JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Whole proteome analysis of mouse lymph nodes in cutaneous anthrax.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
This study aimed to characterize a soluble proteome of popliteal lymph nodes during lymphadenitis induced by intradermal injection of Bacillus anthracis Sterne spores in mice using tandem LC-MS/MS and reverse-phase protein microarray with antibodies specific to epitopes of phosphorylated proteins. More than 380 proteins were detected in the normal intra-nodal lymph, while the infectious process resulted in the profound changes in the protein abundances and appearance of 297 unique proteins. These proteins belong to an array of processes reflecting response to wounding, inflammation and perturbations of hemostasis, innate immune response, coagulation and fibrinolysis, regulation of body fluid levels and vascular disturbance among others. Comparison of lymph and serum revealed 83 common proteins. Also, using 71 antibodies specific to total and phosphorylated forms of proteins we carried initial characterization of circulating lymph phosphoproteome which brought additional information regarding signaling pathways operating in the lymphatics. The results demonstrate that the proteome of intra-nodal lymph serves as a sensitive sentinel of the processes occurring within the lymph nodes during infection. The acute innate response of the lymph nodes to anthrax is accompanied by cellular damage and inflammation with a large number of up- and down-regulated proteins many of which are distinct from those detected in serum. MS data are available via ProteomeXchange with identifier PXD001342.
Related JoVE Video
Bacillus anthracis co-opts nitric oxide and host serum albumin for pathogenicity in hypoxic conditions.
Front Cell Infect Microbiol
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Bacillus anthracis is a dangerous pathogen of humans and many animal species. Its virulence has been mainly attributed to the production of Lethal and Edema toxins as well as the antiphagocytic capsule. Recent data indicate that the nitric oxide (NO) synthase (baNOS) plays an important pathogenic role at the early stage of disease by protecting bacteria from the host reactive species and S-nytrosylating the mitochondrial proteins in macrophages. In this study we for the first time present evidence that bacteria-derived NO participates in the generation of highly reactive oxidizing species which could be abolished by the NOS inhibitor L - NAME, free thiols, and superoxide dismutase but not catalase. The formation of toxicants is likely a result of the simultaneous formation of NO and superoxide leading to a labile peroxynitrite and its stable decomposition product, nitrogen dioxide. The toxicity of bacteria could be potentiated in the presence of bovine serum albumin. This effect is consistent with the property of serum albumin to serves as a trap of a volatile NO accelerating its reactions. Our data suggest that during infection in the hypoxic environment of pre-mortal host the accumulated NO is expected to have a broad toxic impact on host cell functions.
Related JoVE Video
Platelets, inflammatory cells, von Willebrand factor, syndecan-1, fibrin, fibronectin, and bacteria co-localize in the liver thrombi of Bacillus anthracis-infected mice.
Microb. Pathog.
PUBLISHED: 08-16-2011
Show Abstract
Hide Abstract
Vascular dysfunction and thrombosis have been described in association with anthrax infection in humans and animals but the mechanisms of these dysfunctions, as well as the components involved in thrombi formation are poorly understood. Immunofluorescent microscopy was used to define the composition of thrombi in the liver of mice challenged with the Bacillus anthracis Sterne spores. Lethal infection with the toxigenic Sterne strain, in contrast to the non-lethal, non-toxigenic delta-Sterne strain, demonstrated time-dependent increase in the number of vegetative bacteria inside the liver sinusoids and central vein. Massive appearance of thrombi typically occluding the lumen of the vessels coincided with the sudden death of infected animals. Bacterial chains in the thrombi were stained positive for syndecan-1 (SDC-1), fibronectin, and were surrounded by fibrin polymers, GPIIb-positive platelets, von Willebrand Factor (vWF), CD45-positive leukocytes, and massive amount of shed SDC-1. Experiments with human umbilical vein endothelial cells (HUVECs) demonstrated the active role of the host response to the secreted pathogenic factors of bacteria during the onset of the pro-thrombotic condition. The bacterial culture supernatants, as well as the isolated proteins (the pore-forming toxin anthrolysin O and phospholipase C) induced release of vWF, while anthrolysin O, sphingomyelinase and edema toxin induced release of thrombin from HUVECs and polymerization of fibrin in the presence of human plasma. Conclusion: Our findings suggest that activation of endothelium in response to infection can contribute to the formation of occlusive thrombi consisting of aggregated bacteria, vWF, shed SDC-1, fibrin, activated platelets, fibronectin and leukocytes.
