JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
GmPRP2 promoter drives root-preferential expression in transgenic Arabidopsis and soybean hairy roots.
BMC Plant Biol.
PUBLISHED: 09-09-2014
Show Abstract
Hide Abstract
Promoters play important roles in gene expression and function. There are three basic types of promoters: constitutive, specific, and inducible. Constitutive promoters are widely used in genetic engineering, but these promoters have limitations. Inducible promoters are activated by specific inducers. Tissue-specific promoters are a type of specific promoters that drive gene expression in specific tissues or organs. Here, we cloned and characterized the GmPRP2 promoter from soybean. The expression pattern indicated that this promoter is root-preferential in transgenic Arabidopsis and the hairy roots of soybean. It can be used to improve the root resistance or tolerance to pathogens, pests, malnutrition and other abiotic stresses which cause extensive annual losses in soybean production.
Related JoVE Video
Allelic combinations of soybean maturity Loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes.
PLoS ONE
PUBLISHED: 08-27-2014
Show Abstract
Hide Abstract
Soybean cultivars are extremely diverse in time to flowering and maturation as a result of various photoperiod sensitivities. The underlying molecular genetic mechanism is not fully clear, however, four maturity loci E1, E2, E3 and E4 have been molecularly identified. In this report, cultivars were selected with various photoperiod sensitivities from different ecological zones, which covered almost all maturity groups (MG) from MG 000 to MG VIII and MG X adapted from latitude N 18° to N 53°. They were planted in the field under natural daylength condition (ND) in Beijing, China or in pots under different photoperiod treatments. Maturity-related traits were then investigated. The four E maturity loci were genotyped at the molecular level. Our results suggested that these four E genes have different impacts on maturity and their allelic variations and combinations determine the diversification of soybean maturity and adaptation to different latitudes. The genetic mechanisms underlying photoperiod sensitivity and adaptation in wild soybean seemed unique from those in cultivated soybean. The allelic combinations and functional molecular markers for the four E loci will significantly assist molecular breeding towards high productivity.
Related JoVE Video
GmFULa, a FRUITFULL homolog, functions in the flowering and maturation of soybean.
Plant Cell Rep.
PUBLISHED: 04-03-2014
Show Abstract
Hide Abstract
A FRUITFULL homolog GmFULa was cloned and found to play roles in the flowering and maturation of soybean. Soybean varieties exhibit great diversity in terms of flowering and maturation due to differences in their photoperiodic responses. The underlying mechanism remains unclear despite the fact that some upstream flowering genes have been studied. FRUITFULL (FUL) genes are one group of downstream flowering genes known to have major roles in reproductive transition, floral meristem identity, and floral organ identity. However, FUL homologs and their functions are poorly understood in soybean. Here, a soybean FUL homolog was cloned from the late-maturing photoperiod-sensitive soybean variety Zigongdongdou (ZGDD) and designated GmFULa. In ZGDD, GmFULa exhibited a terminal-preferential expression pattern, with higher expression in the root and shoot apices than in the middle parts. Diurnal rhythm analysis revealed that photoperiod regulates the GmFULa expression level but does not alter its diurnal rhythm. ZGDD was maintained under different photoperiod conditions (long day, LD; short day, SD; LD after 13 short days, SD13-LD) to assess GmFULa expression in newly expanded leaves and in the shoot apex. From this analysis, GmFULa expression was detected in the floral meristem, floral organs and their primordia; trifoliate leaves; and the inflorescence meristem, with the expression levels induced by SD and inhibited by LD. GmFULa expression was also associated with maturity in seven soybean varieties with different photoperiod sensitivities. Therefore, photoperiod conditions affect the expression level of GmFULa but not its diurnal rhythm. The gene plays pleiotropic roles in reproductive transition, flowering, and leaf development and is associated with maturity in soybean.
Related JoVE Video
Isolation and characterization of the brassinosteroid receptor gene (GmBRI1) from Glycine max.
