JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Fungal Vaccines and Immunotherapeutics.
Cold Spring Harb Perspect Med
PUBLISHED: 11-05-2014
Show Abstract
Hide Abstract
Concomitant with the increased prevalence of immunocompromised persons, invasive fungal infections have become considerably more frequent in the last 50 years. High mortality rates caused by invasive mycoses and high morbidity because of intractable mucosal infections have created an unmet need for innovative prophylactic and therapeutic strategies against fungal pathogens. Several immunotherapeutics and vaccines are in development to address this need, although one has yet to reach the clinic. This review focuses on past and current immunotherapeutic and vaccine strategies being tested to either prevent or treat fungal infections, as well as the challenges associated with their development.
Related JoVE Video
Multifocal Rhizopus microsporus lung infection following brush clearing.
Med Mycol Case Rep
PUBLISHED: 10-01-2014
Show Abstract
Hide Abstract
We report a case of pulmonary Rhizopus microsporus infection in a patient with untreated diabetes following brush clearing. The patient was successfully treated with a combined medical and surgical approach with complete resolution of the lung lesions and remains asymptomatic at 11-month follow-up.
Related JoVE Video
Caspase-8 modulates dectin-1 and complement receptor 3-driven IL-1? production in response to ?-glucans and the fungal pathogen, Candida albicans.
J. Immunol.
PUBLISHED: 07-25-2014
Show Abstract
Hide Abstract
Inflammasomes are central mediators of host defense to a wide range of microbial pathogens. The nucleotide-binding domain and leucine-rich repeat containing family (NLR), pyrin domain-containing 3 (NLRP3) inflammasome plays a key role in triggering caspase-1-dependent IL-1? maturation and resistance to fungal dissemination in Candida albicans infection. ?-Glucans are major components of fungal cell walls that trigger IL-1? secretion in both murine and human immune cells. In this study, we sought to determine the contribution of ?-glucans to C. albicans-induced inflammasome responses in mouse dendritic cells. We show that the NLRP3-apoptosis-associated speck-like protein containing caspase recruitment domain protein-caspase-1 inflammasome is absolutely critical for IL-1? production in response to ?-glucans. Interestingly, we also found that both complement receptor 3 (CR3) and dectin-1 play a crucial role in coordinating ?-glucan-induced IL-1? processing as well as a cell death response. In addition to the essential role of caspase-1, we identify an important role for the proapoptotic protease caspase-8 in promoting ?-glucan-induced cell death and NLRP3 inflammasome-dependent IL-1? maturation. A strong requirement for CR3 and caspase-8 also was found for NLRP3-dependent IL-1? production in response to heat-killed C. albicans. Taken together, these results define the importance of dectin-1, CR3, and caspase-8, in addition to the canonical NLRP3 inflammasome, in mediating ?-glucan- and C. albicans-induced innate responses in dendritic cells. Collectively, these findings establish a novel link between ?-glucan recognition receptors and the inflammatory proteases caspase-8 and caspase-1 in coordinating cytokine secretion and cell death in response to immunostimulatory fungal components.
Related JoVE Video
Exploiting fungal cell wall components in vaccines.
Semin Immunopathol
PUBLISHED: 07-17-2014
Show Abstract
Hide Abstract
Innate recognition of fungi leads to strong adaptive immunity. Investigators are trying to exploit this observation in vaccine development by combining antigens with evolutionarily conserved fungal cell wall carbohydrates to induce protective responses. Best studied is ?-1,3-glucan, a glycan that activates complement and is recognized by dectin-1. Administration of antigens in association with ?-1,3-glucan, either by direct conjugation or complexed in glucan particles, results in robust humoral and cellular immune responses. While the host has a host of mannose receptors, responses to fungal mannoproteins generally are amplified if cells are cooperatively stimulated with an additional danger signal such as a toll-like receptor agonist. Chitosan, a polycationic homopolymer of glucosamine manufactured by the deacetylation of chitin, is being studied as an adjuvant in DNA and protein-based vaccines. It appears particularly promising in mucosal vaccines. Finally, universal and organism-specific fungal vaccines have been formulated by conjugating fungal cell wall glycans to carrier proteins. A major challenge will be to advance these experimental findings so that at risk patients can be protected.