Related JoVE Video
Targeting the inflammasome and adenosine type-3 receptors improves outcome of antibiotic therapy in murine anthrax.
World J Biol Chem
PUBLISHED: 02-22-2011
Show Abstract
Hide Abstract
To establish whether activation of adenosine type-3 receptors (A3Rs) and inhibition of interleukin-1?-induced inflammation is beneficial in combination with antibiotic therapy to increase survival of mice challenged with anthrax spores.
Related JoVE Video
Bacillus anthracis interacts with plasmin(ogen) to evade C3b-dependent innate immunity.
PLoS ONE
PUBLISHED: 02-21-2011
Show Abstract
Hide Abstract
The causative agent of anthrax, Bacillus anthracis, is capable of circumventing the humoral and innate immune defense of the host and modulating the blood chemistry in circulation to initiate a productive infection. It has been shown that the pathogen employs a number of strategies against immune cells using secreted pathogenic factors such as toxins. However, interference of B. anthracis with the innate immune system through specific interaction of the spore surface with host proteins such as the complement system has heretofore attracted little attention. In order to assess the mechanisms by which B. anthracis evades the defense system, we employed a proteomic analysis to identify human serum proteins interacting with B. anthracis spores, and found that plasminogen (PLG) is a major surface-bound protein. PLG efficiently bound to spores in a lysine- and exosporium-dependent manner. We identified ?-enolase and elongation factor tu as PLG receptors. PLG-bound spores were capable of exhibiting anti-opsonic properties by cleaving C3b molecules in vitro and in rabbit bronchoalveolar lavage fluid, resulting in a decrease in macrophage phagocytosis. Our findings represent a step forward in understanding the mechanisms involved in the evasion of innate immunity by B. anthracis through recruitment of PLG resulting in the enhancement of anti-complement and anti-opsonization properties of the pathogen.
Related JoVE Video
Bacillus anthracis protease InhA increases blood-brain barrier permeability and contributes to cerebral hemorrhages.
PLoS ONE
PUBLISHED: 02-17-2011
Show Abstract
Hide Abstract
Hemorrhagic meningitis is a fatal complication of anthrax, but its pathogenesis remains poorly understood. The present study examined the role of B. anthracis-secreted metalloprotease InhA on monolayer integrity and permeability of human brain microvasculature endothelial cells (HBMECs) which constitute the blood-brain barrier (BBB). Treatment of HBMECs with purified InhA resulted in a time-dependent decrease in trans-endothelial electrical resistance (TEER) accompanied by zonula occluden-1 (ZO-1) degradation. An InhA-expressing B. subtilis exhibited increased permeability of HBMECs, which did not occur with the isogenic inhA deletion mutant (?inhA) of B. anthracis, compared with the corresponding wild-type strain. Mice intravenously administered with purified InhA or nanoparticles-conjugated to InhA demonstrated a time-dependent Evans Blue dye extravasation, leptomeningeal thickening, leukocyte infiltration, and brain parenchymal distribution of InhA indicating BBB leakage and cerebral hemorrhage. Mice challenged with vegetative bacteria of the ?inhA strain of B. anthracis exhibited a significant decrease in leptomeningeal thickening compared to the wildtype strain. Cumulatively, these findings indicate that InhA contributes to BBB disruption associated with anthrax meningitis through proteolytic attack on the endothelial tight junctional protein zonula occluden (ZO)-1.
