-driven effects on ecology. Here, we investigate the relative influences of ambient temperature and an interaction with domestic sheep (Ovis aries) on the altitude use and activity budgets of a mountain ungulate, the Alpine chamois (Rupicapra rupicapra). Chamois moved upslope when it was hotter but this effect was modest compared to that of the presence of sheep, to which they reacted by moving 89-103 m upslope, into an entirely novel altitudinal range. Across the European Alps, a range-shift of this magnitude corresponds to a 46% decrease in the availability of suitable foraging habitat. This highlights the importance of understanding how factors such as competition and disturbance shape a given species' realised niche when predicting potential future responses to change. Furthermore, it exposes the potential for manipulations of species interactions to ameliorate the impacts of climate change, in this case by the careful management of livestock. Such manipulations could be particularly appropriate for species where competition or disturbance already strongly restricts their available niche. Our results also reveal the potential role of behavioural flexibility in responses to climate change. Chamois reduced their activity when it was warmer, which could explain their modest altitudinal migrations. Considering this behavioural flexibility, our model predicts a small 15-30 m upslope shift by 2100 in response to climate change, less than 4% of the altitudinal shift that would be predicted using a traditional species distribution model-type approach (SDM), which assumes that species' behaviour remains unchanged as climate changes. Behavioural modifications could strongly affect how species respond to a changing climate.
Related JoVE Video
Foraging ranges of immature African white-backed vultures (Gyps africanus) and their use of protected areas in southern Africa.
PLoS ONE
PUBLISHED: 01-30-2013
Show Abstract
Hide Abstract
Vultures in the Gyps genus are declining globally. Multiple threats related to human activity have caused widespread declines of vulture populations in Africa, especially outside protected areas. Addressing such threats requires the estimation of foraging ranges yet such estimates are lacking, even for widespread (but declining) species such as the African white-backed vulture (Gyps africanus). We tracked six immature African white-backed vultures in South Africa using GPS-GSM units to study their movement patterns, their use of protected areas and the time they spent in the vicinity of supplementary feeding sites. All individuals foraged widely; their combined foraging ranges extended into six countries in southern Africa (mean (± SE) minimum convex polygon area =269,103±197,187 km(2)) and three of the vultures travelled more than 900 km from the capture site. All six vultures spent the majority of their tracking periods outside protected areas. South African protected areas were very rarely visited whereas protected areas in northern Botswana and Zimbabwe were used more frequently. Two of the vultures visited supplementary feeding sites regularly, with consequent reduced ranging behaviour, suggesting that individuals could alter their foraging behaviour in response to such sites. We show that immature African white-backed vultures are capable of travelling throughout southern Africa, yet use protected areas to only a limited extent, making them susceptible to the full range of threats in the region. The standard approach of designating protected areas to conserve species is unlikely to ensure the protection of such wide-ranging species against threats in the wider landscape.
Related JoVE Video
Evaluating the effectiveness of conservation site networks under climate change: accounting for uncertainty.
Glob Chang Biol
PUBLISHED: 01-24-2013
Show Abstract
Hide Abstract
We forecasted potential impacts of climate change on the ability of a network of key sites for bird conservation (Important Bird Areas; IBAs) to provide suitable climate for 370 bird species of current conservation concern in two Asian biodiversity hotspots: the Eastern Himalaya and Lower Mekong. Comparable studies have largely not accounted for uncertainty, which may lead to inappropriate conclusions. We quantified the contribution of four sources of variation (choice of general circulation models, emission scenarios and species distribution modelling methods and variation in species distribution data) to uncertainty in forecasts and tested if our projections were robust to these uncertainties. Declines in the availability of suitable climate within the IBA network by 2100 were forecast as extremely likely for 45% of species, whereas increases were projected for only 2%. Thus, we predict almost 24 times as many losers as winners. However, for no species was suitable climate extremely likely to be completely lost from the network. Considerable turnover (median = 43%, 95% CI = 35-69%) in species compositions of most IBAs were projected by 2100. Climatic conditions in 47% of IBAs were projected as extremely likely to become suitable for fewer priority species. However, no IBA was forecast to become suitable for more species. Variation among General Circulation Models and Species Distribution Models contributed most to uncertainty among forecasts. This uncertainty precluded firm conclusions for 53% of species and IBAs because 95% confidence intervals included projections of no change. Considering this uncertainty, however, allows robust recommendations concerning the remaining species and IBAs. Overall, while the IBA network will continue to sustain bird conservation, climate change will modify which species each site will be suitable for. Thus, adaptive management of the network, including modified site conservation strategies and facilitating species movement among sites, is critical to ensure effective future conservation.
