JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Propofol Attenuates Lipopolysaccharide-Induced Reactive Oxygen Species Production Through Activation of Nrf2/GSH and Suppression of NADPH Oxidase in Human Alveolar Epithelial Cells.
Inflammation
PUBLISHED: 10-25-2014
Show Abstract
Hide Abstract
Propofol is a widely used intravenous anesthetic. The aim of this study was to investigate the roles of nuclear factor erythroid-2-related factor 2 (Nrf2) and NADPH oxidase (NOX) in propofol protection in inflammatory conditions induced by lipopolysaccharide (LPS). Human alveolar epithelial cells (A549 cell line) were incubated with propofol (10, 25, and 50 ?mol/L) for 1 h and then treated with LPS (100 ng/mL) for 24 h. Results indicated that propofol not only attenuated LPS-induced expression of iNOS, NOX, and COX2, but decreased the production of ROS, NO, and PGE2 as well. Propofol also increased the GSH levels and the mRNA and protein levels of Nrf2. Notably, Nrf2 siRNA and the inhibitors of COX-2 and NOX attenuated the inhibition of propofol on ROS production. In conclusion, propofol reduced LPS-induced ROS production via inhibition of inflammatory factors and enhancement of Nrf2-related antioxidant defense, providing its cytoprotective evidence under inflammatory conditions.
Related JoVE Video
Carbon nanodots prepared from o-phenylenediamine for sensing of Cu(2+) ions in cells.
Nanoscale
PUBLISHED: 09-25-2014
Show Abstract
Hide Abstract
A simple hydrothermal method was applied to prepare carbon nanodots (C dots) from o-phenylenediamine (OPD). The C dots exhibit photoluminescence at 567 nm when excited at 420 nm. In the presence of Cu(2+) ions, the colour of C dots changes from yellow to orange, with an increased PL intensity as a result of the formation of Cu(OPD)2 complexes on the surfaces of C dots. The D-band to G-band ratios of C dots in the absence and presence of 80 nM Cu(2+) ions are 1.31 and 4.75, respectively. The C dots allow the detection of Cu(2+) ions with linearity over a concentration range of 2-80 nM, with a limit of detection of 1.8 nM at a signal-to-noise ratio of 3. The cell viability values of A549, MCF-10A, and MDA-MB-231 cells treated with 3 ?g mL(-1) of C dots are all greater than 99%, showing their great biocompatibility. Having great water dispersibility, photostability, chemical stability (against NaCl up to 0.5 M), great selectivity, and biocompatibility, the C dots have been employed for the localization of Cu(2+) ions in the cancer cells (A549 cells) treated with 10 ?M Cu(2+) ions.
Related JoVE Video
Topiramate-associated urinary incontinence: a case verified by rechallenge.
Clin Neuropharmacol
PUBLISHED: 09-18-2014
Show Abstract
Hide Abstract
Topiramate is an anticonvulsant that has been widely used in psychiatric conditions. The most common treatment-related adverse effects of topiramate were diarrhea, nausea, loss of appetite, fatigue, paresthesia, cognitive impairment, and metabolic acidosis. The following is a case report intended to draw attention to a rarely reported adverse effect of topiramate. A male patient treated with topiramate developed urinary incontinence that was considered drug associated because of the temporal relationship between its appearance and the commencement of topiramate, its resolution upon topiramate discontinuation, and its recurrence with topiramate rechallenge. Urinary incontinence, although not life threatening, can be a distressing problem with a profound impact on quality of life. This case reminds that physicians prescribing topiramate should be aware of this possible adverse effect and communicate it to patients and their caregivers.
Related JoVE Video
Ovarian Cancer-Related Hypophosphatemic Osteomalacia - A Case Report.
J. Clin. Endocrinol. Metab.
PUBLISHED: 09-02-2014
Show Abstract
Hide Abstract
Context: Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused primarily by benign mesenchymal tumors. It has been associated with malignancies in rare cases. High serum levels of fibroblast growth factor (FGF) 23 reported in a group of patients of ovarian cancer had normal serum phosphate levels. There had been no ovarian cancer-related hypophosphatemic osteomalacia in search of the literatures. Objective: We investigated a 57-year-old woman with progressive low back pain. Design and Intervention: Clinical, biochemical, and radiological assessments were performed. The patient's serum phosphate and FGF23 levels were evaluated at baseline and after receiving treatment for ovarian cancer. Results: The patient presented with progressive low back pain and weight loss during the previous 6 months. Imaging studies revealed low bone mineral density and multiple suspicious spinal metastatic lesions. Laboratory examination showed hypophosphatemia, hyperphosphaturia, normocalcemia, an elevated serum alkaline phosphatase level, and an elevated serum FGF23 level. Because TIO was suspected, a tumor survey was performed and ovarian carcinoma with multiple metastasis was detected. After surgery and chemotherapy treatments for ovarian cancer, the serum phosphate and FGF23 levels returned to normal and the low back pain improved. Conclusions: To our knowledge, this is the first case of ovarian cancer-related hypophosphatemic osteomalacia reported in the literature. TIO should be considered in patients of ovarian cancer presenting with weakness, bone pain and fractures. Investigation of TIO is appropriate when these patients present hypophosphatemia.
