JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Systemic inflammation impairs tissue reperfusion through endothelin-dependent mechanisms in cerebral ischemia.
Stroke
PUBLISHED: 09-16-2014
Show Abstract
Hide Abstract
Systemic inflammation contributes to diverse acute and chronic brain pathologies, and extensive evidence implicates inflammation in stroke susceptibility and poor outcome. Here we investigate whether systemic inflammation alters cerebral blood flow during reperfusion after experimental cerebral ischemia.
Related JoVE Video
Chitinase-like proteins promote IL-17-mediated neutrophilia in a tradeoff between nematode killing and host damage.
Nat. Immunol.
PUBLISHED: 08-25-2014
Show Abstract
Hide Abstract
Enzymatically inactive chitinase-like proteins (CLPs) such as BRP-39, Ym1 and Ym2 are established markers of immune activation and pathology, yet their functions are essentially unknown. We found that Ym1 and Ym2 induced the accumulation of neutrophils through the expansion of ?? T cell populations that produced interleukin 17 (IL-17). While BRP-39 did not influence neutrophilia, it was required for IL-17 production in ?? T cells, which suggested that regulation of IL-17 is an inherent feature of mouse CLPs. Analysis of a nematode infection model, in which the parasite migrates through the lungs, revealed that the IL-17 and neutrophilic inflammation induced by Ym1 limited parasite survival but at the cost of enhanced lung injury. Our studies describe effector functions of CLPs consistent with innate host defense traits of the chitinase family.
Related JoVE Video
Delayed reperfusion deficits after experimental stroke account for increased pathophysiology.
J. Cereb. Blood Flow Metab.
PUBLISHED: 07-22-2014
Show Abstract
Hide Abstract
Cerebral blood flow and oxygenation in the first few hours after reperfusion following ischemic stroke are critical for therapeutic interventions but are not well understood. We investigate changes in oxyhemoglobin (HbO2) concentration in the cortex during and after ischemic stroke, using multispectral optical imaging in anesthetized mice, a remote filament to induce either 30 minute middle cerebral artery occlusion (MCAo), sham surgery or anesthesia alone. Immunohistochemistry establishes cortical injury and correlates the severity of damage with the change of oxygen perfusion. All groups were imaged for 6 hours after MCAo or sham surgery. Oxygenation maps were calculated using a pathlength scaling algorithm. The MCAo group shows a significant drop in HbO2 during occlusion and an initial increase after reperfusion. Over the subsequent 6 hours HbO2 concentrations decline to levels below those observed during stroke. Platelets, activated microglia, interleukin-1?, evidence of BBB breakdown and neuronal stress increase within the stroked hemisphere and correlate with the severity of the delayed reperfusion deficit but not with the ?HbO2 during stroke. Despite initial restoration of HbO2 after 30 min MCAo there is a delayed compromise that coincides with inflammation and could be a target for improved stroke outcome after thrombolysis.Journal of Cerebral Blood Flow & Metabolism advance online publication, 19 November 2014; doi:10.1038/jcbfm.2014.197.
Related JoVE Video
Requirement for interleukin-1 to drive brain inflammation reveals tissue-specific mechanisms of innate immunity.
Eur. J. Immunol.
PUBLISHED: 04-15-2014
Show Abstract
Hide Abstract
The immune system is implicated in a wide range of disorders affecting the brain and is, therefore, an attractive target for therapy. Interleukin-1 (IL-1) is a potent regulator of the innate immune system important for host defence but is also associated with injury and disease in the brain. Here, we show that IL-1 is a key mediator driving an innate immune response to inflammatory challenge in the mouse brain but is dispensable in extracerebral tissues including the lung and peritoneum. We also demonstrate that IL-1? is an important ligand contributing to the CNS dependence on IL-1 and that IL-1 derived from the CNS compartment (most likely microglia) is the major source driving this effect. These data reveal previously unknown tissue-specific requirements for IL-1 in driving innate immunity and suggest that IL-1-mediated inflammation in the brain could be selectively targeted without compromising systemic innate immune responses that are important for resistance to infection. This property could be exploited to mitigate injury- and disease-associated inflammation in the brain without increasing susceptibility to systemic infection, an important complication in several neurological disorders. This article is protected by copyright. All rights reserved.
Related JoVE Video
Circulating cytokines and alarmins associated with placental inflammation in high-risk pregnancies.
Am. J. Reprod. Immunol.
PUBLISHED: 04-09-2014
Show Abstract
Hide Abstract
Inflammation during pregnancy has devastating consequences for the placenta and fetus. These events are incompletely understood, thereby hampering screening and treatment.
Related JoVE Video
Long-term functional recovery and compensation after cerebral ischemia in rats.
Behav. Brain Res.
PUBLISHED: 03-17-2014
Show Abstract
Hide Abstract
Cerebral ischemia is one of the most common causes of disabilities in adults and leads to long-term motor and cognitive impairments with limited therapeutic possibilities. Treatment options have proven efficient in preclinical models of cerebral ischemia but have failed in the clinical setting. This limited translation may be due to the suitability of models used and outcomes measured as most studies have focused on the early period after injury with gross motor scales, which have limited correlation to the clinical situation. The aim of this study was to determine long-term functional outcomes after cerebral ischemia in rats, focusing on fine motor function, social and depressive behavior as clinically relevant measures. A secondary objective was to evaluate the effects of an anti-inflammatory treatment (interleukin-1 receptor antagonist (IL-1Ra)) on functional recovery and compensation. Infarct volume was correlated with long-term (25 days) impairments in fine motor skills, but not with emotional components of behavior. Motor impairments could not be detected using conventional neurological tests and only detailed analysis allowed differentiation between recovery and compensation. Acute systemic administration of IL-1Ra (at reperfusion) led to a faster and more complete recovery, but delayed (24h) IL-1Ra treatment had no effect. In summary functional assessment after brain injury requires detailed motor tests in order to address long-term impairments and compensation processes that are mediated by intact tissues. Functional deficits in skilled movement after brain injury represent ideal predictors of long-term outcomes and should become standard measures in the assessment of preclinical animal models.