Related JoVE Video
Spectrum and mechanisms of inflammasome activation by chitosan.
J. Immunol.
PUBLISHED: 05-14-2014
Show Abstract
Hide Abstract
Chitosan, the deacetylated derivative of chitin, can be found in the cell wall of some fungi and is used in translational applications. We have shown that highly purified preparations of chitosan, but not chitin, activate the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in primed mouse bone marrow-derived macrophages (BMM?), inducing a robust IL-1? response. In this article, we further define specific cell types that are activated and delineate mechanisms of activation. BMM? differentiated to promote a classically activated (M1) phenotype released more IL-1? in response to chitosan than intermediate or alternatively activated macrophages (M2). Chitosan, but not chitin, induced a robust IL-1? response in mouse dendritic cells, peritoneal macrophages, and human PBMCs. Three mechanisms for NLRP3 inflammasome activation may contribute: K(+) efflux, reactive oxygen species, and lysosomal destabilization. The contributions of these mechanisms were tested using a K(+) efflux inhibitor, high extracellular potassium, a mitochondrial reactive oxygen species inhibitor, lysosomal acidification inhibitors, and a cathepsin B inhibitor. These studies revealed that each of these pathways participated in optimal NLRP3 inflammasome activation by chitosan. Finally, neither chitosan nor chitin stimulated significant release from unprimed BMM? of any of 22 cytokines and chemokines assayed. This study has the following conclusions: 1) chitosan, but not chitin, stimulates IL-1? release from multiple murine and human cell types; 2) multiple nonredundant mechanisms appear to participate in inflammasome activation by chitosan; and 3) chitin and chitosan are relatively weak stimulators of inflammatory mediators from unprimed BMM?. These data have implications for understanding the nature of the immune response to microbes and biomaterials that contain chitin and chitosan.
Related JoVE Video
AIDS-related mycoses: the way forward.
Trends Microbiol.
PUBLISHED: 03-04-2014
Show Abstract
Hide Abstract
The contribution of fungal infections to the morbidity and mortality of HIV-infected individuals is largely unrecognized. A recent meeting highlighted several priorities that need to be urgently addressed, including improved epidemiological surveillance, increased availability of existing diagnostics and drugs, more training in the field of medical mycology, and better funding for research and provision of treatment, particularly in developing countries.
Related JoVE Video
A population of Langerin-positive dendritic cells in murine Peyer's patches involved in sampling ?-glucan microparticles.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Glucan particles (GPs) are 2-4 ?m hollow, porous shells composed of 1,3-?-D-glucan that have been effectively used for oral targeted-delivery of a wide range of payloads, including small molecules, siRNA, DNA, and protein antigens. While it has been demonstrated that the transepithelial transport of GPs is mediated by Peyer's patch M cells, the fate of the GPs once within gut-associated lymphoid tissue (GALT) is not known. Here we report that fluorescently labeled GPs administered to mice by gavage accumulate in CD11c+ DCs situated in Peyer's patch sub-epithelial dome (SED) regions. GPs appeared in DCs within minutes after gavage and remained within the SED for days afterwards. The co-administration or sequential administration of GPs with differentially labeled GPs or poly(lactic-co-glycolic acid) nanoparticles demonstrated that the SED DC subpopulation in question was capable of internalizing particles of different sizes and material compositions. Phenotypic analysis identified the GP-containing DCs as being CD8?- and CD11blo/-, suggesting they are the so-called myeloid and/or double negative (DN) subset(s) of PP DCs. A survey of C-type lectin receptors (CLRs) known to be expressed by leukocytes within the intestinal mucosa revealed that GP-containing SED DCs were positive for Langerin (CD207), a CLR with specificity for ?-D-glucan and that has been shown to mediate the internalization of a wide range of microbial pathogens, including bacteria, viruses and fungi. The presence of Langerin+ DCs in the SED as determined by immunofluorescence was confirmed using Langerin E-GFP transgenic mice. In summary, our results demonstrate that following M cell-mediated transepithelial transport, GPs (and other micro/nanoparticles) are sampled by a population of SED DCs distinguished from other Peyer's patch DC subsets by their expression of Langerin. Future studies will be aimed at defining the role of Langerin in antigen sampling and antigen presentation within the context of the GALT.