Related JoVE Video
Alteration in superoxide dismutase 1 causes oxidative stress and p38 MAPK activation following RVFV infection.
PLoS ONE
PUBLISHED: 02-09-2011
Show Abstract
Hide Abstract
Rift Valley fever (RVF) is a zoonotic disease caused by Rift Valley fever virus (RVFV). RVFV is a category A pathogen that belongs to the genus Phlebovirus, family Bunyaviridae. Understanding early host events to an infectious exposure to RVFV will be of significant use in the development of effective therapeutics that not only control pathogen multiplication, but also contribute to cell survival. In this study, we have carried out infections of human cells with a vaccine strain (MP12) and virulent strain (ZH501) of RVFV and determined host responses to viral infection. We demonstrate that the cellular antioxidant enzyme superoxide dismutase 1 (SOD1) displays altered abundances at early time points following exposure to the virus. We show that the enzyme is down regulated in cases of both a virulent (ZH501) and a vaccine strain (MP12) exposure. Our data demonstrates that the down regulation of SOD1 is likely to be due to post transcriptional processes and may be related to up regulation of TNF? following infection. We also provide evidence for extensive oxidative stress in the MP12 infected cells. Concomitantly, there is an increase in the activation of the p38 MAPK stress response, which our earlier published study demonstrated to be an essential cell survival strategy. Our data suggests that the viral anti-apoptotic protein NSm may play a role in the regulation of the cellular p38 MAPK response. Alterations in the host protein SOD1 following RVFV infection appears to be an early event that occurs in multiple cell types. Activation of the cellular stress response p38 MAPK pathway can be observed in all cell types tested. Our data implies that maintaining oxidative homeostasis in the infected cells may play an important role in improving survival of infected cells.
Related JoVE Video
Anthrolysin O and fermentation products mediate the toxicity of Bacillus anthracis to lung epithelial cells under microaerobic conditions.
FEMS Immunol. Med. Microbiol.
PUBLISHED: 10-14-2010
Show Abstract
Hide Abstract
Bacillus anthracis generates virulence factors such as lethal and edema toxins, capsule, and hemolytic proteins under conditions of reduced oxygenation. Here, we report on the acute cytotoxicity of culture supernatants (Sups) of six nonencapsulated B. anthracis strains grown till the stationary phase under static microaerobic conditions. Human small airway epithelial, umbilical vein endothelial, Caco-2, and Hep-G2 cells were found to be susceptible. Sups displayed a reduction of pH to 5.3-5.5, indicating the onset of acid anaerobic fermentation; however, low pH itself was not a major factor of toxicity. The pore-forming hemolysin, anthrolysin O (ALO), contributed to the toxicity in a concentration-dependent manner. Its effect was found to be synergistic with a metabolic product of B. anthracis, succinic acid. Cells exposed to Sups demonstrated cytoplasmic membrane blebbing, increased permeability, loss of ATP, mitochondrial membrane potential collapse, and arrest of cell respiration. The toxicity was reduced by inhibition of ALO by cholesterol, decomposition of reactive oxygen species, and inhibition of mitochondrial succinate dehydrogenase. Cell death appears to be caused by an acute primary membrane permeabilization by ALO, followed by a burst of reactive radicals from the mitochondria fuelled by the succinate, which is generated by bacteria in the hypoxic environment. This mechanism of metabolic toxicity is relevant to the late-stage conditions of hypoxia and acidosis found in anthrax patients and might operate at anatomical locations of the host deprived from oxygen supply.
Related JoVE Video
Reverse-phase phosphoproteome analysis of signaling pathways induced by Rift valley fever virus in human small airway epithelial cells.