Related JoVE Video
Streptococcus pneumoniae worsens cerebral ischemia via interleukin 1 and platelet glycoprotein Ib?.
Ann. Neurol.
PUBLISHED: 03-17-2014
Show Abstract
Hide Abstract
Bacterial infection contributes to diverse noninfectious diseases and worsens outcome after stroke. Streptococcus pneumoniae, the most common infection in patients at risk of stroke, is a major cause of prolonged hospitalization and death of stroke patients, but how infection impacts clinical outcome is not known.
Related JoVE Video
Variations in inflammation-related genes may be associated with childhood febrile seizure susceptibility.
Seizure
PUBLISHED: 03-04-2014
Show Abstract
Hide Abstract
To investigate whether genetic variants in inflammation-related genes are associated with increased risk of childhood-onset febrile seizures.
Related JoVE Video
High-fat diet-induced memory impairment in triple-transgenic Alzheimer's disease (3xTgAD) mice is independent of changes in amyloid and tau pathology.
Neurobiol. Aging
PUBLISHED: 02-05-2014
Show Abstract
Hide Abstract
Obesity and consumption of a high-fat diet are known to increase the risk of Alzheimer's disease (AD). Diets high in fat also increase disease neuropathology and/or cognitive deficits in AD mouse models. However, the effect of a high-fat diet on both the neuropathology and memory impairments in the triple-transgenic mouse model of AD (3xTgAD) is unknown. Therefore, groups of 2-month-old male 3xTgAD and control (non-Tg) mice were maintained on a high-fat or control diet and memory was assessed at the age of 3-4, 7-8, 11-12, and 15-16 months using a series of behavioral tests. A comparable increase in body weight was observed in non-Tg and 3xTgAD mice after high-fat feeding at all ages tested but a significantly greater increase in epididymal adipose tissue was observed in 3xTgAD mice at the age of 7-8, 11-12, and 15-16 months. A high-fat diet caused memory impairments in non-Tg control mice as early as the age of 3-4 months. In 3xTgAD mice, high-fat consumption led to a reduction in the age of onset and an increase in the extent of memory impairments. Some of these effects of high-fat diet on cognition in non-Tg and 3xTgAD mice were transient, and the age at which cognitive impairment was detected depended on the behavioral test. The effect of high-fat diet on memory in the 3xTgAD mice was independent of changes in AD neuropathology as no significant differences in (plaques, oligomers) or tau neuropathology were observed. An acute increase in microglial activation was seen in high-fat fed 3xTgAD mice at the age of 3-4 months but in non-Tg control mice microglial activation was not observed until the age of 15-16 months. These data indicate therefore that a high-fat diet has rapid and long-lasting negative effects on memory in both control and AD mice that are associated with neuroinflammation, but independent of changes in beta amyloid and tau neuropathology in the AD mice.
Related JoVE Video
Endogenous oils derived from human adipocytes are potent adjuvants that promote IL-1?-dependent inflammation.
Diabetes
PUBLISHED: 01-23-2014
Show Abstract
Hide Abstract
Obesity is characterized by chronic inflammation associated with neutrophil and M1 macrophage infiltration into white adipose tissue. However, the mechanisms underlying this process remain largely unknown. Based on the ability of oil-based adjuvants to induce immune responses, we hypothesized that endogenous oils derived from necrotic adipocytes may function as an immunological "danger signal." Here we show that endogenous oils of human origin are potent adjuvants, enhancing antibody responses to a level comparable to Freund's incomplete adjuvant. The endogenous oils were capable of promoting interleukin (IL)-1?-dependent recruitment of neutrophils and M1-like macrophages, while simultaneously diminishing M2-like macrophages. We found that endogenous oils from subcutaneous and omental adipocytes, and from healthy and unhealthy obese individuals, promoted comparable inflammatory responses. Furthermore, we also confirmed that white adipocytes in visceral fat of metabolically unhealthy obese (MUO) individuals are significantly larger than those in metabolically healthy obese individuals. Since adipocyte size is positively correlated with adipocyte death, we propose that endogenous oils have a higher propensity to be released from hypertrophied visceral fat in MUO individuals and that this is the key factor in driving inflammation. In summary, this study shows that adipocytes contain a potent oil adjuvant which drives IL-1?-dependent proinflammatory responses in vivo.
Related JoVE Video
Surgical manipulation compromises leukocyte mobilization responses and inflammation after experimental cerebral ischemia in mice.
Front Neurosci
PUBLISHED: 01-17-2014
Show Abstract
Hide Abstract
Acute brain injury results in peripheral inflammatory changes, although the impact of these processes on neuronal death and neuroinflammation is currently unclear. To facilitate the translation of experimental studies to clinical benefit, it is vital to characterize the mechanisms by which acute brain injury induces peripheral inflammatory changes, and how these are affected by surgical manipulation in experimental models. Here we show that in mice, even mild surgical manipulation of extracranial tissues induced marked granulocyte mobilization (300%) and systemic induction of cytokines. However, intracranial changes induced by craniotomy, or subsequent induction of focal cerebral ischemia were required to induce egress of CXCR2-positive granulocytes from the bone marrow. CXCR2 blockade resulted in reduced mobilization of granulocytes from the bone marrow, caused an unexpected increase in circulating granulocytes, but failed to affect brain injury induced by cerebral ischemia. We also demonstrate that isoflurane anaesthesia interferes with circulating leukocyte responses, which could contribute to the reported vascular and neuroprotective effects of isoflurane. In addition, no immunosuppression develops in the bone marrow after experimental stroke. Thus, experimental models of cerebral ischemia are compromised by surgery and anaesthesia in proportion to the severity of surgical intervention and overall tissue injury. Understanding the inherent confounding effects of surgical manipulation and development of new models of cerebral ischemia with minimal surgical intervention could facilitate better understanding of interactions between inflammation and brain injury.