Related JoVE Video
NKp30 enables NK cells to act naturally with fungi.
Cell Host Microbe
PUBLISHED: 10-22-2013
Show Abstract
Hide Abstract
NK cells have direct activity against fungal pathogens. Using an unbiased systematic approach, Li et al. (2013) find that NKp30 is a major NK cell receptor responsible for fungal recognition. Moreover, diminished NKp30 expression is associated with reduced antifungal activity in NK cells isolated from HIV-infected persons.
Related JoVE Video
Characterization and optimization of the glucan particle-based vaccine platform.
Clin. Vaccine Immunol.
PUBLISHED: 08-14-2013
Show Abstract
Hide Abstract
Glucan particles (GPs) are hollow porous Saccharomyces cerevisiae cell walls that are treated so that they are composed primarily of ?-1,3-d-glucans. Our previous studies showed that GPs can serve as an effective vaccine platform. Here, we characterize CD4(+) T-cell and antibody responses in immunized mice as a function of antigen (ovalbumin) encapsulation, antigen dose, particle numbers, time, immunization schedule, and trapping methods. Although we found that GPs served as an effective adjuvant when admixed with free antigens for IgG1 antibody production, stronger CD4(+) T-cell and IgG2c antibody responses were stimulated when antigens were encapsulated inside GPs, suggesting that the GP platform acts as both an adjuvant and a delivery system. Vigorous T-cell and antibody responses were stimulated even at submicrogram antigen doses, as long as the number of GPs was kept at 5 × 10(7) particles per immunization. One prime and one boost were sufficient to elicit robust immune responses. In addition, strong antigen-specific antibody and T-cell responses prevailed up to 20 months following the last immunization, including those of gamma interferon (IFN-?), interleukin 17A (IL-17A), and dual IFN-?/IL-17A-secreting CD4(+) T cells. Finally, robust immune responses were observed using generally recognized as safe (GRAS) materials (alginate and calcium, with or without chitosan) to trap antigens within GPs. Thus, these studies demonstrate that antigens encapsulated into GPs make an effective vaccine platform that combines adjuvanticity and antigen delivery to elicit strong durable immune responses at relatively low antigen doses using translationally relevant formulations.
Related JoVE Video
Cryptococcosis-IRIS is associated with lower cryptococcus-specific IFN-? responses before antiretroviral therapy but not higher T-cell responses during therapy.
J. Infect. Dis.
PUBLISHED: 06-12-2013
Show Abstract
Hide Abstract
Cryptococcosis-associated immune reconstitution inflammatory syndrome (C-IRIS) may be driven by aberrant T-cell responses against cryptococci. We investigated this in human immunodeficiency virus (HIV)-infected patients with treated cryptococcal meningitis (CM) commencing combination antiretroviral therapy (cART).
Related JoVE Video
The phenotype of the Cryptococcus-specific CD4+ memory T-cell response is associated with disease severity and outcome in HIV-associated cryptococcal meningitis.
J. Infect. Dis.
PUBLISHED: 03-14-2013
Show Abstract
Hide Abstract
Correlates of immune protection in patients with human immunodeficiency virus (HIV)-associated cryptococcal meningitis are poorly defined. A clearer understanding of these immune responses is essential to inform rational development of immunotherapies.
Related JoVE Video
Chitosan but not chitin activates the inflammasome by a mechanism dependent upon phagocytosis.
J. Biol. Chem.
PUBLISHED: 08-23-2011
Show Abstract
Hide Abstract
Chitin is an abundant polysaccharide found in fungal cell walls, crustacean shells, and insect exoskeletons. The immunological properties of both chitin and its deacetylated derivative chitosan are of relevance because of frequent natural exposure and their use in medical applications. Depending on the preparation studied and the end point measured, these compounds have been reported to induce allergic responses, inflammatory responses, or no response at all. We prepared highly purified chitosan and chitin and examined the capacity of these glycans to stimulate murine macrophages to release the inflammasome-associated cytokine IL-1?. We found that although chitosan was a potent NLRP3 inflammasome activator, acetylation of the chitosan to chitin resulted in a near total loss of activity. The size of the chitosan particles played an important role, with small particles eliciting the greatest activity. An inverse relationship between size and stimulatory activity was demonstrated using chitosan passed through size exclusion filters as well as with chitosan-coated beads of defined size. Partial digestion of chitosan with pepsin resulted in a larger fraction of small phagocytosable particles and more potent inflammasome activity. Inhibition of phagocytosis with cytochalasin D abolished the IL-1? stimulatory activity of chitosan, offering an explanation for why the largest particles were nearly devoid of activity. Thus, the deacetylated polysaccharide chitosan potently activates the NLRP3 inflammasome in a phagocytosis-dependent manner. In contrast, chitin is relatively inert.
