JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A Molecular atlas of Xenopus respiratory system development.
Dev. Dyn.
PUBLISHED: 08-26-2014
Show Abstract
Hide Abstract
Background: Respiratory system development is regulated by a complex series of endoderm-mesoderm interactions that are not fully understood. Recently Xenopus has emerged as an alternative model to investigate early respiratory system development, but the extent to which the morphogenesis and molecular pathways involved are conserved between Xenopus and mammals has not been systematically documented. Results: In this study, we provide a histological and molecular atlas of Xenopus respiratory system development, focusing on Nkx2.1(+) respiratory cell fate specification in the developing foregut. We document the expression patterns of Wnt/?-catenin, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling components in the foregut and show that the molecular mechanisms of respiratory lineage induction are remarkably conserved between Xenopus and mice. Finally, using several functional experiments we refine the epistatic relationships among FGF, Wnt, and BMP signaling in early Xenopus respiratory system development. Conclusions: We demonstrate that Xenopus trachea and lung development, before metamorphosis, is comparable at the cellular and molecular levels to embryonic stages of mouse respiratory system development between embryonic days 8.5 and 10.5. This molecular atlas provides a fundamental starting point for further studies using Xenopus as a model to define the conserved genetic programs controlling early respiratory system development. Developmental Dynamics, 2014. © 2014 Wiley Periodicals, Inc.
Related JoVE Video
Genotype-phenotype correlations for infants and children with ABCA3 deficiency.
Am. J. Respir. Crit. Care Med.
PUBLISHED: 05-30-2014
Show Abstract
Hide Abstract
Recessive mutations in the ATP-binding cassette transporter A3 (ABCA3) cause lethal neonatal respiratory failure and childhood interstitial lung disease. Most ABCA3 mutations are private.
Related JoVE Video
Sox17 is required for normal pulmonary vascular morphogenesis.
Dev. Biol.
PUBLISHED: 01-10-2014
Show Abstract
Hide Abstract
The SRY-box containing transcription factor Sox17 is required for endoderm formation and vascular morphogenesis during embryonic development. In the lung, Sox17 is expressed in mesenchymal progenitors of the embryonic pulmonary vasculature and is restricted to vascular endothelial cells in the mature lung. Conditional deletion of Sox17 in splanchnic mesenchyme-derivatives using Dermo1-Cre resulted in substantial loss of Sox17 from developing pulmonary vascular endothelial cells and caused pulmonary vascular abnormalities before birth, including pulmonary vein varices, enlarged arteries, and decreased perfusion of the microvasculature. While survival of Dermo1-Cre;Sox17?/? mice (herein termed Sox17?/?) was unaffected at E18.5, most Sox17?/? mice died by 3 weeks of age. After birth, the density of the pulmonary microvasculature was decreased in association with alveolar simplification, biventricular cardiac hypertrophy, and valvular regurgitation. The severity of the postnatal cardiac phenotype was correlated with the severity of pulmonary vasculature abnormalities. Sox17 is required for normal formation of the pulmonary vasculature and postnatal cardiovascular homeostasis.
Related JoVE Video
Large ABCA3 and SFTPC Deletions Resulting in Lung Disease.
Ann Am Thorac Soc
PUBLISHED: 09-13-2013
Show Abstract
Hide Abstract
Rationale: Mutations in genes encoding proteins important in the function and metabolism of pulmonary surfactant are recognized causes of lung disease. Clinical genetic testing is available for these disorders, but children with phenotypes consistent with surfactant dysfunction and no identifiable mutations in the known causative genes have been reported. Objectives: To identify the mechanism(s) for lung disease in two children with the phenotype of surfactant dysfunction who had negative testing in clinical laboratories for gene mutations causing surfactant dysfunction. Methods: Amplicons spanning multiple exons of candidate genes were generated by polymerase chain reaction and sequenced. Measurements and Main Results: A 4,335-base deletion that included all of exon 12 of the gene encoding member A3 of the adenosine triphosphate-binding cassette transporter was identified in a full-term infant with respiratory failure. A 333-base deletion involving part of exon 4 and the adjacent intron of the gene encoding surfactant protein C was identified in a child with interstitial lung disease. Conclusions: Large deletions are a cause of surfactant dysfunction disorders and may need to be sought for specifically in children whose phenotypes suggest these syndromes but in whom clinical genetic testing is unrevealing.