Int J Mol Sci
PUBLISHED: 02-17-2014
Show Abstract
Hide Abstract
Brassinosteroids (BRs) constitute a group of steroidal phytohormones that contribute to a wide range of plant growth and development functions. The genetic modulation of BR receptor genes, which play major roles in the BR signaling pathway, can create semi-dwarf plants that have great advantages in crop production. In this study, a brassinosteroid insensitive gene homologous with AtBRI1 and other BRIs was isolated from Glycine max and designated as GmBRI1. A bioinformatic analysis revealed that GmBRI1 shares a conserved kinase domain and 25 tandem leucine-rich repeats (LRRs) that are characteristic of a BR receptor for BR reception and reaction and bear a striking similarity in protein tertiary structure to AtBRI1. GmBRI1 transcripts were more abundant in soybean hypocotyls and could be upregulated in response to exogenous BR treatment. The transformation of GmBRI1 into the Arabidopsis dwarf mutant bri1-5 restored the phenotype, especially regarding pod size and plant height. Additionally, this complementation is a consequence of a restored BR signaling pathway demonstrated in the light/dark analysis, root inhibition assay and BR-response gene expression. Therefore, GmBRI1 functions as a BR receptor to alter BR-mediated signaling and is valuable for improving plant architecture and enhancing the yield of soybean.
Related JoVE Video
A peroxisomal long-chain acyl-CoA synthetase from Glycine max involved in lipid degradation.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Seed storage oil, in the form of triacylglycerol (TAG), is degraded to provide carbon and energy during germination and early seedling growth by the fatty acid ?-oxidation in the peroxisome. Although the pathways for lipid degradation have been uncovered, understanding of the exact involved enzymes in soybean is still limited. Long-chain acyl-CoA synthetase (ACSL) is a critical enzyme that activates free fatty acid released from TAG to form the fatty acyl-CoA. Recent studies have shown the importance of ACSL in lipid degradation and synthesis, but few studies were focused on soybean. In this work, we cloned a ACSL gene from soybean and designated it as GmACSL2. Sequence analysis revealed that GmACSL2 encodes a protein of 733 amino acid residues, which is highly homologous to the ones in other higher plants. Complementation test showed that GmACSL2 could restore the growth of an ACS-deficient yeast strain (YB525). Co-expression assay in Nicotiana benthamiana indicated that GmACSL2 is located at peroxisome. Expression pattern analysis showed that GmACSL2 is highly expressed in germinating seedling and strongly induced 1 day after imbibition, which indicate that GmACSL2 may take part in the seed germination. GmACSL2 overexpression in yeast and soybean hairy root severely reduces the contents of the lipids and fatty acids, compared with controls in both cells, and enhances the ?-oxidation efficiency in yeast. All these results suggest that GmACSL2 may take part in fatty acid and lipid degradation. In conclusion, peroxisomal GmACSL2 from Glycine max probably be involved in the lipid degradation during seed germination.
Related JoVE Video
Maturity group classification and maturity locus genotyping of early-maturing soybean varieties from high-latitude cold regions.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
With the migration of human beings, advances of agricultural sciences, evolution of planting patterns and global warming, soybeans have expanded to both tropical and high-latitude cold regions (HCRs). Unlike other regions, HCRs have much more significant and diverse photoperiods and temperature conditions over seasons or across latitudes, and HCR soybeans released there show rich diversity in maturity traits. However, HCR soybeans have not been as well classified into maturity groups (MGs) as other places. Therefore, it is necessary to identify MGs in HCRs and to genotype the maturity loci.
Related JoVE Video
Soybean seeds expressing feedback-insensitive cystathionine ?-synthase exhibit a higher content of methionine.