Related JoVE Video
Folate deficiency-induced oxidative stress contributes to neuropathy in young and aged zebrafish--implication in neural tube defects and Alzheimer's diseases.
Neurobiol. Dis.
PUBLISHED: 08-12-2014
Show Abstract
Hide Abstract
Folate is a nutrient essential for the development, function and regeneration of nervous systems. Folate deficiency has been linked to many neurological disorders including neural tube defects in fetus and Alzheimer's diseases in the elderly. However, the etiology underlying these folate deficiency-associated diseases is not completely understood. In this study, zebrafish transgenic lines with timing and duration-controllable folate deficiency were developed by ectopically overexpressing a recombinant EGFP-?-glutamyl hydrolase (?GH). Impeded neural crest cell migration was observed in the transgenic embryos when folate deficiency was induced in early stages, leading to defective neural tube closure and hematopoiesis. Adding reduced folate or N-acetylcysteine reversed the phenotypic anomalies, supporting the causal link between the increased oxidative stress and the folate deficiency-induced abnormalities. When folate deficiency was induced in aged fish accumulation of beta-amyloid and phosphorylated Tau protein were found in the fish brain cryo-sections. Increased autophagy and accumulation of acidic autolysosome were apparent in folate deficient neuroblastoma cells, which were reversed by reduced folate or N-acetylcysteine supplementation. Decreased expression of cathepsin B, a lysosomal protease, was also observed in cells and tissue with folate deficiency. We concluded that folate deficiency-induced oxidative stress contributed to the folate deficiency-associated neuropathogenesis in both early and late stages of life.
Related JoVE Video
Physician and consumer acceptance of the traditional chinese medicine clinical practice support system (TCMCPSS).
Stud Health Technol Inform
PUBLISHED: 06-20-2014
Show Abstract
Hide Abstract
Although ICT-enabled clinical practices have been widely accepted by the Western medical society, informatics applications for traditional Chinese medicine (TCM) are under developed. An integrated traditional Chinese medicine clinical practice support system (TCMCPSS) has been developed to enhance data integration automation and treatment planning decision support of clinical practice of TCM. The acceptance of TCMCPSS had been assessed by 26 TCM physicians based on information clarity, clinical relevancy, and theoretical relevancy through a survey questionnaire using the 5-points Likert Scale. The average acceptance rate was 3.76. One hundred and fifty-four participants were recruited for the TCMCPSS feasibility study and reported the acceptance rate of 90%. The results indicated that while consumers were ready to embrace TCM practice assisted by informatics technologies, TCM physicians concerned more about the usefulness of the system and preserved caution to adopt TCMCPSS.
Related JoVE Video
DiseaseConnect: a comprehensive web server for mechanism-based disease-disease connections.
Nucleic Acids Res.
PUBLISHED: 06-03-2014
Show Abstract
Hide Abstract
The DiseaseConnect (http://disease-connect.org) is a web server for analysis and visualization of a comprehensive knowledge on mechanism-based disease connectivity. The traditional disease classification system groups diseases with similar clinical symptoms and phenotypic traits. Thus, diseases with entirely different pathologies could be grouped together, leading to a similar treatment design. Such problems could be avoided if diseases were classified based on their molecular mechanisms. Connecting diseases with similar pathological mechanisms could inspire novel strategies on the effective repositioning of existing drugs and therapies. Although there have been several studies attempting to generate disease connectivity networks, they have not yet utilized the enormous and rapidly growing public repositories of disease-related omics data and literature, two primary resources capable of providing insights into disease connections at an unprecedented level of detail. Our DiseaseConnect, the first public web server, integrates comprehensive omics and literature data, including a large amount of gene expression data, Genome-Wide Association Studies catalog, and text-mined knowledge, to discover disease-disease connectivity via common molecular mechanisms. Moreover, the clinical comorbidity data and a comprehensive compilation of known drug-disease relationships are additionally utilized for advancing the understanding of the disease landscape and for facilitating the mechanism-based development of new drug treatments.
Related JoVE Video
Inhibition of cancer cell migration and invasion through suppressing the Wnt1-mediating signal pathway by G-quadruplex structure stabilizers.