PLoS ONE
PUBLISHED: 06-14-2010
Show Abstract
Hide Abstract
Rift valley fever virus (RVFV) infection is an emerging zoonotic disease endemic in many countries of sub-Saharan Africa and in Egypt. In this study we show that human small airway epithelial cells are highly susceptible to RVFV virulent strain ZH-501 and the attenuated strain MP-12. We used the reverse-phase protein arrays technology to identify phosphoprotein signaling pathways modulated during infection of cultured airway epithelium. ZH-501 infection induced activation of MAP kinases (p38, JNK and ERK) and downstream transcriptional factors [STAT1 (Y701), ATF2 (T69/71), MSK1 (S360) and CREB (S133)]. NF-?B phosphorylation was also increased. Activation of p53 (S15, S46) correlated with the increased levels of cleaved effector caspase-3, -6 and -7, indicating activation of the extrinsic apoptotic pathway. RVFV infection downregulated phosphorylation of a major anti-apoptotic regulator of survival pathways, AKT (S473), along with phosphorylation of FOX 01/03 (T24/31) which controls cell cycle arrest downstream from AKT. Consistent with this, the level of apoptosis inhibitor XIAP was decreased. However, the intrinsic apoptotic pathway marker, caspase-9, demonstrated only a marginal activation accompanied by an increased level of the inhibitor of apoptosome formation, HSP27. Concentration of the autophagy marker, LC3B, which often accompanies the pro-survival signaling, was decreased. Cumulatively, our analysis of RVFV infection in lung epithelium indicated a viral strategy directed toward the control of cell apoptosis through a number of transcriptional factors. Analyses of MP-12 titers in challenged cells in the presence of MAPK inhibitors indicated that activation of p38 represents a protective cell response while ERK activation controls viral replication.
Related JoVE Video
Activation of plasminogen activator inhibitor implicates protease InhA in the acute-phase response to Bacillus anthracis infection.
J. Med. Microbiol.
PUBLISHED: 05-12-2009
Show Abstract
Hide Abstract
Anthrax is a zoonotic disease caused by Bacillus anthracis. The infection is associated with inflammation and sepsis, but little is known about the acute-phase response during disease and the nature of the bacterial factors causing it. In this study, we examined the levels of the acute-phase proteins (APPs) in comparative experiments using mice challenged with spores and a purified B. anthracis protease InhA as a possible factor mediating the response. A strong increase in the plasma levels of APPs such as haptoglobin and serum amyloid A was observed during infection. Protein and mRNA levels of plasminogen activator inhibitor (PAI)-1 in the liver were also increased concurrently with bacterial dissemination at 72 h post-infection. Similar effects were observed at 6 h post injection with InhA. Induction of hepatic transforming growth factor-beta1, a PAI-1 inducer, was also found in the liver of InhA-injected mice. PAI-1 elevation by InhA resulted in an increased level of urokinase-type plasminogen activator complex with PAI-1 and a decreased level of D-dimers indicating inhibition of blood fibrinolysis. These results reveal an acute liver response to anthrax infection and provide a plausible pathophysiological link between the host inflammatory response and the pro-thrombotic haemostatic imbalance in the course of disease through PAI-1 induction in the liver.
Related JoVE Video
Anthrax infection inhibits the AKT signaling involved in the E-cadherin-mediated adhesion of lung epithelial cells.
FEMS Immunol. Med. Microbiol.
PUBLISHED: 04-08-2009
Show Abstract
Hide Abstract
The effect of anthrax infection on phosphoprotein signaling was studied in human small airway lung epithelial cells exposed to B. anthracis spores of the plasmidless dSterne strain in comparison with the Sterne strain containing the toxigenic plasmid (pXO1). The differential regulation of phosphorylation was found in the mitogen-activated protein kinase cascade (ERK, p38, and P90RSK), the PI3K cascade (AKT, GSK-3alpha/beta), and downstream in the case of the proapoptotic BAD and the transcription factor STAT3. Both strains stimulate phosphorylation of CREB and inhibit phosphorylation of 4E-BP1 required for activation of cap-dependent translation. Downregulation of the survival AKT phosphorylation by the Sterne strain inhibits the process of Ca(2+)-dependent homophilic interaction of E-cadherin (EC) upon formation or repair of cell-cell contacts. Both lethal and edema toxins produced by the Sterne strain inhibit the AKT phosphorylation induced during the EC-mediated signaling. Activity of ERK1/2 and p38 inhibitors indicates that inhibition of AKT phosphorylation takes place through the ERK1/2-PI3K crosstalk. In Sterne spore-challenged mice, a specific inhibitor of PI3K/AKT, wortmannin, accelerates the lethal outcome, and reduction of AKT phosphorylation in the circulating blood cells coincides with the death of animals. We conclude that the PI3K/AKT pathway controlling the integrity of epithelium plays an important survival role in anthrax infection.