Related JoVE Video
Heterogeneous pulmonary phenotypes associated with mutations in the thyroid transcription factor gene NKX2-1.
Chest
PUBLISHED: 02-23-2013
Show Abstract
Hide Abstract
Mutations in the gene encoding thyroid transcription factor, NKX2-1, result in neurologic abnormalities, hypothyroidism, and neonatal respiratory distress syndrome (RDS) that together are known as the brain-thyroid-lung syndrome. To characterize the spectrum of associated pulmonary phenotypes, we identified individuals with mutations in NKX2-1 whose primary manifestation was respiratory disease.
Related JoVE Video
MEK-ERK pathway modulation ameliorates pulmonary fibrosis associated with epidermal growth factor receptor activation.
Am. J. Respir. Cell Mol. Biol.
PUBLISHED: 10-20-2011
Show Abstract
Hide Abstract
Pulmonary fibrosis remains a significant public health burden with no proven therapies. The mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling cascade is a major pathway controlling cellular processes associated with fibrogenesis, including growth, proliferation, and survival. Activation of the MAPK/ERK pathway is detected in the lungs of human fibrosis samples; however, the effect of modulating the pathway in vivo is unknown. Overexpression of transforming growth factor (TGF)-? in the lung epithelium of transgenic mice causes a progressive pulmonary fibrosis associated with increased MEK/ERK activation localized primarily in mesenchymal cells. To determine the role of the MEK pathway in the induction of TGF-?-induced lung fibrosis, TGF-? was overexpressed for 4 weeks while mice were simultaneously treated with the specific MEK inhibitor, ARRY-142886 (ARRY). Treatment with ARRY prevented increases in lung cell proliferation and total lung collagen, attenuated production of extracellular matrix genes, and protected mice from changes in lung function. ARRY administered as a rescue treatment after fibrosis was already established inhibited fibrosis progression, as assessed by lung histology, changes in body weights, extracellular matrix gene expression, and lung mechanics. These findings demonstrate that MEK inhibition prevents progression of established fibrosis in the TGF-? model, and provides proof of concept of targeting the MEK pathway in fibrotic lung disease.
Related JoVE Video
Maternal synchronization of gestational length and lung maturation.
PLoS ONE
PUBLISHED: 07-14-2011
Show Abstract
Hide Abstract
Among all mammals, fetal growth and organ maturation must be precisely synchronized with gestational length to optimize survival at birth. Lack of pulmonary maturation is the major cause of infant mortality in preterm birth. Whether fetal or maternal genotypes influence the close relationship between the length of gestation and lung function at birth is unknown. Structural and biochemical indicators of pulmonary maturity were measured in two mouse strains whose gestational length differed by one day. Shorter gestation in C57BL/6J mice was associated with advanced morphological and biochemical pulmonary development and better perinatal survival when compared to A/J pups born prematurely. After ovarian transplantation, A/J pups were born early in C57BL/6J dams and survived after birth, consistent with maternal control gestational length. Expression of genes critical for perinatal lung function was assessed in A/J pups born after ovarian transfer. A subset of mRNAs important for perinatal respiratory adaptation was selectively induced in the A/J pups born after ovarian transfer. mRNAs precociously induced after ovarian transfer indicated an important role for the transcription factors C/EBP? and CREB in maternally induced lung maturation. We conclude that fetal lung maturation is determined by both fetal and maternal genotypes. Ovarian transfer experiments demonstrated that maternal genotype determines the timing of birth and can influence fetal lung growth and maturation to ensure perinatal survival.
Related JoVE Video
Pulmonary nodules in a newborn with ATP-binding cassette transporter A3 (ABCA3) mutations.