J. Biol. Chem.
PUBLISHED: 04-08-2014
Show Abstract
Hide Abstract
WNT1 encodes a multifunctional signaling glycoprotein that is highly expressed in several malignant tumors. Patients with Wnt1-positive cancer are usually related to advanced metastasis. Here, we found that a stretch of G-rich sequences located at the WNT1 promoter region is capable of forming G-quadruplex structures. The addition of G-quadruplex structure stabilizers, BMVC and BMVC4, raises the melting temperature of the oligonucleotide formed by the WNT1 promoter G-rich sequences. Significantly, the expression of WNT1 was repressed by BMVC or BMVC4 in a G-quadruplex-dependent manner, suggesting that they can be used to modulate WNT1 expression. The role of G-quadruplex stabilizers on Wnt1-mediated cancer migration and invasion was further analyzed. The protein levels of ?-catenin, a mediator of the Wnt-mediated signaling pathway, and the downstream targets MMP7 and survivin were down-regulated upon BMVC or BMVC4 treatments. Moreover, the migration and invasion activities of cancer cells were inhibited by BMVC and BMVC4, and the inhibitory effects can be reversed by WNT1-overexpression. Thus the Wnt1 expression and its downstream signaling pathways can be regulated through the G-quadruplex sequences located at its promoter region. These findings provide a novel approach for future drug development to inhibit migration and invasion of cancer cells.
Related JoVE Video
Detection of arsenic(III) through pulsed laser-induced desorption/ionization of gold nanoparticles on cellulose membranes.
Anal. Chem.
PUBLISHED: 02-28-2014
Show Abstract
Hide Abstract
We have developed an assay based on gold nanoparticle-modified mixed cellulose ester membrane (Au NPs-MCEM) coupled with laser-induced desorption/ionization mass spectrometry (LDI-MS)-for the detection of arsenic(III) ions (arsenite, AsO2(-)) in aqueous solution. When the Au NPs reacted with lead ions (Pb(2+)) in alkaline solution (5 mM glycine-NaOH, pH 12), Au-Pb complexes, PbO, and Pb(OH) were formed immediately on the Au NP surfaces. The Pb species reacted rapidly with subsequently added AsO2(-) to form PbOAs2O3, (PbO)2As2O3, and/or (PbO)3As2O3 shells (2-5 nm) on the Au NPs' surfaces. As a result, significant observable aggregation of the Au NPs occurred in the solution. This Pb(2+)/Au NP probe allowed the detection of AsO2(-) at concentrations as low as 0.6 ?M with high selectivity (at least 100-fold over other anions and metal ions). To further improve the sensitivity, we prepared Au NPs-MCEM for the LDI-MS-based detection of AsO2(-) ions. The intensity of the signal for the [Pb](+) ions in the mass spectra increased when the Au NPs-MCEM reacted with AsO2(-); in contrast, the intensity of the signal for [Au](+) ions decreased. Accordingly, the [Pb](+)/[Au](+) peak ratio increased upon increasing the AsO2(-) concentration over the range from 10 nM to 10 ?M. The limit of detection at a signal-to-noise ratio of 3 was 2.5 nM, far below the action level of As (133 nM, ca. 10 ppb) permitted by the US EPA for drinking water. Relative to other nanoparticle-based arsenic sensors, this approach is rapid, specific, and sensitive; in addition, it can be applied to the detection of AsO2(-) in natural water samples (in this case, streamwater, lake water, tap water, groundwater, and mineral water).
Related JoVE Video
Acute thoracic empyema: clinical characteristics and outcome analysis of video-assisted thoracoscopic surgery.
J. Formos. Med. Assoc.
PUBLISHED: 02-07-2014
Show Abstract
Hide Abstract
Acute thoracic empyema is a common clinical problem worldwide, resulting in substantial morbidity and mortality. The objective of this study was to report its clinical characteristics and to evaluate whether thoracoscopic surgery is associated with a lower rate of in-hospital mortality compared with nonoperative drainage.
Related JoVE Video
Logic control of enzyme-like gold nanoparticles for selective detection of lead and mercury ions.
Anal. Chem.