Related JoVE Video
Contrasting life histories in neighbouring populations of a large mammal.
PLoS ONE
PUBLISHED: 08-08-2011
Show Abstract
Hide Abstract
A fundamental life history question is how individuals should allocate resources to reproduction optimally over time (reproductive allocation). The reproductive restraint hypothesis predicts that reproductive effort (RE; the allocation of resources to current reproduction) should peak at prime-age, whilst the terminal investment hypothesis predicts that individuals should continue to invest more resources in reproduction throughout life, owing to an ever-decreasing residual reproductive value. There is evidence supporting both hypotheses in the scientific literature.
Related JoVE Video
Toward a management framework for networks of protected areas in the face of climate change.
Conserv. Biol.
PUBLISHED: 02-01-2011
Show Abstract
Hide Abstract
Networks of sites of high importance for conservation of biological diversity are a cornerstone of current conservation strategies but are fixed in space and time. As climate change progresses, substantial shifts in species ranges may transform the ecological community that can be supported at a given site. Thus, some species in an existing network may not be protected in the future or may be protected only if they can move to sites that in future provide suitable conditions. We developed an approach to determine appropriate climate-change adaptation strategies for individual sites within a network that was based on projections of future changes in the relative proportions of emigrants (species for which a site becomes climatically unsuitable), colonists (species for which a site becomes climatically suitable), and persistent species (species able to remain within a site despite the climatic change). Our approach also identifies key regions where additions to a network could enhance its future effectiveness. Using the sub-Saharan African Important Bird Area (IBA) network as a case study, we found that appropriate conservation strategies for individual sites varied widely across sub-Saharan Africa, and key regions where new sites could help increase network robustness varied in space and time. Although these results highlight the potential difficulties within any planning framework that seeks to address climate-change adaptation needs, they demonstrate that such planning frameworks are necessary, if current conservation strategies are to be adapted effectively, and feasible, if applied judiciously.
Related JoVE Video
Assessing the future threat from vivax malaria in the United Kingdom using two markedly different modelling approaches.
Malar. J.
PUBLISHED: 03-05-2010
Show Abstract
Hide Abstract
The world is facing an increased threat from new and emerging diseases, and there is concern that climate change will expand areas suitable for transmission of vector borne diseases. The likelihood of vivax malaria returning to the UK was explored using two markedly different modelling approaches. First, a simple temperature-dependent, process-based model of malaria growth transmitted by Anopheles atroparvus, the historical vector of malaria in the UK. Second, a statistical model using logistic-regression was used to predict historical malaria incidence between 1917 and 1918 in the UK, based on environmental and demographic data. Using findings from these models and saltmarsh distributions, future risk maps for malaria in the UK were produced based on UKCIP02 climate change scenarios.
Related JoVE Video
Assessing the impacts of future climate change on protected area networks: a method to simulate individual species responses.
Environ Manage
PUBLISHED: 07-17-2009
Show Abstract
Hide Abstract
Global climate change, along with continued habitat loss and fragmentation, is now recognized as being a major threat to future biodiversity. There is a very real threat to species, arising from the need to shift their ranges in the future to track regions of suitable climate. The Important Bird Area (IBA) network is a series of sites designed to conserve avian diversity in the face of current threats from factors such as habitat loss and fragmentation. However, in common with other networks, the IBA network is based on the assumption that the climate will remain unchanged in the future. In this article, we provide a method to simulate the occurrence of species of conservation concern in protected areas, which could be used as a first-step approach to assess the potential impacts of climate change upon such species in protected areas. We use species-climate response surface models to relate the occurrence of 12 biome-restricted African species to climate data at a coarse (quarter degree-degree latitude-longitude) resolution and then intersect the grid model output with IBA outlines to simulate the occurrence of the species in South African IBAs. Our results demonstrate that this relatively simple technique provides good simulations of current species occurrence in protected areas. We then use basic habitat data for IBAs along with habitat preference data for the species to reduce over-prediction and further improve predictive ability. This approach can be used with future climate change scenarios to highlight vulnerable species in IBAs in the future and allow practical recommendations to be made to enhance the IBA network and minimize the predicted impacts of climate change.