Pediatrics
PUBLISHED: 04-04-2011
Show Abstract
Hide Abstract
Mutations in the gene for adenosine triphosphate-binding cassette transporter A3 (ABCA3) have been reported in infants and children with fatal surfactant deficiency and interstitial lung disease. Previously reported radiographic lung findings include ground-glass opacification, streaky infiltrates, and interstitial septal thickening. We report here the unusual case of a newborn who rapidly developed large rounded masses in the lung soon after birth that then resolved spontaneously by 3 months of age. She was found to be a compound heterozygote for both a known and a novel mutation in the ABCA3 gene. This report underscores the diverse clinical presentation of this condition.
Related JoVE Video
Ectopic respiratory epithelial cell differentiation in bronchiolised distal airspaces in idiopathic pulmonary fibrosis.
Thorax
PUBLISHED: 03-21-2011
Show Abstract
Hide Abstract
Bronchiolisation of distal airspaces is an unexplained feature of idiopathic pulmonary fibrosis (IPF). The authors sought to identify mechanisms driving the differentiation of mucus cells during the bronchiolisation process.
Related JoVE Video
Sox2 activates cell proliferation and differentiation in the respiratory epithelium.
Am. J. Respir. Cell Mol. Biol.
PUBLISHED: 09-20-2010
Show Abstract
Hide Abstract
Sox2, a transcription factor critical for the maintenance of embryonic stem cells and induction of pluripotent stem cells, is expressed exclusively in the conducting airway epithelium of the lung, where it is required for differentiation of nonciliated, goblet, and ciliated cells. To determine the role of Sox2 in respiratory epithelial cells, Sox2 was selectively and conditionally expressed in nonciliated airway epithelial cells and in alveolar type II cells in the adult mouse. Sox2 induced epithelial cell proliferation within 3 days of expression. Epithelial cell proliferation was associated with increased Ki-67 and cyclin D1 staining. Expression of cell cycle genes, including FoxM1, Ccna2 (Cyclin A2), Ccnb2 (Cyclin B2), and Ccnd1 (Cyclin D1), was increased. Consistent with a role in cell proliferation, Sox2 activated the transcription of FoxM1 in vitro. In alveoli, Sox2 caused hyperplasia and ectopic differentiation of epithelial cells to those with morphologic and molecular characteristics of conducting airway epithelium. Sox2 induced the expression of conducting airway epithelial specific genes, including Scgb1a1, Foxj1, Tubb3, and Cyp2f2. Although prolonged expression of Sox2 caused cell proliferation and epithelial hyperplasia, Sox2 did not induce pulmonary tumors. Sox2 induces proliferation of respiratory epithelial cells and, subsequently, partially reprograms alveolar epithelial cells into cells with characteristics of the conducting airways.
Related JoVE Video
Hereditary pulmonary alveolar proteinosis: pathogenesis, presentation, diagnosis, and therapy.
Am. J. Respir. Crit. Care Med.
PUBLISHED: 07-09-2010
Show Abstract
Hide Abstract
We identified a 6-year-old girl with pulmonary alveolar proteinosis (PAP), impaired granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor function, and increased GM-CSF.
Related JoVE Video
A nonredundant role for mouse Serpinb3a in the induction of mucus production in asthma.
J. Allergy Clin. Immunol.
PUBLISHED: 06-10-2010
Show Abstract
Hide Abstract
Asthma is a major public health burden worldwide. Studies from our group and others have demonstrated that SERPINB3 and SERPINB4 are induced in patients with asthma; however, their mechanistic role in asthma has yet to be determined.
Related JoVE Video
Patient-derived granulocyte/macrophage colony-stimulating factor autoantibodies reproduce pulmonary alveolar proteinosis in nonhuman primates.
Am. J. Respir. Crit. Care Med.
PUBLISHED: 03-11-2010
Show Abstract
Hide Abstract
Granulocyte/macrophage colony-stimulating factor (GM-CSF) autoantibodies (GMAb) are strongly associated with idiopathic pulmonary alveolar proteinosis (PAP) and are believed to be important in its pathogenesis. However, levels of GMAb do not correlate with disease severity and GMAb are also present at low levels in healthy individuals.