PUBLISHED: 02-04-2014
Show Abstract
Hide Abstract
Functional logic gates based on lead ions (Pb(2+)) and mercury ions (Hg(2+)) that induce peroxidase-like activities in gold nanoparticles (Au NPs) in the presence of platinum (Pt(4+)) and bismuth ions (Bi(3+)) are presented. The "AND" logic gate is constructed using Pt(4+)/Pb(2+) as the input and the peroxidase-like activity of the Au NPs as the output; this logic gate is denoted as "Pt(4+)/Pb(2+)(AND)-Au NPPOX". When Pt(4+) and Pb(2+) coexist, strong metallophilic interactions (between Pt and Pb atoms/ions) and aurophilic interactions (between Au and Pb/Pt atoms/ions) result in significant increases in the deposition of Pt and Pb atoms/ions onto the Au NPs, leading to enhanced peroxidase-like activity. The "INHIBIT" logic gate is fabricated by using Bi(3+) and Hg(2+) as the input and the peroxidase-like activity of the Au NPs as the output; this logic gate is denoted as "Bi(3+)/Hg(2+)(INHIBIT)-Au NPPOX". High peroxidase-like activity of Au NPs in the presence of Bi(3+) is a result of the various valence (oxidation) states of Bi(3+) and Au (Au(+)/Au(0)) atoms on the nanoparticle's surface. When Bi(3+) and Hg(2+) coexist, strong Hg-Au amalgamation results in a large decrease in the peroxidase-like activity of the Au NPs. These two probes (Pt(4+)/Pb(2+)(AND)-Au NPPOX and Bi(3+)/Hg(2+)(INHIBIT)-Au NPPOX) allow selective detection of Pb(2+) and Hg(2+) down to nanomolar quantities. The practicality of these two probes has been validated by analysis of Pb(2+) and Hg(2+) in environmental water samples (tap water, river water, and lake water). In addition, an integrated logic circuit based on the color change (formation of reddish resorufin product) and generation of O2 bubbles from these two probes has been constructed, allowing visual detection of Pb(2+) and Hg(2+) in aqueous solution.
Related JoVE Video
Knocking down 10-Formyltetrahydrofolate dehydrogenase increased oxidative stress and impeded zebrafish embryogenesis by obstructing morphogenetic movement.
Biochim. Biophys. Acta
PUBLISHED: 01-27-2014
Show Abstract
Hide Abstract
Folate is an essential nutrient for cell survival and embryogenesis. 10-Formyltetrahydrofolate dehydrogenase (FDH) is the most abundant folate enzyme in folate-mediated one-carbon metabolism. 10-Formyltetrahydrofolate dehydrogenase converts 10-formyltetrahydrofolate to tetrahydrofolate and CO2, the only pathway responsible for formate oxidation in methanol intoxication. 10-Formyltetrahydrofolate dehydrogenase has been considered a potential chemotherapeutic target because it was down-regulated in cancer cells. However, the normal physiological significance of 10-Formyltetrahydrofolate dehydrogenase is not completely understood, hampering the development of therapeutic drug/regimen targeting 10-Formyltetrahydrofolate dehydrogenase.
Related JoVE Video
The Chinese herbal formula Liuwei dihuang protects dopaminergic neurons against Parkinson's toxin through enhancing antioxidative defense and preventing apoptotic death.
Phytomedicine
PUBLISHED: 01-07-2014
Show Abstract
Hide Abstract
Liuwei dihuang (LWDH), a widely used traditional Chinese medicine (TCM), has been employed as an anti-aging prescription to improve declined function. Parkinson's disease (PD) is a common adult-onset neurodegenerative disorder characterized by the degeneration of dopaminergic nigrostriatal neurons with complex pathological mechanisms, including oxidative stress. Increasing evidence indicate that TCM has the potential to be neuroprotective drugs because of their antioxidant characteristics. The aim of this study is to investigate the mechanisms of LWDH-mediated protection in Parkinson's toxin-induced dopaminergic neurodegeneration by evaluating water extract of LWDH (LWDH-WE) in 1-methyl-4-phenylpyridinium (MPP(+))-treated primary mesencephalic neurons and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated C57BL/6 mice. In the present study, chemical profiling and quantitative analysis of LWDH-WE were revealed using 3D-HPLC technique, and were confirmed by the data of three batches of LWDH-WE. In primary mesencephalic neuronal cultures, LWDH-WE decreased MPP(+)-induced loss of tyrosine hydroxylase (TH)-positive neurons and increase of Annexin V-positive neurons. LWDH-WE reduced MPP(+)-induced oxidative damage via increasing antioxidant defense (SOD, GSH), decreasing ROS production, and down-regulating NADPH oxidases (Nox2 and Nox4). Also, LWDH-WE inhibited neuronal apoptosis by improving mitochondrial membrane potential, increasing antiapoptotic protein Bcl-2 expression, and down-regulating apoptotic signaling (Bax, cytochrome c, cleaved-caspase-3) in MPP(+)-treated neurons. In MPTP-treated C57BL/6 mice, LWDH-WE attenuated TH-positive neuronal loss in substantia nigra pars compacta (SNpc), and improved locomotor activity of mice. In conclusion, the present results reveal that LWDH-WE possesses protection on dopaminergic neurons through enhancing antioxidant defense and decreasing apoptotic death, suggesting the potential benefits of LWDH-WE for PD treatment.
Related JoVE Video
Substrate-mediated nanoparticle/gene delivery to MSC spheroids and their applications in peripheral nerve regeneration.