Related JoVE Video
Late-onset epilepsy and occult cerebrovascular disease.
J. Cereb. Blood Flow Metab.
PUBLISHED: 01-13-2014
Show Abstract
Hide Abstract
The interface between cerebrovascular disease (CVD) and epilepsy is complex and multifaceted. Late-onset epilepsy (LOE) is increasingly common and is often attributed to CVD, and is indeed associated with an increased risk of stroke. This relationship is easily recognizable where there is a history of stroke, particularly involving the cerebral cortex. However, the relationship with otherwise occult, subcortical CVD is currently less well established yet causality is often invoked. In this review, we consider the diagnosis of LOE in clinical practice--including its behaviour as a potential mimic of acute ischemic stroke and transient ischemic attack; evidence for an association between occult CVD and LOE; and potential mechanisms of epileptogenesis in occult CVD, including potential interrelationships between disordered cerebral metabolism and perfusion, disrupted neurovascular unit integrity, blood-brain barrier dysfunction, and inflammation. We also discuss recently recognized issues concerning antiepileptic drug treatment and vascular risk and consider a variety of less common CVD entities associated with seizures.
Related JoVE Video
Maternal high-fat diet worsens memory deficits in the triple-transgenic (3xTgAD) mouse model of Alzheimer's disease.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Alzheimer's disease (AD) is not normally diagnosed until later in life, although evidence suggests that the disease starts at a much earlier age. Risk factors for AD, such as diabetes, hypertension and obesity, are known to have their affects during mid-life, though events very early in life, including maternal over-nutrition, can predispose offspring to develop these conditions. This study tested whether over-nutrition during pregnancy and lactation affected the development of AD in offspring, using a transgenic AD mouse model. Female triple-transgenic AD dam mice (3xTgAD) were exposed to a high-fat (60% energy from fat) or control diet during pregnancy and lactation. After weaning (at 3 weeks of age), female offspring were placed on a control diet and monitored up until 12 months of age during which time behavioural tests were performed. A transient increase in body weight was observed in 4-week-old offspring 3xTgAD mice from dams fed a high-fat diet. However, by 5 weeks of age the body weight of 3xTgAD mice from the maternal high-fat fed group was no different when compared to control-fed mice. A maternal high-fat diet led to a significant impairment in memory in 2- and 12-month-old 3xTgAD offspring mice when compared to offspring from control fed dams. These effects of a maternal high-fat diet on memory were accompanied by a significant increase (50%) in the number of tau positive neurones in the hippocampus. These data demonstrate that a high-fat diet during pregnancy and lactation increases memory impairments in female 3xTgAD mice and suggest that early life events during development might influence the onset and progression of AD later in life.
Related JoVE Video
Acidosis drives damage-associated molecular pattern (DAMP)-induced interleukin-1 secretion via a caspase-1-independent pathway.
J. Biol. Chem.
PUBLISHED: 09-10-2013
Show Abstract
Hide Abstract
The proinflammatory cytokine IL-1? is a key mediator of inflammatory responses that contribute to and exacerbate brain injury. IL-1? is synthesized by microglia in the brain as an inactive precursor (pro-IL-1?). Cleavage of pro-IL-1? to a mature form is stimulated by damage-associated molecular patterns (DAMPs). These DAMPs are sensed by a pattern recognition receptor called NLRP3, which forms an inflammasome, resulting in the activation of caspase-1 and cleavage of pro-IL-1?. To date, regulation of the inflammasome in culture has been studied under normal culture conditions, and it is not known how DAMPs signal under disease relevant conditions such as acidosis. Given the presence of acidosis in pathological states, our objective was to test the hypothesis that acidic conditions modify DAMP-induced IL-1? release from cultured primary mouse glial cells. When LPS-primed glial cells were stimulated with DAMPs under acidic conditions (pH 6.2), the predominant IL-1? form secreted was the 20-kDa rather than the 17-kDa caspase-1-dependent species. Lactic acidosis, induced by the addition of 25 mm lactic acid, also induced the release of 20-kDa IL-1?. This 20-kDa product was produced independently of NLRP3 and caspase-1 but was inhibited by the cathepsin D inhibitor pepstatin A. These data suggest that under disease relevant acidosis, DAMPs and lactic acid induce the secretion of IL-1? independently of the inflammasome. Therapeutic strategies directed to the inhibition of IL-1? processing should therefore consider alternative processing of IL-1? in addition to caspase-1-dependent processing.
Related JoVE Video
The acute-phase protein PTX3 is an essential mediator of glial scar formation and resolution of brain edema after ischemic injury.
J. Cereb. Blood Flow Metab.
PUBLISHED: 07-23-2013
Show Abstract
Hide Abstract
Acute-phase proteins (APPs) are key effectors of the immune response and are routinely used as biomarkers in cerebrovascular diseases, but their role during brain inflammation remains largely unknown. Elevated circulating levels of the acute-phase protein pentraxin-3 (PTX3) are associated with worse outcome in stroke patients. Here we show that PTX3 is expressed in neurons and glia in response to cerebral ischemia, and that the proinflammatory cytokine interleukin-1 (IL-1) is a key driver of PTX3 expression in the brain after experimental stroke. Gene deletion of PTX3 had no significant effects on acute ischemic brain injury. In contrast, the absence of PTX3 strongly compromised blood-brain barrier integrity and resolution of brain edema during recovery after ischemic injury. Compromised resolution of brain edema in PTX3-deficient mice was associated with impaired glial scar formation and alterations in scar-associated extracellular matrix production. Our results suggest that PTX3 expression induced by proinflammatory signals after ischemic brain injury is a critical effector of edema resolution and glial scar formation. This highlights the potential role for inflammatory molecules in brain recovery after injury and identifies APPs, in particular PTX3, as important targets in ischemic stroke and possibly other brain inflammatory disorders.Journal of Cerebral Blood Flow & Metabolism advance online publication, 18 December 2013; doi:10.1038/jcbfm.2013.224.