J. Exp. Bot.
PUBLISHED: 03-25-2013
Show Abstract
Hide Abstract
Soybean seeds provide an excellent source of protein for human and livestock nutrition. However, their nutritional quality is hampered by a low concentration of the essential sulfur amino acid, methionine (Met). In order to study factors that regulate Met synthesis in soybean seeds, this study used the Met-insensitive form of Arabidopsis cystathionine ?-synthase (AtD-CGS), which is the first committed enzyme of Met biosynthesis. This gene was expressed under the control of a seed-specific promoter, legumin B4, and used to transform the soybean cultivar Zigongdongdou (ZD). In three transgenic lines that exhibited the highest expression level of AtD-CGS, the level of soluble Met increased significantly in developing green seeds (3.8-7-fold). These seeds also showed high levels of other amino acids. This phenomenon was more prominent in two transgenic lines, ZD24 and ZD91. The total Met content, which including Met incorporated into proteins, significantly increased in the mature dry seeds of these two transgenic lines by 1.8- and 2.3-fold, respectively. This elevation was accompanied by a higher content of other protein-incorporated amino acids, which led to significantly higher total protein content in the seeds of these two lines. However, in a third transgenic line, ZD01, the level of total Met and the level of other amino acids did not increase significantly in the mature dry seeds. This line also showed no significant change in protein levels. This suggests a positive connection between high Met content and the synthesis of other amino acids that enable the synthesis of more seed proteins.
Related JoVE Video
Cloning and functional analysis of the flowering gene GmSOC1-like, a putative SUPPRESSOR OF OVEREXPRESSION CO1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in soybean.
Plant Cell Rep.
PUBLISHED: 01-17-2013
Show Abstract
Hide Abstract
The major insight in this manuscript is that we identified a new flowering regulator, GmSOC1-like, which may participate in the initiation and maintenance of flowering in soybean. Flowering is pivotal for the reproductive behavior of plants, and it is regulated by complex and coordinated genetic networks that are fine-tuned by endogenous cues and environmental signals. To better understand the molecular basis of flowering regulation in soybean, we isolated GmSOC1 and GmSOC1-like, two putative soybean orthologs for the Arabidopsis SUPPRESSOR OF OVEREXPRESSION OF CO1/AGAMOUS-LIKE 20 (SOC1/AGL20). The expression pattern of GmSOC1-like was analyzed by qRT-PCR in Zigongdongdou, a photoperiod-sensitive soybean cultivar. GmSOC1-like was widely expressed at different levels in most organs of the soybean, with the highest expression in the shoot apex during the early stage of floral transition. In addition, its expression showed a circadian rhythm pattern, with the highest expression at midnight under short-day (SD) condition. Intriguingly, GmSOC1-like was induced 4 days earlier than GmSOC1 during flowering transition in SD, suggesting that GmSOC1 and GmSOC1-like expression might be differentially regulated. However, under long-day (LD) condition, the expression of GmSOC1 and GmSOC1-like decreased gradually in the shoot apex of Zigongdongdou, which is in accordance with the fact that Zigongdongdou maintains vegetative growth in LD. In addition, overexpression of GmSOC1-like stimulated the flowering of Lotus corniculatus cv. supperroot plants. In conclusion, the results of this study indicate that GmSOC1-like may act as a flowering inducer in soybean.
Related JoVE Video
GmFT2a polymorphism and maturity diversity in soybeans.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Soybean is a short-day crop of agricultural, ecological, and economic importance. The sensitive photoperiod responses significantly limit its breeding and adaptation. GmFT2a, a putative florigen gene with different transcription profiles in two cultivars (late-maturing Zigongdongdou and early-maturing Heihe 27) with different maturity profiles, is key to flowering and maturation. However, up to now, its role in the diverse patterns of maturation in soybeans has been poorly understood.
Related JoVE Video
GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance.
PLoS ONE
PUBLISHED: 05-11-2011
Show Abstract
Hide Abstract
Flowering reversion can be induced in soybean (Glycine max L. Merr.), a typical short-day (SD) dicot, by switching from SD to long-day (LD) photoperiods. This process may involve florigen, putatively encoded by FLOWERING LOCUS T (FT) in Arabidopsis thaliana. However, little is known about the potential function of soybean FT homologs in flowering reversion.