Biomaterials
PUBLISHED: 01-02-2014
Show Abstract
Hide Abstract
Substrate-derived mesenchymal stem cell (MSC) spheroids show greater differentiation capacities than dispersed single cells in vitro. During spheroid formation, nanoparticles (NPs)/genes may be delivered into the cells. In this study, MSCs were conveniently labeled with superparamagnetic Fe3O4 NPs, or transfected with brain-derived neurotrophic factor (BDNF) gene, by the substrate-mediated NP/gene uptake. With the promising in vitro data showing the beneficial effect on neural development and neurotrophic factor expression, MSCs were combined with a polymeric nerve conduit to bridge a 10 mm transection gap of rat sciatic nerve. High-resolution (7-T) magnetic resonance imaging (MRI) was used to track the transplanted cells. Nerve regeneration was assessed by functional recovery and histology. Results revealed that Fe3O4 NP-labeled MSCs were successfully visualized by MRI in vivo. Animals receiving BDNF-transfected MSC spheroids demonstrated the shortest gap bridging time (<21 days), the largest regenerated nerve, and the thickest myelin sheath at 31 days. Compared to MSC single cells, the pristine or BDNF-transfected MSC spheroids significantly promoted the functional recovery of animals, especially for the BDNF-transfected MSC spheroids. The transplanted MSCs were incorporated in the regenerated nerve and differentiated into non-myelinating Schwann cells after 31 days. This study suggests that the substrate-mediated gene delivery and NP labeling may provide extra values for MSC spheroids to carry therapeutic/diagnostic agents in cell-based therapy.
Related JoVE Video
miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions.
Nucleic Acids Res.
PUBLISHED: 12-04-2013
Show Abstract
Hide Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules capable of negatively regulating gene expression to control many cellular mechanisms. The miRTarBase database (http://mirtarbase.mbc.nctu.edu.tw/) provides the most current and comprehensive information of experimentally validated miRNA-target interactions. The database was launched in 2010 with data sources for >100 published studies in the identification of miRNA targets, molecular networks of miRNA targets and systems biology, and the current release (2013, version 4) includes significant expansions and enhancements over the initial release (2010, version 1). This article reports the current status of and recent improvements to the database, including (i) a 14-fold increase to miRNA-target interaction entries, (ii) a miRNA-target network, (iii) expression profile of miRNA and its target gene, (iv) miRNA target-associated diseases and (v) additional utilities including an upgrade reminder and an error reporting/user feedback system.
Related JoVE Video
DPRP: a database of phenotype-specific regulatory programs derived from transcription factor binding data.
Nucleic Acids Res.
PUBLISHED: 12-02-2013
Show Abstract
Hide Abstract
Gene expression profiling has been extensively used in the past decades, resulting in an enormous amount of expression data available in public databases. These data sets are informative in elucidating transcriptional regulation of genes underlying various biological and clinical conditions. However, it is usually difficult to identify transcription factors (TFs) responsible for gene expression changes directly from their own expression, as TF activity is often regulated at the posttranscriptional level. In recent years, technical advances have made it possible to systematically determine the target genes of TFs by ChIP-seq experiments. To identify the regulatory programs underlying gene expression profiles, we constructed a database of phenotype-specific regulatory programs (DPRP, http://syslab.nchu.edu.tw/DPRP/) derived from the integrative analysis of TF binding data and gene expression data. DPRP provides three methods: the Fishers Exact Test, the Kolmogorov-Smirnov test and the BASE algorithm to facilitate the application of gene expression data for generating new hypotheses on transcriptional regulatory programs in biological and clinical studies.
Related JoVE Video
Ethanol-induced up-regulation of 10-formyltetrahydrofolate dehydrogenase helps relieve ethanol-induced oxidative stress.
Mol. Cell. Biol.
PUBLISHED: 11-25-2013
Show Abstract
Hide Abstract
Alcoholism induces folate-deficiency and increases the risk for embryonic anomalies. However, the interplay between ethanol exposure and embryonic folate status remains unclear. To investigate how ethanol exposure affected embryonic folate status and one-carbon homeostasis, we incubated zebrafish embryos in ethanol and analyzed embryonic folate content and folate enzyme expression. Exposure to 2% ethanol did not change embryonic total folate content but increased tetrahydrofolate level approximately 1.5 folds. The expression of 10-formyltetrahydrofolate dehydrogenase (FDH), a potential intracellular tetrahydrofolate reservoir, was increased in both mRNA and protein levels. Overexpressing recombinant FDH in embryos alleviated the ethanol-induced oxidative stress in ethanol-exposed embryos. Further characterization on zebrafish fdh promoter revealed that the -124/+40 promoter fragment was the minimal region required for transactivational activity. The results of site-directed mutagenesis and binding analysis revealed that Sp1 was involved in the basal level expression of fdh, but not ethanol-induced up-regulation of fdh. On the other hand, CEBP? was the one that mediated the ethanol-induced up-regulation of fdh, which caused an approximately 40-fold increase of fdh promoter activity when overexpressed in vitro. We conclude that up-regulation of fdh involving CEBP? helps relieve embryonic oxidative stress induced by ethanol exposure.