Related JoVE Video
Central and haematopoietic interleukin-1 both contribute to ischaemic brain injury in mice.
Dis Model Mech
PUBLISHED: 03-15-2013
Show Abstract
Hide Abstract
Interleukin-1 (IL-1) is a key regulator of inflammation and ischaemic brain injury, but the contribution of central and peripheral sources of IL-1 to brain injury is not well understood. Here we show that haematopoietic-derived IL-1 is a key driver of ischaemic brain injury. Wild type (WT) mice transplanted with IL-1??-deficient bone marrow displayed a significant (40%) reduction in brain injury induced by focal cerebral ischaemia compared with WT mice transplanted with WT bone marrow. This was paralleled by improved neurological outcome and the almost complete absence of splenic-derived, but not liver-derived, IL-1? after stroke in WT mice lacking haematopoietic-derived IL-1. IL-1?? knockout (KO) mice transplanted with IL-1??-deficient bone marrow showed a 60% reduction in brain injury compared with WT mice receiving WT bone marrow. Transplantation of WT bone marrow in IL-1?? KO mice resulted in a similar level of blood-brain-barrier injury to that observed in WT mice receiving IL-1??-deficient bone marrow. Cerebral oedema after brain injury was reduced in IL-1?? KO recipients irrespective of donor-derived IL-1, but a lack of haematopoetic IL-1 has also been associated with smaller brain oedema independently of recipient status. Thus, both central and haematopoietic-derived IL-1 are important contributors to brain injury after cerebral ischaemia. Identification of the cellular sources of IL-1 in the periphery could allow targeted interventions at these sites.
Related JoVE Video
Microglia and macrophages differentially modulate cell death after brain injury caused by oxygen-glucose deprivation in organotypic brain slices.
Glia
PUBLISHED: 01-10-2013
Show Abstract
Hide Abstract
Macrophage can adopt several phenotypes, process call polarization, which is crucial for shaping inflammatory responses to injury. It is not known if microglia, a resident brain macrophage population, polarizes in a similar way, and whether specific microglial phenotypes modulate cell death in response to brain injury. In this study, we show that both BV2-microglia and mouse bone marrow derived macrophages (BMDMs) were able to adopt different phenotypes after LPS (M1) or IL-4 (M2) treatment in vitro, but regulated cell death differently when added to mouse organotypic hippocampal brain slices. BMDMs induced cell death when added to control slices and exacerbated damage when combined with oxygen-glucose deprivation (OGD), independently of their phenotype. In contrast, vehicle- and M2-BV2-microglia were protective against OGD-induced death. Direct treatment of brain slices with IL-4 (without cell addition) was protective against OGD and induced an M2 phenotype in the slice. In vivo, intracerebral injection of LPS or IL-4 in mice induced microglial phenotypes similar to the phenotypes observed in brain slices and in cultured cells. After injury induced by middle cerebral artery occlusion, microglial cells did not adopt classical M1/M2 phenotypes, suggesting that another subtype of regulatory phenotype was induced. This study highlights functional differences between macrophages and microglia, in response to brain injury with fundamentally different outcomes, even if both populations were able to adopt M1 or M2 phenotypes. These data suggest that macrophages infiltrating the brain from the periphery after an injury may be cytotoxic, independently of their phenotype, while microglia may be protective.
Related JoVE Video
Experimental intracerebral hemorrhage: avoiding pitfalls in translational research.
J. Cereb. Blood Flow Metab.
PUBLISHED: 08-24-2011
Show Abstract
Hide Abstract
Intracerebral hemorrhage (ICH) has the highest mortality of all stroke subtypes, yet treatments are mainly limited to supportive management, and surgery remains controversial. Despite significant advances in our understanding of ICH pathophysiology, we still lack preclinical models that accurately replicate the underlying mechanisms of injury. Current experimental ICH models (including autologous blood and collagenase injection) simulate different aspects of ICH-mediated injury but lack some features of the clinical condition. Newly developed models, notably hypertension- and oral anticoagulant therapy-associated ICH models, offer added benefits but further study is needed to fully validate them. Here, we describe and discuss current approaches to experimental ICH, with suggestions for changes in how this condition is studied in the laboratory. Although advances in imaging over the past few decades have allowed greater insight into clinical ICH, there remains an important role for experimental models in furthering our understanding of the basic pathophysiologic processes underlying ICH, provided limitations of animal models are borne in mind. Owing to differences in existing models and the failed translation of benefits in experimental ICH to clinical practice, putative neuroprotectants should be trialed in multiple models using both histological and functional outcomes until a more accurate model of ICH is developed.
Related JoVE Video
Interleukin-1 and stroke: biomarker, harbinger of damage, and therapeutic target.
Cerebrovasc. Dis.