Related JoVE Video
Pulmonary pathology in thyroid transcription factor-1 deficiency syndrome.
Am. J. Respir. Crit. Care Med.
PUBLISHED: 03-04-2010
Show Abstract
Hide Abstract
Thyroid transcription factor-1 (TTF-1) deficiency syndrome is characterized by neurologic, thyroidal, and pulmonary dysfunction. Children usually have mild-to-severe respiratory symptoms and occasionally die of respiratory failure. Herein, we describe an infant with a constitutional 14q12-21.3 haploid deletion encompassing the TTF-1 gene locus who had cerebral dysgenesis, thyroidal dysfunction, and respiratory insufficiency. The clinical course was notable for mild hyaline membrane disease, continuous ventilatory support, and symmetrically distributed pulmonary cysts by imaging. He developed pneumonia and respiratory failure and died at 8 months. Pathologically, the lungs had grossly visible emphysematous changes with "cysts" up to 2 mm in diameter. The airway generations and radial alveolar count were diminished. In addition to acute bacterial pneumonia, there was focally alveolar septal fibrosis, pneumocyte hypertrophy, and clusters of airspace macrophages. Ultrastructurally, type II pneumocytes had numerous lamellar bodies, and alveolar spaces contained fragments of type II pneumocytes and extruded lamellar bodies. Although immunoreactivity for surfactant protein SP-A and ABCA3 was diminished, that for SP-B and proSP-C was robust, although irregularly distributed, corresponding to the distribution of type II pneumocytes. Immunoreactivity for TTF-1 protein was readily detected. In summation, we document abnormal airway and alveolar morphogenesis and altered expression of surfactant-associated proteins, which may explain the respiratory difficulties encountered in TTF-1 haploinsufficiency. These findings are consistent with experimental evidence documenting the important role of TTF-1 in pulmonary morphogenesis and surfactant metabolism.
Related JoVE Video
Conditional deletion of Abca3 in alveolar type II cells alters surfactant homeostasis in newborn and adult mice.
Am. J. Physiol. Lung Cell Mol. Physiol.
PUBLISHED: 02-26-2010
Show Abstract
Hide Abstract
ATP-binding cassette A3 (ABCA3) is a lipid transport protein required for synthesis and storage of pulmonary surfactant in type II cells in the alveoli. Abca3 was conditionally deleted in respiratory epithelial cells (Abca3(?/?)) in vivo. The majority of mice in which Abca3 was deleted in alveolar type II cells died shortly after birth from respiratory distress related to surfactant deficiency. Approximately 30% of the Abca3(?/?) mice survived after birth. Surviving Abca3(?/?) mice developed emphysema in the absence of significant pulmonary inflammation. Staining of lung tissue and mRNA isolated from alveolar type II cells demonstrated that ?50% of alveolar type II cells lacked ABCA3. Phospholipid content and composition were altered in lung tissue, lamellar bodies, and bronchoalveolar lavage fluid from adult Abca3(?/?) mice. In adult Abca3(?/?) mice, cells lacking ABCA3 had decreased expression of mRNAs associated with lipid synthesis and transport. FOXA2 and CCAAT enhancer-binding protein-?, transcription factors known to regulate genes regulating lung lipid metabolism, were markedly decreased in cells lacking ABCA3. Deletion of Abca3 disrupted surfactant lipid synthesis in a cell-autonomous manner. Compensatory surfactant synthesis was initiated in ABCA3-sufficient type II cells, indicating that surfactant homeostasis is a highly regulated process that includes sensing and coregulation among alveolar type II cells.
Related JoVE Video
Fatal familial lung disease caused by ABCA3 deficiency without identified ABCA3 mutations.
J. Pediatr.
PUBLISHED: 01-07-2010
Show Abstract
Hide Abstract
To test the hypothesis that some functionally significant variants in the gene encoding member A3 of the ATP Binding Cassette family (ABCA3) are not detected using exon-based sequencing approaches.