Related JoVE Video
A chronological history of the International Conference on Cryptococcus and Cryptococcosis (ICCC), an invaluable forum for growth of the cryptococcal research field and clinical practice.
Mycopathologia
PUBLISHED: 07-19-2011
Show Abstract
Hide Abstract
Cryptococcologists meet every 3 years to present their new research data and discuss the current state of cryptococcosis therapy at the International Conference on Cryptococcus and Cryptococcosis (ICCC). The ICCC has served as a unique forum where mycologists could interact and share their research data in a setting exclusively devoted to the study of Cryptococcus and cryptococcosis. This article presents an historical perspective on the ICCC meetings, beginning with the first ICCC that was held in Jerusalem, Israel in 1989. Subsequent ICCC meetings have grown, in terms of attendance and submitted abstracts. The history of the ICCC serves as a testimony to the remarkable progress that has been made in our basic understanding of the molecular biology, biochemistry, ecology, and taxonomy of Cryptococcus as well as the epidemiology, immunology, clinical manifestations, and treatment for cryptococcosis.
Related JoVE Video
Contributions of the MyD88-dependent receptors IL-18R, IL-1R, and TLR9 to host defenses following pulmonary challenge with Cryptococcus neoformans.
PLoS ONE
PUBLISHED: 07-14-2011
Show Abstract
Hide Abstract
Signaling via the adapter protein, MyD88, is important in the host defense against Cryptococcus neoformans infection. While certain Toll-like receptors (TLRs) can enhance the clearance of Cryptococcus, the contributions of MyD88-dependent, TLR-independent pathways have not been fully investigated. We examined the roles of IL-1R and IL-18R in vivo by challenging C57BL/6 mice with a lethal strain of Cryptococcus. We found that the absence of IL-18R, but not IL-1R, causes a shift in the survival curve following pulmonary delivery of a virulent strain of C. neoformans (H99). Specifically, IL-18R-deficient mice have significantly shorter median survival times compared to wild-type mice following infection. Cytokine analysis of lung homogenates revealed that deficiency of IL-IR, IL-18R, or MyD88 is associated with diminished lung levels of IL-1?. In order to compare these findings with those related to TLR-deficiency, we studied the effects of TLR9-deficiency and found that deficiency of TLR9 also affects the survival curve of mice following challenge with C. neoformans. Yet the lungs from infected TLR9-deficient mice have robust levels of IL-1?. In summary, we found that multiple signaling components can contribute the MyD88-dependent host responses to cryptococcal infection in vivo and each drives distinct pulmonary responses.
Related JoVE Video
Innate recognition of cell wall ?-glucans drives invariant natural killer T cell responses against fungi.
Cell Host Microbe
PUBLISHED: 05-23-2011
Show Abstract
Hide Abstract
iNKT cells are innate T lymphocytes recognizing endogenous and foreign lipid antigens presented in the MHC-like molecule CD1d. The semi-invariant iNKT cell TCR can detect certain bacterial and parasitic lipids and drive iNKT cell responses. How iNKT cells respond to fungi, however, is unknown. We found that CD1d-deficient mice, which lack iNKT cells, poorly control infection with the fungal pathogen Aspergillus fumigatus. Furthermore, A. fumigatus rapidly activates iNKT cells in vivo and in vitro in the presence of APCs. Surprisingly, despite a requirement for CD1d recognition, the antifungal iNKT cell response does not require fungal lipids. Instead, Dectin-1- and MyD88-mediated responses to ?-1,3 glucans, major fungal cell-wall polysaccharides, trigger IL-12 production by APCs that drives self-reactive iNKT cells to secrete IFN-?. Innate recognition of ?-1,3 glucans also drives iNKT cell responses against Candida, Histoplasma, and Alternaria, suggesting that this mechanism may broadly define the basis for antifungal iNKT cell responses.