PUBLISHED: 08-23-2011
Show Abstract
Hide Abstract
Inflammation is established as a contributor to cerebrovascular disease. Risk factors for stroke include many conditions associated with chronic or acute inflammation, and inflammatory changes in the brain after cerebrovascular events contribute to outcome in experimental studies, with growing evidence from clinical research. The brain is extremely susceptible to inflammatory challenge, but resident glia, endothelial cells and neurones can all mount a pronounced inflammatory response to infection or injury. Recent discoveries highlight the importance of peripherally-derived immune cells and inflammatory molecules in various central nervous system disorders, including stroke. The inflammatory cytokine, interleukin-1 (IL-1), plays a pivotal role in both local and systemic inflammation, and is a key driver of peripheral and central immune responses to infection or injury. Inhibition of IL-1 has beneficial effects in a variety of experimental paradigms of acute brain injury and is a promising clinical target in stroke. We propose that blockade of IL-1 could be therapeutically useful in several diseases which are risk factors for stroke, and there is already considerable pre-clinical and clinical evidence that inhibition of IL-1 by IL-1 receptor antagonist may be valuable in the management of acute stroke.
Related JoVE Video
Assessing the contribution of inflammation in models of Alzheimers disease.
Biochem. Soc. Trans.
PUBLISHED: 07-27-2011
Show Abstract
Hide Abstract
Inflammation has long been proposed as having a role in AD (Alzheimers disease), although it remains unclear whether inflammation represents a cause or consequence of AD. Evidence from the clinical setting in support of a role for inflammation in AD includes increased expression of inflammatory mediators and microglial activation in the post-mortem AD brain. Also, epidemiological studies on AD patients under long-term treatment with non-steroidal anti-inflammatory drugs suggest some benefits, although recent prospective trials showed no effect. Furthermore, in AD patients, infection and other systemic inflammatory events worsen symptoms. Finally, several inflammatory genes are associated with increased risk of AD. Therefore, to elucidate the underlying mechanisms of AD and the role of inflammation, researchers have turned to experimental models and here we present a short overview of some key findings from these studies. Activation of microglia is seen in various transgenic models of AD, with both a protective role and a detrimental role being ascribed to it. Early microglial activation is probably beneficial in AD, through phagocytosis of amyloid ?-peptide. At later stages however, pro-inflammatory cytokine release from microglia could contribute to neuronal demise. A better understanding of microglial phenotype at the various stages of AD is therefore still required. Although most studies suggest a detrimental role for pro-inflammatory cytokines such as interleukin-1 and tumour necrosis factor in AD, contradictory findings do exist. Age-related and differential cellular expression of these inflammatory mediators is probably a key determinant of their exact contribution to AD. In conclusion, there is no doubt that inflammatory processes are part of the pathophysiology of AD, but a better understanding of the exact contribution at different stages of the disease process is still required before appropriate treatment strategies can be devised.
Related JoVE Video
Regulation of interleukin-1 in acute brain injury.
Trends Pharmacol. Sci.
PUBLISHED: 04-27-2011
Show Abstract
Hide Abstract
Inflammation is a complex vascular response that has evolved to eliminate infection and to repair injured tissue. It is subject to tight regulatory control of its initiation and resolution. Failure of an inflammatory response to resolve has become recognised as a major contributor to the pathology of diverse diseases (including acute brain injuries). Interleukin-1 (IL-1) is a pro-inflammatory cytokine and key contributor to damage after acute brain injury. Understanding the regulation of IL-1 production is vital for the development of new drug targets and therapies. In recent years, there have been major advances in how we understand the resolution of inflammatory responses, and in how IL-1 is regulated after injury. Advances are summarised here in the context of addressing how dampening the inflammatory response and actions of IL-1 provides a strategy for reducing damage after acute brain injury such as stroke.
Related JoVE Video
Occult cerebrovascular disease and late-onset epilepsy: could loss of neurovascular unit integrity be a viable model?
Cardiovasc Psychiatry Neurol
PUBLISHED: 03-06-2011
Show Abstract
Hide Abstract
Late-onset epilepsy (LOE) first occurs after 60 years of age and may be due to occult cerebrovascular disease (CVD) which confers an increased risk of stroke. However, patients with late-onset epilepsy are not currently consistently investigated or treated for cerebrovascular risk factors. We discuss how abnormalities of neurovascular unit function, namely, changes in regional cerebral blood flow and blood brain barrier disruption, may be caused by occult cerebrovascular disease but present clinically as late-onset epilepsy. We describe novel magnetic resonance imaging methods to detect abnormal neurovascular unit function in subjects with LOE and controls. We hypothesise that occult CVD may cause LOE as a result of neurovascular unit dysfunction.
Related JoVE Video
Brain inflammation is induced by co-morbidities and risk factors for stroke.
Brain Behav. Immun.
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
Chronic systemic inflammatory conditions, such as atherosclerosis, diabetes and obesity are associated with increased risk of stroke, which suggests that systemic inflammation may contribute to the development of stroke in humans. The hypothesis that systemic inflammation may induce brain pathology can be tested in animals, and this was the key objective of the present study. First, we assessed inflammatory changes in the brain in rodent models of chronic, systemic inflammation. PET imaging revealed increased microglia activation in the brain of JCR-LA (corpulent) rats, which develop atherosclerosis and obesity, compared to the control lean strain. Immunostaining against Iba1 confirmed reactive microgliosis in these animals. An atherogenic diet in apolipoprotein E knock-out (ApoE(-/-)) mice induced microglial activation in the brain parenchyma within 8 weeks and increased expression of vascular adhesion molecules. Focal lipid deposition and neuroinflammation in periventricular and cortical areas and profound recruitment of activated myeloid phagocytes, T cells and granulocytes into the choroid plexus were also observed. In a small, preliminary study, patients at risk of stroke (multiple risk factors for stroke, with chronically elevated C-reactive protein, but negative MRI for brain pathology) exhibited increased inflammation in the brain, as indicated by PET imaging. These findings show that brain inflammation occurs in animals, and tentatively in humans, harbouring risk factors for stroke associated with elevated systemic inflammation. Thus a "primed" inflammatory environment in the brain may exist in individuals at risk of stroke and this can be adequately recapitulated in appropriate co-morbid animal models.