Related JoVE Video
Sox2 is required for maintenance and differentiation of bronchiolar Clara, ciliated, and goblet cells.
PLoS ONE
PUBLISHED: 08-05-2009
Show Abstract
Hide Abstract
The bronchioles of the murine lung are lined by a simple columnar epithelium composed of ciliated, Clara, and goblet cells that together mediate barrier function, mucociliary clearance and innate host defense, vital for pulmonary homeostasis. In the present work, we demonstrate that expression of Sox2 in Clara cells is required for the differentiation of ciliated, Clara, and goblet cells that line the bronchioles of the postnatal lung. The gene was selectively deleted in Clara cells utilizing Scgb1a1-Cre, causing the progressive loss of Sox2 in the bronchioles during perinatal and postnatal development. The rate of bronchiolar cell proliferation was decreased and associated with the formation of an undifferentiated, cuboidal-squamous epithelium lacking the expression of markers of Clara cells (Scgb1a1), ciliated cells (FoxJ1 and alpha-tubulin), and goblet cells (Spdef and Muc5AC). By adulthood, bronchiolar cell numbers were decreased and Sox2 was absent in extensive regions of the bronchiolar epithelium, at which time residual Sox2 expression was primarily restricted to selective niches of CGRP staining neuroepithelial cells. Allergen-induced goblet cell differentiation and mucus production was absent in the respiratory epithelium lacking Sox2. In vitro, Sox2 activated promoter-luciferase reporter constructs for differentiation markers characteristic of Clara, ciliated, and goblet cells, Scgb1a1, FoxJ1, and Agr2, respectively. Sox2 physically interacted with Smad3 and inhibited TGF-beta1/Smad3-mediated transcriptional activity in vitro, a pathway that negatively regulates proliferation. Sox2 is required for proliferation and differentiation of Clara cells that serve as the progenitor cells from which Clara, ciliated, and goblet cells are derived.
Related JoVE Video
SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production.
J. Clin. Invest.
PUBLISHED: 05-04-2009
Show Abstract
Hide Abstract
Various acute and chronic inflammatory stimuli increase the number and activity of pulmonary mucus-producing goblet cells, and goblet cell hyperplasia and excess mucus production are central to the pathogenesis of chronic pulmonary diseases. However, little is known about the transcriptional programs that regulate goblet cell differentiation. Here, we show that SAM-pointed domain-containing Ets-like factor (SPDEF) controls a transcriptional program critical for pulmonary goblet cell differentiation in mice. Initial cell-lineage-tracing analysis identified nonciliated secretory epithelial cells, known as Clara cells, as the progenitors of goblet cells induced by pulmonary allergen exposure in vivo. Furthermore, in vivo expression of SPDEF in Clara cells caused rapid and reversible goblet cell differentiation in the absence of cell proliferation. This was associated with enhanced expression of genes regulating goblet cell differentiation and protein glycosylation, including forkhead box A3 (Foxa3), anterior gradient 2 (Agr2), and glucosaminyl (N-acetyl) transferase 3, mucin type (Gcnt3). Consistent with these findings, levels of SPDEF and FOXA3 were increased in mouse goblet cells after sensitization with pulmonary allergen, and the proteins were colocalized in goblet cells lining the airways of patients with chronic lung diseases. Deletion of the mouse Spdef gene resulted in the absence of goblet cells in tracheal/laryngeal submucosal glands and in the conducting airway epithelium after pulmonary allergen exposure in vivo. These data show that SPDEF plays a critical role in regulating a transcriptional network mediating the goblet cell differentiation and mucus hyperproduction associated with chronic pulmonary disorders.
Related JoVE Video
Forkhead box M1 transcriptional factor is required for smooth muscle cells during embryonic development of blood vessels and esophagus.
Dev. Biol.