Related JoVE Video
Bacillus anthracis-derived nitric oxide induces protein S-nitrosylation contributing to macrophage death.
Biochem. Biophys. Res. Commun.
Show Abstract
Hide Abstract
Bacillus anthracis, a causative agent of anthrax, is able to germinate and survive within macrophages. A recent study suggested that B. anthracis-derived nitric oxide (bNO) is a key aspect of bacterial defense that protects bacterial DNA from oxidative burst in the macrophages. However, the virulent effect of bNO in host cells has not been investigated. Here, we report that bNO contributes macrophage killing by S-nitrosylation of bioenergetic-relating proteins within mitochondria. Toxigenic Sterne induces expression of the bnos gene and produces bNO during early stage of infection. Nitroso-proteomic analysis coupled with a biotin-switch technique demonstrated that toxigenic infection induces protein S-nitrosylation in B. anthracis-susceptible RAW264.7. For each target enzyme tested (complex I, complex III and complex IV), infection by B. anthracis Sterne caused enzyme inhibition. N?-nitro-L-arginine methyl ester, a NO synthase inhibitor, reduced S-nitrosylation and partially restored cell viability evaluated by intracellular ATP levels in macrophages. Our data suggest that bNO leads to energy depletion driven by impaired mitochondrial bioenergetic machinery that ultimately contributes to macrophage death. This novel mechanism of anthrax pathogenesis may offer specific approach to the development of therapeutics.
Related JoVE Video
p53 Activation following Rift Valley fever virus infection contributes to cell death and viral production.
PLoS ONE
Show Abstract
Hide Abstract
Rift Valley fever virus (RVFV) is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production.
Related JoVE Video
Induction of DNA damage signaling upon Rift Valley fever virus infection results in cell cycle arrest and increased viral replication.
J. Biol. Chem.
Show Abstract
Hide Abstract
Rift Valley fever virus (RVFV) is a highly pathogenic arthropod-borne virus infecting a wide range of vertebrate hosts. Of particular interest is the nonstructural NSs protein, which forms large filamentous fibril bundles in the nucleus. Past studies have shown NSs to be a multifaceted protein important for virulence through modulation of the interferon response as well acting as a general inhibitor of transcription. Here we investigated the regulation of the DNA damage signaling cascades by RVFV infection and found virally inducted phosphorylation of the classical DNA damage signaling proteins, ataxia-telangiectasia mutated (ATM) (Ser-1981), Chk.2 (Thr-68), H2A.X (Ser-139), and p53 (Ser-15). In contrast, ataxia-telangiectasia mutated and Rad3-related kinase (ATR) (Ser-428) phosphorylation was decreased following RVFV infection. Importantly, both the attenuated vaccine strain MP12 and the fully virulent strain ZH548 showed strong parallels in their up-regulation of the ATM arm of the DNA damage response and in the down-regulation of the ATR pathway. The increase in DNA damage signaling proteins did not result from gross DNA damage as no increase in DNA damage was observed following infection. Rather the DNA damage signaling was found to be dependent on the viral protein NSs, as an NSs mutant virus was not found to induce the equivalent signaling pathways. RVFV MP12-infected cells also displayed an S phase arrest that was found to be dependent on NSs expression. Use of ATM and Chk.2 inhibitors resulted in a marked decrease in S phase arrest as well as viral production. These results indicate that RVFV NSs induces DNA damage signaling pathways that are beneficial for viral replication.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.