Related JoVE Video
Experimental stroke-induced changes in the bone marrow reveal complex regulation of leukocyte responses.
J. Cereb. Blood Flow Metab.
PUBLISHED: 11-03-2010
Show Abstract
Hide Abstract
Stroke induces a systemic response that involves rapid activation of inflammatory cascades, followed later by immunodepression. Experimental stroke-induced responses in the bone marrow, which is the primary source of circulating monocytes and granulocytes, have not been investigated previously. We show that cerebral ischaemia induced early (4 ?hours) release of CXCR2-positive granulocytes from the bone marrow, which was associated with rapid systemic upregulation of CXCL1 (a ligand for CXCR2) and granulocyte-colony-stimulating factor, a key cytokine involved in the mobilisation of bone marrow leukocytes. This process involves rapid activation of nuclear factor-?B and p38 mitogen-activated protein kinase in bone marrow myeloid cells. T-cell numbers in the bone marrow increased after stroke, and bone marrow cells did not show suppressed cytokine response to bacterial endotoxin stimulation in vitro. Stroke-induced laterality observed in the brain stem and in the bone marrow indicates direct involvement of the autonomic nervous system in stroke-induced cell mobilisation. We also show that systemic inflammatory changes and leukocyte responses in the bone marrow are profoundly affected by both anaesthetic and surgical stress. We conclude that stroke influences leukocyte responses in the bone marrow through multiple mechanisms and suggest that preclinical studies should take into consideration the effect of surgical manipulation in experimental models of stroke.
Related JoVE Video
Tuftsin derivatives of FITC, Tb-DOTA or Gd-DOTA as potential macrophage-specific imaging biomarkers.
Contrast Media Mol Imaging
PUBLISHED: 08-28-2010
Show Abstract
Hide Abstract
Fluorescein- and terbium-labelled tuftsin (Thr-Lys-Pro-Arg) and pentapeptide (Thr-Lys-Pro-Pro-Arg) were synthesized and their properties were evaluated in vitro by luminescence spectrometry and confocal microscopy as fluorescence probes to target macrophage cells in biological systems. An increase in fluorescence of macrophages incubated with varying concentrations of fluorescein isothiocyanate or Tb-DOTA-tuftsin/pentapeptide conjugates was observed in a concentration-dependent manner. Tb-DOTA-pentapeptide had a greater affinity to macrophages than Tb-DOTA-tuftsin. Lipopolysaccharide (LPS) stimulation strengthened the internalization of peptide conjugates by macrophages through the tuftsin receptor mechanism. Tb-DOTA-tuftsin/pentapeptide conjugates are likely to be a promising optical reagents as probes of the immune response with involvement of macrophage cells in a variety of diseases. Gd-DOTA-tuftsin conjugate was also evaluated as a cell-specific contrast agent in in vitro MRI experiments. In this context, the macrophages labelled by Gd-DOTA-tuftsin were highly magnetic and detectable by MRI, which confirms that this vectorized MRI probe has the potential to image macrophage-mediated inflammation in diseases like brain traumas and stroke. Tuftsin receptor-specific biological-function domain may have a modified in vivo biodistribution profile, bioavailability and pharmacokinetics subsequent to its conjugation to a metal ion-binding backbone.
Related JoVE Video
Interleukin-1 drives cerebrovascular inflammation via MAP kinase-independent pathways.
Curr Neurovasc Res
PUBLISHED: 08-18-2010
Show Abstract
Hide Abstract
Cerebrovascular inflammation is triggered by diverse central nervous system (CNS) insults and contributes to disease pathogenesis. The pro-inflammatory cytokine interleukin (IL)-1 is central to this cerebrovascular inflammatory response and understanding the underlying signalling mechanisms of IL-1 actions in brain endothelium may provide therapeutic targets for disease intervention. For the first time, we compare the contributions of p38, JNK and ERK mitogen-activated protein (MAP) kinase and NF-kB pathways to IL-1-induced brain endothelial activation. In cultures of primary mouse brain endothelium and the rat brain endothelial GPNT cell line, interleukin-1? (IL-1? induced a rapid (within 5 minutes) and transient activation of p38 and JNK (but not ERK) MAP kinases. IL-1? also induced nuclear recruitment of nuclear factor (NF)-kB p65. IL-1?-induced brain endothelial expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 was insensitive to MAP kinase inhibitors. IL-1?-induced brain endothelial expression of ICAM-1 and VCAM-1 was inhibited (80-88 %) by the proteasome inhibitor MG132 or the antioxidant caffeic acid phenethyl ester (CAPE), effects suggested to be NF-kB-dependent. IL-1?-induced brain endothelial CXCL1 expression was partially inhibited by JNK MAP kinase or MG132 (62 or 56 %, respectively). However, CXCL1 secretion from brain endothelium was reduced (65 %) only by MG132, and not MAP kinase inhibitors. Similarly, IL-1?-induced neutrophil transendothelial migration was reduced (77-89 %) by MG132, but not MAP kinase inhibitors. In summary, we show that several key components of IL-1?-induced brain endothelial activation (CAM, CXCL1 expression or release and neutrophil transmigration) are largely independent of MAP kinase activity but are reduced by proteasome inhibition, possibly reflecting a requirement for NF-kB activity. Similar mechanisms may contribute to cerebrovascular inflammation in response to CNS injury.
Related JoVE Video
Platelet interleukin-1alpha drives cerebrovascular inflammation.