PUBLISHED: 04-29-2009
Show Abstract
Hide Abstract
The forkhead box m1 (Foxm1 or Foxm1b) transcription factor (previously called HFH-11B, Trident, Win, or MPP2) is expressed in a variety of tissues during embryogenesis, including vascular, airway, and intestinal smooth muscle cells (SMCs). Although global deletion of Foxm1 in Foxm1(-/-) mice is lethal in the embryonic period due to multiple abnormalities in the liver, heart, and lung, the specific role of Foxm1 in SMC remains unknown. In the present study, Foxm1 was deleted conditionally in the developing SMC (smFoxm1(-/-) mice). The majority of smFoxm1(-/-) mice died immediately after birth due to severe pulmonary hemorrhage and structural defects in arterial wall and esophagus. Although Foxm1 deletion did not influence SMC differentiation, decreased proliferation of SMC was found in smFoxm1(-/-) blood vessels and esophagus. Depletion of Foxm1 in cultured SMC caused G(2) arrest and decreased numbers of cells undergoing mitosis. Foxm1-deficiency in vitro and in vivo was associated with reduced expression of cell cycle regulatory genes, including cyclin B1, Cdk1-activator Cdc25b phosphatase, Polo-like 1 and JNK1 kinases, and cMyc transcription factor. Foxm1 is critical for proliferation of smooth muscle cells and is required for proper embryonic development of blood vessels and esophagus.
Related JoVE Video
Deletion of Scap in alveolar type II cells influences lung lipid homeostasis and identifies a compensatory role for pulmonary lipofibroblasts.
J. Biol. Chem.
PUBLISHED: 04-07-2009
Show Abstract
Hide Abstract
Pulmonary function after birth is dependent upon surfactant lipids that reduce surface tension in the alveoli. The sterol-responsive element-binding proteins (SREBPs) are transcription factors regulating expression of genes controlling lipid homeostasis in many tissues. To identify the role of SREBPs in the lung, we conditionally deleted the SREBP cleavage-activating protein gene, Scap, in respiratory epithelial cells (ScapDelta/Delta) in vivo. Prior to birth (E18.5), deletion of Scap decreased the expression of both SREBPs and a number of genes regulating fatty acid and cholesterol metabolism. Nevertheless, ScapDelta/Delta mice survived postnatally, surfactant and lung tissue lipids being substantially normalized in adult ScapDelta/Delta mice. Although phospholipid synthesis was decreased in type II cells from adult ScapDelta/Delta mice, lipid storage, synthesis, and transfer by lung lipofibroblasts were increased. mRNA microarray data indicated that SCAP influenced two major gene networks, one regulating lipid metabolism and the other stress-related responses. Deletion of the SCAP/SREBP pathway in respiratory epithelial cells altered lung lipid homeostasis and induced compensatory lipid accumulation and synthesis in lung lipofibroblasts.
Related JoVE Video
Genetic disorders of surfactant dysfunction.
Pediatr. Dev. Pathol.
PUBLISHED: 02-18-2009
Show Abstract
Hide Abstract
Mutations in the genes encoding the surfactant proteins B and C (SP-B and SP-C) and the phospholipid transporter, ABCA3, are associated with respiratory distress and interstitial lung disease in the pediatric population. Expression of these proteins is regulated developmentally, increasing with gestational age, and is critical for pulmonary surfactant function at birth. Pulmonary surfactant is a unique mixture of lipids and proteins that reduces surface tension at the air-liquid interface, preventing collapse of the lung at the end of expiration. SP-B and ABCA3 are required for the normal organization and packaging of surfactant phospholipids into specialized secretory organelles, known as lamellar bodies, while both SP-B and SP-C are important for adsorption of secreted surfactant phospholipids to the alveolar surface. In general, mutations in the SP-B gene SFTPB are associated with fatal respiratory distress in the neonatal period, and mutations in the SP-C gene SFTPC are more commonly associated with interstitial lung disease in older infants, children, and adults. Mutations in the ABCA3 gene are associated with both phenotypes. Despite this general classification, there is considerable overlap in the clinical and histologic characteristics of these genetic disorders. In this review, similarities and differences in the presentation of these disorders with an emphasis on their histochemical and ultrastructural features will be described, along with a brief discussion of surfactant metabolism. Mechanisms involved in the pathogenesis of lung disease caused by mutations in these genes will also be discussed.
