JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Genomic resources for multiple species in the Drosophila ananassae species group.
Fly (Austin)
PUBLISHED: 05-04-2013
Show Abstract
Hide Abstract
The development of genomic resources in non-model taxa is essential for understanding the genetic basis of biological diversity. Although the genomes of many Drosophila species have been sequenced, most of the phenotypic diversity in this genus remains to be explored. To facilitate the genetic analysis of interspecific and intraspecific variation, we have generated new genomic resources for seven species and subspecies in the D. ananassae species subgroup. We have generated large amounts of transcriptome sequence data for D. ercepeae, D. merina, D. bipectinata, D. malerkotliana malerkotliana, D. m. pallens, D. pseudoananassae pseudoananassae, and D. p. nigrens. de novo assembly resulted in contigs covering more than half of the predicted transcriptome and matching an average of 59% of annotated genes in the complete genome of D. ananassae. Most contigs, corresponding to an average of 49% of D. ananassae genes, contain sequence polymorphisms that can be used as genetic markers. Subsets of these markers were validated by genotyping the progeny of inter- and intraspecific crosses. The ananassae subgroup is an excellent model system for examining the molecular basis of speciation and phenotypic evolution. The new genomic resources will facilitate the genetic analysis of inter- and intraspecific differences in this lineage. Transcriptome sequencing provides a simple and cost-effective way to identify molecular markers at nearly single-gene density, and is equally applicable to any non-model taxa.
Related JoVE Video
Genetic basis of a violation of Dollos Law: re-evolution of rotating sex combs in Drosophila bipectinata.
Genetics
Show Abstract
Hide Abstract
Phylogenetic analyses suggest that violations of "Dollos law"--that is, re-evolution of lost complex structures--do occur, albeit infrequently. However, the genetic basis of such reversals has not been examined. Here, we address this question using the Drosophila sex comb, a recently evolved, male-specific morphological structure composed of modified bristles. In some species, sex comb development involves only the modification of individual bristles, while other species have more complex "rotated" sex combs that are shaped by coordinated migration of epithelial tissues. Rotated sex combs were lost in the ananassae species subgroup and subsequently re-evolved, ?12 million years later, in Drosophila bipectinata and its sibling species. We examine the genetic basis of the differences in sex comb morphology between D. bipectinata and D. malerkotliana, a closely related species with a much simpler sex comb representing the ancestral condition. QTL mapping reveals that >50% of this difference is controlled by one chromosomal inversion that covers ?5% of the genome. Several other, larger inversions do not contribute appreciably to the phenotype. This genetic architecture suggests that rotating sex combs may have re-evolved through changes in relatively few genes. We discuss potential developmental mechanisms that may allow lost complex structures to be regained.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.