Related JoVE Video
A nonredundant role for plasmacytoid dendritic cells in host defense against the human fungal pathogen Aspergillus fumigatus.
Cell Host Microbe
PUBLISHED: 03-14-2011
Show Abstract
Hide Abstract
While plasmacytoid dendritic cells (pDCs), a natural type I interferon (IFN)-producing cell type, are regarded as critical for innate immunity to viruses, their role in defense against fungal infections remains unknown. We examined the interactions of pDCs with hyphae of the invasive human fungal pathogen Aspergillus fumigatus. Human pDCs spread over hyphae and inhibited their growth. Antifungal activity was retained in pDC lysates, did not require direct fungal contact, and was partially reversed by zinc. Incubation with hyphae resulted in pDC cytotoxicity, partly due to fungal gliotoxin secretion. Following hyphal stimulation, pDCs released proinflammatory cytokines via a TLR9-independent mechanism. Pulmonary challenge of mice with A. fumigatus resulted in a substantial influx of pDCs into lungs, and pDC-depleted mice were hypersusceptible to invasive aspergillosis. These data demonstrate the antifungal activity of pDCs against A. fumigatus and establish their nonredundant role in host defenses against invasive aspergillosis in vivo.
Related JoVE Video
Dynamic virulence: real-time assessment of intracellular pathogenesis links Cryptococcus neoformans phenotype with clinical outcome.
MBio
PUBLISHED: 01-01-2011
Show Abstract
Hide Abstract
While a myriad of studies have examined host factors that predispose persons to infection with the opportunistic fungal pathogen Cryptococcus neoformans, comparatively little has been done to examine how virulence factor differences among cryptococcal isolates may impact outcome. In the recent report by Alanio et al. (A. Alanio, M. Desnos-Ollivier, and F. Dromer, mBio 2:e00158-11, 2011), novel flow cytometry-based techniques were employed to demonstrate an association between the phenotype of C. neoformans-macrophage interactions, as measured by phagocytosis and intracellular replication, and patient outcomes, as determined by positive cultures on therapy and survival. These experiments establish that the prognosis of patients with cryptococcosis is influenced by the phenotypic properties of the infecting fungal isolate.
Related JoVE Video
Linkage specificity and role of properdin in activation of the alternative complement pathway by fungal glycans.
MBio
PUBLISHED: 01-01-2011
Show Abstract
Hide Abstract
Fungal cell walls are predominantly composed of glucans, mannans, and chitin. Recognition of these glycans by the innate immune system is a critical component of host defenses against the mycoses. Complement, an important arm of innate immunity, plays a significant role in fungal pathogenesis, especially the alternative pathway (AP). Here we determine that the glycan monosaccharide composition and glycosidic linkages affect AP activation and C3 deposition. Furthermore, properdin, a positive regulator of the AP, contributes to these functions. AP activation by glycan particles that varied in composition and linkage was measured by C3a generation in serum treated with 10 mM EGTA and 10 mM Mg(2+) (Mg-EGTA-treated serum) (AP specific; properdin functional) or Mg-EGTA-treated serum that lacked functional properdin. Particles that contained either ?1?3 or ?1?6 glucans or both generated large and similar amounts of C3a when the AP was intact. Blocking properdin function resulted in 5- to 10-fold-less C3a production by particulate ?1?3 glucans. However, particulate ?1?6 glucans generated C3a via the AP only in the presence of intact properdin. Interestingly, zymosan and glucan-mannan particles (GMP), which contain both ?-glucans and mannans, also required properdin to generate C3a. The ?1?4 glycans chitin and chitosan minimally activated C3 even when properdin was functional. Finally, properdin binding to glucan particles (GP) and zymosan in serum required active C3. Properdin colocalized with bound C3, suggesting that in the presence of serum, properdin bound indirectly to glycans through C3 convertases. These findings provide a better understanding of how properdin facilitates AP activation by fungi through interaction with the cell wall components.