Related JoVE Video
Kruppel-like factor 5 controls villus formation and initiation of cytodifferentiation in the embryonic intestinal epithelium.
Dev. Biol.
Show Abstract
Hide Abstract
Kruppel-like factor 5 (Klf5) is a transcription factor expressed by embryonic endodermal progenitors that form the lining of the gastrointestinal tract. A Klf5 floxed allele was efficiently deleted from the intestinal epithelium by a Cre transgene under control of the Shh promoter resulting in the inhibition of villus morphogenesis and epithelial differentiation. Although proliferation of the intestinal epithelium was maintained, the expression of Elf3, Ppar?, Atoh1, Ascl2, Neurog3, Hnf4?, Cdx1, and other genes associated with epithelial cell differentiation was inhibited in the Klf5-deficient intestines. At E18.5, Klf5(?/?) fetuses lacked the apical brush border characteristic of enterocytes, and a loss of goblet and enteroendocrine cells was observed. The failure to form villi was not attributable to the absence of HH or PDGF signaling, known mediators of this developmental process. Klf5-deletion blocked the decrease in FoxA1 and Sox9 expression that accompanies normal villus morphogenesis. KLF5 directly inhibited activity of the FoxA1 promoter, and in turn FOXA1 inhibited Elf3 gene expression in vitro, linking the observed loss of Elf3 with the persistent expression of FoxA1 observed in Klf5-deficient mice. Genetic network analysis identified KLF5 as a key transcription factor regulating intestinal cell differentiation and cell adhesion. These studies indicate a novel requirement for KLF5 to initiate morphogenesis of the early endoderm into a compartmentalized intestinal epithelium comprised of villi and terminally differentiated cells.
Related JoVE Video
CDC42 is required for structural patterning of the lung during development.
Dev. Biol.
Show Abstract
Hide Abstract
The formation of highly branched epithelial structures is critical for the development of many essential organs, including lung, liver, pancreas, kidney and mammary glands. Elongation and branching of these structures require precise control of complex morphogenetic processes that are dependent upon coordinate regulation of cell shape, apical-basal polarity, proliferation, migration, and interactions among multiple cell types. Herein, we demonstrate that temporal-spatial regulation of epithelial cell polarity by the small GTPase, CDC42, is essential for branching morphogenesis of the developing lung. Epithelial cell-specific deletion of CDC42 in fetal mice disrupted epithelial cell polarity, the actin cytoskeleton, intercellular contacts, directional trafficking of proteins, proliferation and mitotic spindle orientation, impairing the organization and patterning of the developing respiratory epithelium and adjacent mesenchyme. Transition from a pseudostratified to a simple columnar epithelium was impaired, consistent with coordinate dysregulation of epithelial cell polarity, mitotic spindle orientation, and repositioning of mitotic cells within the epithelium during cell cycle progression. Expression of sonic hedgehog and its receptor, patched-1, was decreased, while fibroblast growth factor 10 expression in the mesenchyme was expanded, resulting in disruption of branching morphogenesis and bronchiolar smooth muscle formation in this model. CDC42 is required for spatial positioning of proliferating epithelial cells, as well as signaling interactions between the epithelium and mesenchyme and is, therefore, essential for formation and maintenance of the respiratory tract during morphogenesis of the fetal lung.
Related JoVE Video
Transcriptional programs controlling perinatal lung maturation.
PLoS ONE
Show Abstract
Hide Abstract
The timing of lung maturation is controlled precisely by complex genetic and cellular programs. Lung immaturity following preterm birth frequently results in Respiratory Distress Syndrome (RDS) and Broncho-Pulmonary Dysplasia (BPD), which are leading causes of mortality and morbidity in preterm infants. Mechanisms synchronizing gestational length and lung maturation remain to be elucidated. In this study, we designed a genome-wide mRNA expression time-course study from E15.5 to Postnatal Day 0 (PN0) using lung RNAs from C57BL/6J (B6) and A/J mice that differ in gestational length by ?30 hr (B6
Foxm1 transcription factor is critical for proliferation and differentiation of Clara cells during development of conducting airways.