Related JoVE Video
Genetic analysis and QTL detection of reproductive period and post-flowering photoperiod responses in soybean.
Theor. Appl. Genet.
PUBLISHED: 04-04-2011
Show Abstract
Hide Abstract
Reproductive period (RP) is an important trait of soybean [Glycine max (L.) Merr.] It is closely related to yield, quality and tolerances to environmental stresses. To investigate the inheritance and photoperiod response of RP in soybean, the F(1), F(2), and F(2:3) populations derived from nine crosses were developed. The inheritance of RP was analyzed through the joint segregation analysis. It was shown that the RP was controlled by one major gene plus polygenes. 181 recombinant inbred lines (RILs) generated from the cross of Xuyong Hongdou × Baohexuan 3 were further used for QTL mapping of RP under normal conditions across 3 environments, using 127 SSR markers. Four QTLs, designated qRP-c-1, qRP-g-1, qRP-m-1 and qRP-m-2, were mapped on C1, G and M linkage groups, respectively. The QTL qRP-c-1 on the linkage group C1 showed stable effect across environments and explained 25.6, 27.5 and 21.4% of the phenotypic variance in Nanjing 2002, Beijing 2003 and Beijing 2004, respectively. Under photoperiod-controlled conditions, qRP-c-1, and two different QTLs designated qRP-l-1 and qRP-o-1, respectively, were mapped on the linkage groups L and O. qRP-o-1 was detected under SD condition and can explained 10.70% of the phenotypic variance. qRP-c-1 and qRP-l-1 were detected under LD condition and for photoperiod sensitivity. The two major-effect QTLs can explain 19.03 and 19.00% of the phenotypic variance, respectively, under LD condition and 16.25 and 14.12%, respectively, for photoperiod sensitivity. Comparative mapping suggested that the two major-effect QTLs, qRP-c-1 and qRP-l-1, might associate with E8 or GmCRY1a and the maturity gene E3 or GmPhyA3, respectively. These results could facilitate our understanding of the inheritance of RP and provide information on marker-assisted breeding for high yield and wide adaptation in soybean.
Related JoVE Video
Long-day effects on the terminal inflorescence development of a photoperiod-sensitive soybean [Glycine max (L.) Merr.] variety.
Plant Sci.
PUBLISHED: 05-03-2010
Show Abstract
Hide Abstract
The type of terminal inflorescence is a key component for identifying soybean type. In this study, a late maturity and photoperiod-sensitive determinate soybean, cv. Zigongdongdou, was used to investigate effects of long-day (LD) on the formation and development of the terminal inflorescence. After emergence, soybean seedlings were subjected to 12 h short-day (SD) photoperiod for 13 days to induce the initiation of terminal inflorescence. The plants were then moved to 16 h LD treatment (LDT) for 0, 1, 2, 3, 4 and 5 wks, respectively. After LDT, plants were moved back to 12 h SD condition until the end of the experiment. The LDT greatly affected morphological and anatomical features of terminal inflorescence as well as the developmental rate of plants. Reversed flowers could be found in the reversed "inflorescences" in plants with 2-5 wks LDT. Such changes were confirmed through morphological observation and anatomical dissection. In the long-day treatments, the formation of flowers and the development of terminal inflorescence could be reversed and plant type of a soybean could be further changed. This long-day effect was a cumulative process, which increased with the increase in the duration of LDT.
Related JoVE Video
Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics.
BMC Plant Biol.
PUBLISHED: 06-25-2009
Show Abstract
Hide Abstract
Transgenic approaches provide a powerful tool for gene function investigations in plants. However, some legumes are still recalcitrant to current transformation technologies, limiting the extent to which functional genomic studies can be performed on. Superroot of Lotus corniculatus is a continuous root cloning system allowing direct somatic embryogenesis and mass regeneration of plants. Recently, a technique to obtain transgenic L. corniculatus plants from Superroot-derived leaves through A. tumefaciens-mediated transformation was described. However, transformation efficiency was low and it took about six months from gene transfer to PCR identification.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.