Related JoVE Video
Glucuronoxylomannan, galactoxylomannan, and mannoprotein occupy spatially separate and discrete regions in the capsule of Cryptococcus neoformans.
Virulence
PUBLISHED: 11-01-2010
Show Abstract
Hide Abstract
The capsular polysaccharides of Cryptococcus neoformans have historically been divided into three components namely, glucuronoxylomannan (GXM), galactoxylomannan (GalXM), and mannoprotein (MP) but their relative spatial-geographical relationship in the capsule is unknown.  To explore this problem would require the capacity for visualizing these components in the capsule.  Prior studies have reported serological reagents to GXM and GalXM but no antibodies are available against MPs.  Consequently, we immunized Balb/c mice with C. neoformans recombinant mannoprotein 98 and recovered twelve monoclonal antibodies (mAbs) of which one, an IgG2a designated 18F2, bound to intact cells by immunofluorescence. mAb 18F2 bound to the cell wall surface in acapsular and encapsulated cells.  Using mAb 18F2 and previously generated antibodies to GXM and GalXM we have established the localization of three capsular components GXM, GalXM and one type of mannoprotein, MP98 on the C. neoformans cell.  The results show that MP98, like GalXM, is found near the cell wall and this information allows us to begin to discern the geography of the cryptococcal capsule.
Related JoVE Video
Robust stimulation of humoral and cellular immune responses following vaccination with antigen-loaded beta-glucan particles.
MBio
PUBLISHED: 06-08-2010
Show Abstract
Hide Abstract
beta-Glucan particles (GPs) are purified Saccharomyces cerevisiae cell walls treated so that they are primarily beta1,3-d-glucans and free of mannans and proteins. GPs are phagocytosed by dendritic cells (DCs) via the Dectin-1 receptor, and this interaction stimulates proinflammatory cytokine secretion by DCs. As the hollow, porous GP structure allows for high antigen loading, we hypothesized that antigen-loaded GPs could be exploited as a receptor-targeted vaccine delivery system. Ovalbumin (OVA) was electrostatically complexed inside the hollow GP shells (GP-OVA). Incubation of C57BL/6J mouse bone marrow-derived DCs with GP-OVA resulted in phagocytosis, upregulation of maturation markers, and rapid proteolysis of OVA. Compared with free OVA, GP-OVA was >100-fold more potent at stimulating the proliferation of OVA-reactive transgenic CD8(+) OT-I and CD4(+) OT-II T cells, as measured by in vitro [(3)H]thymidine incorporation using DCs as antigen-presenting cells. Next, immune responses in C57BL/6J mice following subcutaneous immunizations with GP-OVA were compared with those in C57BL/6J mice following subcutaneous immunizations with OVA absorbed onto the adjuvant alum (Alum/OVA). Vaccination with GP-OVA stimulated substantially higher antigen-specific CD4(+) T-cell lymphoproliferative and enzyme-linked immunospot (ELISPOT) responses than that with Alum/OVA. Moreover, the T-cell responses induced by GP-OVA were Th1 biased (determined by gamma interferon [IFN-gamma] ELISPOT assay) and Th17 biased (determined by interleukin-17a [IL-17a] ELISPOT assay). Finally, both the GP-OVA and Alum/OVA formulations induced strong secretions of IgG1 subclass anti-OVA antibodies, although only GP-OVA induced secretion of Th1-associated IgG2c antibodies. Thus, the GP-based vaccine platform combines adjuvanticity and antigen delivery to induce strong humoral and Th1- and Th17-biased CD4(+) T-cell responses.
Related JoVE Video
Th17 cells bounce off the fungal wall.
Cell Host Microbe
PUBLISHED: 04-22-2009
Show Abstract
Hide Abstract
Th17 cells are thought to play a pivotal role in defenses against Candida albicans. van de Veerdonk et al. (2009) investigate components of the fungal cell wall and their cognate receptors on human peripheral blood mononuclear cells (PBMCs) responsible for IL-17 production and find a predominant role for mannan stimulation of the mannose receptor.
Related JoVE Video
Distinct patterns of dendritic cell cytokine release stimulated by fungal beta-glucans and toll-like receptor agonists.
Infect. Immun.