Blood
PUBLISHED: 03-03-2010
Show Abstract
Hide Abstract
White blood cell infiltration across an activated brain endothelium contributes to neurologic disease, including cerebral ischemia and multiple sclerosis. Identifying mechanisms of cerebrovascular activation is therefore critical to our understanding of brain disease. Platelet accumulation in microvessels of ischemic mouse brain was associated with endothelial activation in vivo. Mouse platelets expressed interleukin-1alpha (IL-1alpha), but not IL-1beta, induced endothelial cell adhesion molecule expression (ICAM-1 and VCAM-1), and enhanced the release of CXC chemokine CXCL1 when incubated with primary cultures of brain endothelial cells from wild-type or IL-1alpha/beta-deficient mice. A neutralizing antibody to IL-1alpha (but not IL-1beta) or application of IL-1 receptor antagonist inhibited platelet-induced endothelial activation by more than 90%. Platelets from IL-1alpha/beta-deficient mice did not induce expression of adhesion molecules in cerebrovascular endothelial cells and did not promote CXCL1 release in vitro. Conditioned medium from activated platelets induced an IL-1alpha-dependent activation of mouse brain endothelial cells and supported the transendothelial migration of neutrophils in vitro. Thus, we have identified platelets as a key source of IL-1alpha and propose that platelet activation of brain endothelium via IL-1alpha is a critical step for the entry of white blood cells, major contributors to inflammation-mediated injury in the brain.
Related JoVE Video
Hypermetabolism in a triple-transgenic mouse model of Alzheimers disease.
Neurobiol. Aging
PUBLISHED: 01-08-2010
Show Abstract
Hide Abstract
A common feature of Alzheimers disease (AD) is weight loss, even though there is often an increase in food intake in AD patients. The reasons for this weight loss are unknown, but may be due to increased energy expenditure (metabolic rate) or a reduction in energy intake. This was investigated in the present study, using a triple-transgenic (3xTgAD) mouse model of AD. Two-month-old 3xTgAD mice displayed greater food intake (17%) and body weight (34%) but no difference in metabolic rate, as compared with nontransgenic controls (non-Tg). At 12 months of age, 3xTgAD mice still consumed more food (30%), but their body weight was significantly lower (15%) than non-Tg controls. This reduction in body weight was accompanied by a significant rise in metabolic rate, indicated by greater oxygen consumption (24%) and carbon dioxide production (29%); the effects were also observed in 18-month-old 3xTgAD mice. These data demonstrate for the first time the existence of a hypermetabolic state in an experimental model of AD, but whether this can explain the weight loss observed in AD patients remains to be determined.
Related JoVE Video
A rapid and transient peripheral inflammatory response precedes brain inflammation after experimental stroke.
J. Cereb. Blood Flow Metab.
PUBLISHED: 08-05-2009
Show Abstract
Hide Abstract
Increasing evidence suggests that peripheral inflammatory responses to stroke and other brain injuries have an important role in determining neurological outcome. The mediators of this response and the temporal relationships between peripheral and central inflammatory alterations are poorly understood. In this study, we show that experimental stroke in mice induces a peripheral inflammatory response that peaks 4 h after stroke, and precedes the peak in brain inflammation 24 h after stroke. This peripheral response is dominated by the induction of the chemokine CXCL-1 and the proinflammatory cytokine interleukin-6 and could serve as an accessible target for therapy and as a source of biomarkers predictive of prognosis.
Related JoVE Video
ADAMTS-9 expression is up-regulated following transient middle cerebral artery occlusion (tMCAo) in the rat.
Neurosci. Lett.
PUBLISHED: 01-07-2009
Show Abstract
Hide Abstract
The ADAMTS enzymes (a disintegrin and metalloproteinase with thrombospondin type 1-like motifs) have important roles in central nervous system (CNS) physiology and pathology. This current study aimed to analyse the expression of ADAMTS-9 following transient middle cerebral artery occlusion (tMCAo) in the rat, a model of focal cerebral ischaemia. Using real-time RT-PCR, ADAMTS-9 mRNA was demonstrated to be significantly up-regulated in tMCAo brain tissue compared to sham-operated at 24h post-ischaemia. The mature form of the ADAMTS-9 protein was only detected by Western blotting in brains subjected to tMCAo at 24h. In situ hybridisation demonstrated that ADAMTS-9 mRNA was expressed by neurones in tMCAo tissue. This study indicates that ADAMTS-9 expression is modulated in response to cerebral ischaemia in vivo and further research will resolve whether it plays a role in the subsequent degenerative or repair processes.
Related JoVE Video
Interleukin-1 mediates neuroinflammatory changes associated with diet-induced atherosclerosis.
J Am Heart Assoc
Show Abstract
Hide Abstract
Systemic inflammation contributes to brain pathology in cerebrovascular disease through mechanisms that are poorly understood.
Related JoVE Video
Systemic immune activation shapes stroke outcome.
Mol. Cell. Neurosci.
Show Abstract
Hide Abstract
Stroke is a major cause of morbidity and mortality, and activation of the immune system can impact on stroke outcome. Although the majority of research has focused on the role of the immune system after stroke there is increasing evidence to suggest that inflammation and immune activation prior to brain injury can influence stroke risk and outcome. With the high prevalence of co-morbidities in the Western world such as obesity, hypertension and diabetes, pre-existing chronic low-grade systemic inflammation has become a customary characteristic of stroke pathophysiology that needs to be considered in the search for new therapies. The importance of the immune system in stroke has been demonstrated in a number of ways, both experimentally and in the clinical setting. This review will focus on the effect of immune activation arising from systemic inflammatory conditions and infection, how it affects the incidence and outcomes of stroke, and the possible underlying mechanisms involved. This article is part of a Special Issue entitled Neuroinflammation in neurodegeneration and neurodysfunction.
Related JoVE Video
Age-related changes in core body temperature and activity in triple-transgenic Alzheimers disease (3xTgAD) mice.
Dis Model Mech
Show Abstract
Hide Abstract
Alzheimers disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4-10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No ?-amyloid (A?) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD.
Related JoVE Video
Delayed administration of interleukin-1 receptor antagonist reduces ischemic brain damage and inflammation in comorbid rats.