Related JoVE Video
Structural insights into the hydrolysis and polymorphism of methotrexate polyglutamate by zebrafish ?-glutamyl hydrolase.
J. Med. Chem.
PUBLISHED: 09-27-2013
Show Abstract
Hide Abstract
?-Glutamyl hydrolases (?GH) catalyze the hydrolysis of ?-linked glutamate residues from the polyglutamyl of folates and antifolates, such as methotrexate (MTX), a widely used anticancer drug. We describe the first crystal structures of the endopeptidase-type ?GH (z?GH) from zebrafish and the mutant complexes with MTX(Glu)5 and hydrolyzed MTX(Glu)1, revealing the complete set of key residues involved in hydrolysis as well as the substrate-binding subsites (-1 to +2). The side chain of Phe20 and the 6-methylpterin ring of MTX(Glu)5 invoke ?-? interactions to promote distinct concerted conformational alterations involving ?90° rotations in the complexes with the z?GH-C108A and z?GH-H218N mutant proteins. The structural geometries of the MTX(Glu)5 and hydrolyzed MTX(Glu)1 in the mutant complexes differ significantly from those of the previously known MTX(Glu)1, providing polymorphic information. Together with the structural comparison and the activity analysis, these results shed light on the catalytic mechanism and substrate recognition of z?GH and other ?-glutamyl hydrolases.
Related JoVE Video
In-cell optical imaging of exogenous G-quadruplex DNA by fluorogenic ligands.
Nucleic Acids Res.
PUBLISHED: 09-11-2013
Show Abstract
Hide Abstract
Guanine-rich oligonucleotides (GROs) are promising therapeutic candidate for cancer treatment and other biomedical application. We have introduced a G-quadruplex (G4) ligand, 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide, to monitor the cellular uptake of naked GROs and map their intracellular localizations in living cells by using confocal microscopy. The GROs that form parallel G4 structures, such as PU22, T40214 and AS1411, are detected mainly in the lysosome of CL1-0 lung cancer cells after incubation for 2 h. On the contrary, the GROs that form non-parallel G4 structures, such as human telomeres (HT23) and thrombin binding aptamer (TBA), are rarely detected in the lysosome, but found mainly in the mitochondria. Moreover, the fluorescence resonant energy transfer studies of fluorophore-labeled GROs show that the parallel G4 structures can be retained in CL1-0 cells, whereas the non-parallel G4 structures are likely distorted in CL1-0 cells after cellular uptake. Of interest is that the distorted G4 structure of HT23 from the non-parallel G4 structure can reform to a probable parallel G4 structure induced by a G4 ligand in CL1-0 living cells. These findings are valuable to the design and rationale behind the possible targeted drug delivery to specific cellular organelles using GROs.
Related JoVE Video
Gold-nanoparticles-modified cellulose membrane coupled with laser desorption/ionization mass spectrometry for detection of iodide in urine.
ACS Appl Mater Interfaces
PUBLISHED: 09-09-2013
Show Abstract
Hide Abstract
We report an efficient method for the determination of iodide (I(-)) ions by using gold-iodide hybrid cluster ions on gold nanoparticles (Au NPs) modified mixed cellulose ester membrane (Au NPs-MCEM) by pulsed laser desorption/ionization mass spectrometry (LDI-MS). When I(-) ions were deposited and concentrated on the surfaces of Au NPs (32 nm) via strong Au(+)-I(-) interaction on the MECM, the Au NPs-MCEM was observed to function as an efficient surface-assisted LDI substrate with very low background noise. When pulsed laser radiation (355 nm) was applied, I(-) binding to Au NPs ions induced the enhancement of the desorption and ionization efficiency of gold-iodide hybrid cluster ions from the Au NPs surfaces. The reproducibility of the probe for both shot-to-shot and sample-to-sample (both less than 10%) ion production was also improved by the homogeneous nature of the substrate surface. Thus, it allows the accurate and precise quantification of I(-) ions in high-salinity real samples (i.e., edible salt samples and urine) at the nanomolar range. This novel LDI-MS approach provides a simple route for the high-speed analysis of I(-) ions with high sensitivity and selectivity in real biological samples.
Related JoVE Video
Fabrication of bioactive conduits containing the fibroblast growth factor 1 and neural stem cells for peripheral nerve regeneration across a 15 mm critical gap.