PUBLISHED: 03-09-2009
Show Abstract
Hide Abstract
beta-Glucans derived from fungal cell walls have potential uses as immunomodulating agents and vaccine adjuvants. Yeast glucan particles (YGPs) are highly purified Saccharomyces cerevisiae cell walls composed of beta1,6-branched beta1,3-d-glucan and free of mannans. YGPs stimulated secretion of the proinflammatory cytokine tumor necrosis factor alpha (TNF-alpha) in wild-type murine bone marrow-derived myeloid dendritic cells (BMDCs) but did not stimulate interleukin-12p70 (IL-12p70) production. A purified soluble beta1,6-branched beta1,3-d-glucan, scleroglucan, also stimulated TNF-alpha in BMDCs. These two beta-glucans failed to stimulate TNF-alpha in Dectin-1 (beta-glucan receptor) knockout BMDCs. Costimulation of wild-type BMDCs with beta-glucans and specific Toll-like receptor (TLR) ligands resulted in greatly enhanced TNF-alpha production but decreased IL-12p70 production compared with TLR agonists alone. The upregulation of TNF-alpha and downregulation of IL-12p70 required Dectin-1, but not IL-10. Gamma interferon (IFN-gamma) priming did not overcome IL-12p70 reduction by beta-glucans. Similar patterns of cytokine regulation were observed in human monocyte-derived dendritic cells (DCs) costimulated with YGPs and the TLR4 ligand lipopolysaccharide. Finally, costimulation of BMDCs with YGPs and either the TLR9 ligand, CpG, or the TLR2/1 ligand, Pam(3)CSK(4), resulted in upregulated secretion of IL-1alpha and IL-10 and downregulated secretion of IL-1beta, IL-6, and IFN-gamma-inducible protein 10 but had no significant effects on IL-12p40, keratinocyte-derived chemokine, monocyte chemotactic protein 1, or macrophage inflammatory protein alpha, compared with the TLR ligand alone. Thus, beta-glucans have distinct effects on cytokine responses following DC stimulation with different TLR agonists. These patterns of response might contribute to the skewing of immune responses during mycotic infections and have implications for the design of immunomodulators and vaccines containing beta-glucans.
Related JoVE Video
Isolation and purification of antigenic components of Cryptococcus.
Methods Mol. Biol.
PUBLISHED: 02-05-2009
Show Abstract
Hide Abstract
The encapsulated fungal pathogens Cryptococcus neoformans and Cryptococcus gattii are significant agents of life-threatening infections, particularly in persons with suppressed cell-mediated immunity. This chapter provides detailed methodology for the purification of two of the major antigen fractions of C. neoformans: glucuronoxylomannan (GXM) and mannoprotein (MP). GXM is the primary component of the polysaccharide capsule, which is the major cryptococcal virulence factor. In contrast, MPs have been identified as key antigens that stimulate T-cell responses. Purification of GXM and MP should assist investigators studying the antigenic, biochemical, and virulence properties of Cryptococcus species.
Related JoVE Video
Hidden killers: human fungal infections.
Sci Transl Med
Show Abstract
Hide Abstract
Although fungal infections contribute substantially to human morbidity and mortality, the impact of these diseases on human health is not widely appreciated. Moreover, despite the urgent need for efficient diagnostic tests and safe and effective new drugs and vaccines, research into the pathophysiology of human fungal infections lags behind that of diseases caused by other pathogens. In this Review, we highlight the importance of fungi as human pathogens and discuss the challenges we face in combating the devastating invasive infections caused by these microorganisms, in particular in immunocompromised individuals.
Related JoVE Video
Phomopsis bougainvilleicola prepatellar bursitis in a renal transplant recipient.
J. Clin. Microbiol.
Show Abstract
Hide Abstract
Prepatellar bursitis is typically a monomicrobial bacterial infection. A fungal cause is rarely identified. We describe a 61-year-old man who had received a renal transplant 21 months prior to presentation whose synovial fluid and surgical specimens grew Phomopsis bougainvilleicola, a pycnidial coelomycete.
Related JoVE Video
Construction and evaluation of a novel recombinant T cell epitope-based vaccine against Coccidioidomycosis.
Infect. Immun.