Dev. Biol.
Show Abstract
Hide Abstract
Respiratory epithelial cells are derived from cell progenitors in the foregut endoderm that subsequently differentiate into the distinct cell types lining the conducting and alveolar regions of the lung. To identify transcriptional mechanisms regulating differentiation and maintenance of respiratory epithelial cells, we conditionally deleted Foxm1 transcription factor from the conducting airways of the developing mouse lung. Conditional deletion of Foxm1 from Clara cells, controlled by the Scgb1a1 promoter, dramatically altered airway structure and caused peribronchial fibrosis, resulting in airway hyperreactivity in adult mice. Deletion of Foxm1 inhibited proliferation of Clara cells and disrupted the normal patterning of epithelial cell differentiation in the bronchioles, causing squamous and goblet cell metaplasia, and the loss of Clara and ciliated cells. Surprisingly, conducting airways of Foxm1-deficient mice contained highly differentiated cuboidal type II epithelial cells that are normally restricted to the alveoli. Lineage tracing studies showed that the ectopic alveolar type II cells in Foxm1-deficient airways were derived from Clara cells. Deletion of Foxm1 inhibited Sox2 and Scgb1a1, both of which are critical for differentiation and function of Clara cells. In co-transfection experiments, Foxm1 directly bound to and induced transcriptional activity of Scgb1a1 and Sox2 promoters. Foxm1 is required for differentiation and maintenance of epithelial cells lining conducting airways.
Related JoVE Video
Genome-wide transcriptional profiling reveals connective tissue mast cell accumulation in bronchopulmonary dysplasia.
Am. J. Respir. Crit. Care Med.
Show Abstract
Hide Abstract
Bronchopulmonary dysplasia (BPD) is a major complication of premature birth. Risk factors for BPD are complex and include prenatal infection and O(2) toxicity. BPD pathology is equally complex and characterized by inflammation and dysmorphic airspaces and vasculature. Due to the limited availability of clinical samples, an understanding of the molecular pathogenesis of this disease and its causal mechanisms and associated biomarkers is limited.
Related JoVE Video
Activation of sterol-response element-binding proteins (SREBP) in alveolar type II cells enhances lipogenesis causing pulmonary lipotoxicity.
J. Biol. Chem.
Show Abstract
Hide Abstract
Pulmonary inflammation is associated with altered lipid synthesis and clearance related to diabetes, obesity, and various inherited metabolic disorders. In many tissues, lipogenesis is regulated at the transcriptional level by the activity of sterol-response element-binding proteins (SREBP). The role of SREBP activation in the regulation of lipid metabolism in the lung was assessed in mice in which both Insig1 and Insig2 genes, encoding proteins that bind and inhibit SREBPs in the endoplasmic reticulum, were deleted in alveolar type 2 cells. Although deletion of either Insig1 or Insig2 did not alter SREBP activity or lipid homeostasis, deletion of both genes (Insig1/2(?/?) mice) activated SREBP1, causing marked accumulation of lipids that consisted primarily of cholesterol esters and triglycerides in type 2 epithelial cells and alveolar macrophages. Neutral lipids accumulated in type 2 cells in association with the increase in mRNAs regulating fatty acid, cholesterol synthesis, and inflammation. Although bronchoalveolar lavage fluid phosphatidylcholine was modestly decreased, lung phospholipid content and lung function were maintained. Insig1/2(?/?) mice developed lung inflammation and airspace abnormalities associated with the accumulation of lipids in alveolar type 2 cells, alveolar macrophages, and within alveolar spaces. Deletion of Insig1/2 activated SREBP-enhancing lipogenesis in respiratory epithelial cells resulting in lipotoxicity-related lung inflammation and tissue remodeling.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.