Biofabrication
PUBLISHED: 07-23-2013
Show Abstract
Hide Abstract
Nerve conduits are often used in combination with bioactive molecules and stem cells to enhance peripheral nerve regeneration. In this study, the acidic fibroblast growth factor 1 (FGF1) was immobilized onto the microporous/micropatterned poly (D, L-lactic acid) (PLA) nerve conduits after open air plasma treatment. PLA substrates grafted with chitosan in the presence of a small amount of gold nanoparticles (nano Au) showed a protective effect on the activity of the immobilized FGF1 in vitro. Different conduits were tested for their ability to bridge a 15 mm critical gap defect in a rat sciatic nerve injury model. Axon regeneration and functional recovery were evaluated by histology, walking track analysis and electrophysiology. Among different conduits, PLA conduits grafted with chitosan-nano Au and the FGF1 after plasma activation had the greatest regeneration capacity and functional recovery in the experimental animals. When the above conduit was seeded with aligned neural stem cells, the efficacy was further enhanced and it approached that of the autograft group. This work suggested that microporous/micropatterned nerve conduits containing bioactive growth factors may be successfully fabricated by micropatterning techniques, open plasma activation, and immobilization, which, combined with aligned stem cells, may synergistically contribute to the regeneration of the severely damaged peripheral nerve.
Related JoVE Video
Fluorescent probe for visualizing guanine-quadruplex DNA by fluorescence lifetime imaging microscopy.
J Biomed Opt
PUBLISHED: 07-11-2013
Show Abstract
Hide Abstract
The importance of guanine-quadruplex (G4) is not only in protecting the ends of chromosomes for human telomeres but also in regulating gene expression for several gene promoters. However, the existence of G4 structures in living cells is still in debate. A fluorescent probe, 3,6-bis(1-methyl-2-vinylpyridinium) carbazole diiodide (o-BMVC), for differentiating G4 structures from duplexes is characterized. o-BMVC has a large contrast in fluorescence decay time, binding affinity, and fluorescent intensity between G4 structures and duplexes, which makes it a good candidate for probing G4 DNA structures. The fluorescence decay time of o-BMVC upon interaction with G4 structures of telomeric G-rich sequences is ?2.8??ns and that of interaction with the duplex structure of a calf thymus is ?1.2??ns. By analyzing its fluorescence decay time and histogram, we were able to detect one G4 out of 1000 duplexes in vitro. Furthermore, by using fluorescence lifetime imaging microscopy, we demonstrated an innovative methodology for visualizing the localization of G4 structures as well as mapping the localization of different G4 structures in living cells.
Related JoVE Video
Methotrexate-induced decrease in embryonic 5-methyl-tetrahydrofolate is irreversible with leucovorin supplementation.
Zebrafish
PUBLISHED: 06-12-2013
Show Abstract
Hide Abstract
Folate is a nutrient crucial for rapidly growing tissues, including developing embryos and cancer cells. Folate participates in the biosynthesis of nucleic acids, proteins, amino acids, S-adenosylmethionine, many neurotransmitters, and some vitamins. The intracellular folate pool consists of different folate adducts, which carry one-carbon units at three different oxidative states and participate in distinct biochemical reactions. Therefore, the content and dynamics of folate adducts will affect the homeostasis of the metabolites generated in these folate-mediated reactions. Currently, the knowledge on the level of each individual folate adduct in developing embryos is limited. With an improved high-performance liquid chromatography protocol, we found that tetrahydrofolate (THF), the backbone of one-carbon carrier, gradually increased and became dominant in developing zebrafish embryos. 5-methyl-tetrahydrofolate (5-CH3-THF) was abundant in unfertilized eggs but decreased rapidly when embryos started to proliferate and differentiate. 10-formyltetrahydrofolate at first increased after fertilization, and then dropped dramatically before reaching a sustained level at later stages. Dihydrofolate (DHF) slightly decreased initially and remained low throughout embryogenesis. Exposure to methotrexate significantly decreased 5-CH3-THF levels and increased DHF pools, besides causing brain ventricle anomaly. Rescuing with leucovorin partly reversed the abnormal phenotype. Unexpectedly, the level of 5-CH3-THF remained low even when leucovorin was added for rescue. Our results show that different folate adducts fluctuated significantly and differentially in concert with the physiological requirement specific for the corresponding developmental stages. Furthermore, methotrexate lowered the level of 5-CH3-THF in developing embryos, which could not be reversed with folate supplementation and might be more substantial to cellular methylation potential and epigenetic control than to nucleotide synthesis.
Related JoVE Video
The mutations of katG and inhA genes of isoniazid-resistant Mycobacterium tuberculosis isolates in Taiwan.