Show Abstract
Hide Abstract
Clinical and animal studies of coccidioidomycosis have demonstrated that activated CD4(+) T lymphocytes are essential for protection against this fungal respiratory disease. We previously reported a vaccine against Coccidioides infection which contained three recombinant CD4(+) T cell-reactive proteins and induced a robust, protective immune response in mice. Due to the anticipated high cost of production and clinical assessment of this multivalent vaccine, we generated a single protein which contained immunodominant T cell epitopes of the three polypeptides. Epitopes were initially identified by computational prediction of their ability to bind promiscuously to human major histocompatibility complex class II (MHC II) molecules. Cellular immunoassays confirmed the immunogenicity of the synthesized epitope peptides, while in vitro binding assays revealed a range of peptide affinity for MHC II. A DNA construct was synthesized for bacterial expression of a recombinant protein vaccine which contained five epitopes with the highest affinity for human MHC II, each fused with leader and spacer peptides proposed to optimize epitope processing and presentation to T cell receptors. Recall assays of immune T lymphocytes obtained from human MHC II-expressing HLA-DR4 transgenic mice confirmed that 4 of the 5 epitope peptides were processed. Mice immunized with the epitope-based vaccine admixed with a synthetic oligodeoxynucleotide adjuvant or loaded into yeast glucan particles and then challenged intranasally with Coccidioides showed early lung infiltration of activated T helper-1 (Th1), Th2, and Th17 cells, elevated gamma interferon (IFN-?) and interleukin (IL)-17 production, significant reduction of fungal burden, and prolongation of survival compared to nonvaccinated mice. This is the first report of an epitope-based vaccine against coccidioidomycosis.
Related JoVE Video
Relative contributions of dectin-1 and complement to immune responses to particulate ?-glucans.
J. Immunol.
Show Abstract
Hide Abstract
Glucan particles (GPs) are Saccharomyces cerevisiae cell walls chemically extracted so they are composed primarily of particulate ?-1,3-D-glucans. GPs are recognized by Dectin-1 and are potent complement activators. Mice immunized with Ag-loaded GPs develop robust Ab and CD4(+) T cell responses. In this study, we examined the relative contributions of Dectin-1 and complement to GP phagocytosis and Ag-specific responses to immunization with OVA encapsulated in GPs. The in vitro phagocytosis of GPs by bone marrow-derived dendritic cells was facilitated by heat-labile serum component(s) independently of Dectin-1. This enhanced uptake was not seen with serum from complement component 3 knockout (C3(-/-)) mice and was also inhibited by blocking Abs directed against complement receptor 3. After i.p. injection, percent phagocytosis of GPs by peritoneal macrophages was comparable in wild-type and Dectin-1(-/-) mice and was not inhibited by the soluble ?-glucan antagonist laminarin. In contrast, a much lower percentage of peritoneal macrophages from C3(-/-) mice phagocytosed GPs, and this percentage was further reduced in the presence of laminarin. Subcutaneous immunization of wild-type, Dectin-1(-/-), and C3(-/-) mice with GP-OVA resulted in similar Ag-specific IgG(1) and IgG(2c) type Ab and CD4(+) T cell lymphoproliferative responses. Moreover, while CD4(+) Th1 and Th2 responses measured by ELISPOT assay were similar in the three mouse strains, Th17 responses were reduced in C3(-/-) mice. Thus, although Dectin-1 is necessary for optimal phagocytosis of GPs in the absence of complement, complement dominates when both an intact complement system and Dectin-1 are present. In addition, Th-skewing after GP-based immunization was altered in C3(-/-) mice.
Related JoVE Video
Beyond empiricism: informing vaccine development through innate immunity research.
Cell
Show Abstract
Hide Abstract
Although a great public heath success, vaccines provide suboptimal protection in some patient populations and are not available to protect against many infectious diseases. Insights from innate immunity research have led to a better understanding of how existing vaccines work and have informed vaccine development. New adjuvants and delivery systems are being designed based upon their capacity to stimulate innate immune sensors and target antigens to dendritic cells, the cells responsible for initiating adaptive immune responses. Incorporating these adjuvants and delivery systems in vaccines can beneficially alter the quantitative and qualitative nature of the adaptive immune response, resulting in enhanced protection.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.