Related JoVE Video
Projected impacts of climate change on a continent-wide protected area network.
Ecol. Lett.
PUBLISHED: 04-22-2009
Show Abstract
Hide Abstract
Despite widespread concern, the continuing effectiveness of networks of protected areas under projected 21st century climate change is uncertain. Shifts in species distributions could mean these resources will cease to afford protection to those species for which they were originally established. Using modelled projected shifts in the distributions of sub-Saharan Africas entire breeding avifauna, we show that species turnover across the continents Important Bird Area (IBA) network is likely to vary regionally and will be substantial at many sites (> 50% at 42% of IBAs by 2085 for priority species). Persistence of suitable climate space across the network as a whole, however, is notably high, with 88-92% of priority species retaining suitable climate space in >or= 1 IBA(s) in which they are currently found. Only 7-8 priority species lose climatic representation from the network. Hence, despite the likelihood of significant community disruption, we demonstrate that rigorously defined networks of protected areas can play a key role in mitigating the worst impacts of climate change on biodiversity.
Related JoVE Video
An indicator of the impact of climatic change on European bird populations.
PLoS ONE
PUBLISHED: 03-04-2009
Show Abstract
Hide Abstract
Rapid climatic change poses a threat to global biodiversity. There is extensive evidence that recent climatic change has affected animal and plant populations, but no indicators exist that summarise impacts over many species and large areas. We use data on long-term population trends of European birds to develop such an indicator. We find a significant relationship between interspecific variation in population trend and the change in potential range extent between the late 20(th) and late 21(st) centuries, forecasted by climatic envelope models. Our indicator measures divergence in population trend between bird species predicted by climatic envelope models to be favourably affected by climatic change and those adversely affected. The indicator shows a rapid increase in the past twenty years, coinciding with a period of rapid warming.
Related JoVE Video
Intraseasonal variation in reproductive effort: young males finish last.
Am. Nat.
Show Abstract
Hide Abstract
Age-dependent reproductive timing has been observed in females of a number of species; older females often breed earlier in the season and experience higher reproductive success as a result. However, to date, evidence for within-season variation in reproductive effort (RE) for males has been relatively weak. Males are expected to time RE in light of intraseasonal variations in the availability of receptive females and competition with other males. Young males, which are typically smaller and less experienced, might benefit from breeding later in the season, when male-male competition is less intense. Using a long-term data set of Alpine chamois Rupicapra rupicapra, we sought to evaluate the hypothesis that younger males allocate highest RE late in the breeding season, at a time when older male RE has decreased substantially. Our results support this hypothesis, which suggests that intraseasonal variation in RE may be an adaptive life-history trait for males as well as females.
Related JoVE Video
Prey selection by an apex predator: the importance of sampling uncertainty.
PLoS ONE
Show Abstract
Hide Abstract
The impact of predation on prey populations has long been a focus of ecologists, but a firm understanding of the factors influencing prey selection, a key predictor of that impact, remains elusive. High levels of variability observed in prey selection may reflect true differences in the ecology of different communities but might also reflect a failure to deal adequately with uncertainties in the underlying data. Indeed, our review showed that less than 10% of studies of European wolf predation accounted for sampling uncertainty. Here, we relate annual variability in wolf diet to prey availability and examine temporal patterns in prey selection; in particular, we identify how considering uncertainty alters conclusions regarding prey selection.Over nine years, we collected 1,974 wolf scats and conducted drive censuses of ungulates in Alpe di Catenaia, Italy. We bootstrapped scat and census data within years to construct confidence intervals around estimates of prey use, availability and selection. Wolf diet was dominated by boar (61.5 ± 3.90 [SE] % of biomass eaten) and roe deer (33.7 ± 3.61%). Temporal patterns of prey densities revealed that the proportion of roe deer in wolf diet peaked when boar densities were low, not when roe deer densities were highest. Considering only the two dominant prey types, Manlys standardized selection index using all data across years indicated selection for boar (mean = 0.73 ± 0.023). However, sampling error resulted in wide confidence intervals around estimates of prey selection. Thus, despite considerable variation in yearly estimates, confidence intervals for all years overlapped. Failing to consider such uncertainty could lead erroneously to the assumption of differences in prey selection among years. This study highlights the importance of considering temporal variation in relative prey availability and accounting for sampling uncertainty when interpreting the results of dietary studies.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.