J. Cereb. Blood Flow Metab.
Show Abstract
Hide Abstract
Many neuroprotective agents have been effective in experimental stroke, yet few have translated into clinical application. One reason for this may be failure to consider clinical comorbidities/risk factors in experimental models. We have shown that a naturally occurring interleukin-1 receptor antagonist (IL-1Ra) is protective against ischemic brain damage in healthy animals. However, protective effects of IL-1Ra have not been determined in comorbid animals. Thus, we tested whether IL-1Ra protects against brain injury induced by experimental ischemia in aged JCR-LA (corpulent) rats, which have clinically relevant risk factors. Male, aged, lean, and corpulent rats exposed to transient (90 minutes) occlusion of the middle cerebral artery (tMCAO) were administered two doses of IL-1Ra (25 mg/kg, subcutaneously) during reperfusion. Brain injury and neuroinflammatory changes were assessed 24 hours after tMCAO. Our results show that IL-1Ra administered at reperfusion significantly reduced infarct volume measured by magnetic resonance imaging (50%, primary outcome) and blood-brain barrier disruption in these comorbid animals. Interleukin-1Ra also reduced microglial activation, neutrophil infiltration, and cytokines levels in the brain. These data are the first to indicate that IL-1Ra protects against ischemic brain injury when administered via a clinically relevant route and time window in animals with multiple risk factors for stroke.
Related JoVE Video
Interleukin-1 receptor antagonist is beneficial after subarachnoid haemorrhage in rat by blocking haem-driven inflammatory pathology.
Dis Model Mech
Show Abstract
Hide Abstract
Subarachnoid haemorrhage (SAH) is a major contributor to the burden of stroke on society. Treatment options are limited and animal models of SAH do not always mimic key pathophysiological hallmarks of the disease, thus hindering development of new therapeutics. Inflammation is strongly associated with brain injury after SAH in animals and patients, and inhibition of the pro-inflammatory cytokine interleukin-1 (IL-1) represents a possible therapeutic target. Here we report that a rupture of the middle cerebral artery in the rat produces heterogeneous infarct patterns similar to those observed in human SAH. Administration of the IL-1 receptor antagonist (IL-1Ra) reduced blood-brain barrier breakdown, and the extent of breakdown correlated with brain injury. After SAH, haem oxygenase-1 (HO-1) was strongly expressed around the bleed site and in the cortex and striatum, indicating the presence of free haem, a breakdown product of haemoglobin. HO-1 expression was also found in the same regions as microglial/macrophage expression of IL-1?. The direct effect of haem on IL-1? expression was confirmed in vitro using organotypic slice culture (OSC). Haem-induced cell death was dependent on IL-1 signalling, with IL-1Ra completely blocking cellular injury. Furthermore, stimulation of mouse primary mixed glial cells with haem induced the release of IL-1?, but not IL-1?. Thus, we suggest that haem, released from lysed red blood cells (RBCs) in the subarachnoid space, acts as a danger-associated molecular pattern (DAMP) driving IL-1-dependent inflammation. These data provide new insights into inflammation after SAH-induced brain injury and suggest IL-1Ra as a candidate therapeutic for the disease.
Related JoVE Video
Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA.
J. Immunol.
Show Abstract
Hide Abstract
Cerebrovascular inflammation contributes to diverse CNS disorders through mechanisms that are incompletely understood. The recruitment of neutrophils to the brain can contribute to neurotoxicity, particularly during acute brain injuries, such as cerebral ischemia, trauma, and seizures. However, the regulatory and effector mechanisms that underlie neutrophil-mediated neurotoxicity are poorly understood. In this study, we show that mouse neutrophils are not inherently toxic to neurons but that transendothelial migration across IL-1-stimulated brain endothelium triggers neutrophils to acquire a neurotoxic phenotype that causes the rapid death of cultured neurons. Neurotoxicity was induced by the addition of transmigrated neutrophils or conditioned medium, taken from transmigrated neutrophils, to neurons and was partially mediated by excitotoxic mechanisms and soluble proteins. Transmigrated neutrophils also released decondensed DNA associated with proteases, which are known as neutrophil extracellular traps. The blockade of histone-DNA complexes attenuated transmigrated neutrophil-induced neuronal death, whereas the inhibition of key neutrophil proteases in the presence of transmigrated neutrophils rescued neuronal viability. We also show that neutrophil recruitment in the brain is IL-1 dependent, and release of proteases and decondensed DNA from recruited neutrophils in the brain occurs in several in vivo experimental models of neuroinflammation. These data reveal new regulatory and effector mechanisms of neutrophil-mediated neurotoxicity (i.e., the release of proteases and decondensed DNA triggered by phenotypic transformation during cerebrovascular transmigration). Such mechanisms have important implications for neuroinflammatory disorders, notably in the development of antileukocyte therapies.
Related JoVE Video
Systematic review and meta-analysis of the efficacy of statins in experimental stroke.
Int J Stroke
Show Abstract
Hide Abstract
Statins are postulated as candidate drugs for the treatment of acute stroke. The aim of this study was to critically appraise the evidence for the efficacy of statins administered after the onset of experimental focal cerebral ischemia.
Related JoVE Video
Environmental management practices and engineering science: A review and typology for future research.
Integr Environ Assess Manag
Show Abstract
Hide Abstract
Current literature describes a number of environmental management practices and cleaner production methods that facilitate different industrial sectors to address their various environmental impacts. The high number of present practices makes their use especially difficult and complicated. This paper aims to shed light on this field by providing a typology of those environmental management practices (such as environmental management systems, environmental indicators assessment methodologies and cleaner productions methods) and their limitations. It also describes the strengths and weaknesses of using such tools and some thoughts for future research. Integr Environ Assess Manag © 2013 SETAC.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.