J Microbiol Immunol Infect
PUBLISHED: 04-29-2013
Show Abstract
Hide Abstract
The isoniazid (INH) resistance of Mycobacterium tuberculosis is caused by mutations in the katG and inhA genes encoding for catalase-peroxidase and inhA, respectively. Sequences of the katG and inhA gene of 70 isolates were analyzed to identify the mutations and to compare the mutations with their related susceptibilities.
Related JoVE Video
EGCG-rich green tea extract stimulates sRAGE secretion to inhibit S100A12-RAGE axis through ADAM10-mediated ectodomain shedding of extracellular RAGE in type 2 diabetes.
Mol Nutr Food Res
PUBLISHED: 04-16-2013
Show Abstract
Hide Abstract
The receptor for advanced glycation of end products (RAGE) plays a critical role in the progression of type 2 diabetes (T2D). Soluble RAGE (sRAGE) is one of the RAGE variants, which acts as a decoy domain receptor and competes with RAGE, thus contributing to prevention of T2D. In this study, we conducted clinical trials of (-)-epigallocatechin-3-gallate (EGCG) rich green tea extract (300-900 mg/day) to investigate the effect of EGCG on relationship between S100A12 RAGE ligand and diverse sRAGE in T2D. Moreover, mechanism of sRAGE production also confirmed in vitro. Our data indicated that EGCG could stimulate sRAGE circulation but inhibited RAGE ligand in T2D, and ADAM10-mediated ectodomain shedding of extracellular RAGE was mainly involved in EGCG-stimulated sRAGE circulation. The present evidence indicates that EGCG has a potential to block S100A12-RAGE axis by stimulating sRAGE production through ADAM10-mediated ectodomain shedding of extracellular RAGE. Therefore, EGCG contributes to nutritional strategies for diabetes, not only because of its efficient antioxidant activity to scavenge free radicals, but also because of its ability stimulating sRAGE release in the circulation. Additionally, ADAM10-induced ectodomain shedding of extracellular RAGE leading to sRAGE circulation should be a potential of passive mechanism of sRAGE production to block S100A12-RAGE axis-related pathogenesis of proinflammation and diabetes.
Related JoVE Video
Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth.
Toxicol. Appl. Pharmacol.
PUBLISHED: 03-31-2013
Show Abstract
Hide Abstract
Reactive oxygen intermediates production and apoptotic damage induced by high glucose are major causes of neuronal damage in diabetic neuropathy. Berberine (BBR), a natural antidiabetes drug with PI3K-activating activity, holds promise for diabetes because of its dual antioxidant and anti-apoptotic activities. We have previously reported that BBR attenuated H2O2 neurotoxicity via activating the PI3K/Akt/Nrf2-dependent pathway. In this study, we further explored the novel protective mechanism of BBR on high glucose-induced apoptotic death and neurite damage of SH-SY5Y cells. Results indicated BBR (0.1-10 nM) significantly attenuated reactive oxygen species (ROS) production, nucleus condensation, and apoptotic death in high glucose-treated cells. However, AG1024, an inhibitor of insulin growth factor-1 (IGF-1) receptor, significantly abolished BBR protection against high glucose-induced neuronal death. BBR also increased Bcl-2 expression and decreased cytochrome c release. High glucose down-regulated IGF-1 receptor and phosphorylation of Akt and GSK-3?, the effects of which were attenuated by BBR treatment. BBR also activated nuclear erythroid 2-related factor 2 (Nrf2), the key antioxidative transcription factor, which is accompanied with up-regulation of hemeoxygenase-1 (HO-1). Furthermore, BBR markedly enhanced nerve growth factor (NGF) expression and promoted neurite outgrowth in high glucose-treated cells. To further determine the role of the Nrf2 in BBR neuroprotection, RNA interference directed against Nrf2 was used. Results indicated Nrf2 siRNA abolished BBR-induced HO-1, NGF, neurite outgrowth and ROS decrease. In conclusion, BBR attenuated high glucose-induced neurotoxicity, and we are the first to reveal this novel mechanism of BBR as an Nrf2 activator against glucose neurotoxicity, providing another potential therapeutic use of BBR on the treatment of diabetic complications.
Related JoVE Video
Nanomolar Naloxone Attenuates Neurotoxicity Induced by Oxidative Stress and Survival Motor Neuron Protein Deficiency.
Neurotox Res
PUBLISHED: 03-30-2013
Show Abstract
Hide Abstract
Oxidative stress and survival motor neuron (Smn) protein deficiency are the major causes of motor neuronal death. Naloxone exhibits neuroprotection against ischemic stroke and anti-inflammation. In this study, we determined whether nanomolar naloxone provides neuroprotection under oxidative stress (H2O2) and Smn deficiency in a motor neuron-like cell line, NSC34. In H2O2-treated NSC34 cells, naloxone (1-10 nM) increased cell survival and mitochondria membrane potential. In addition, naloxone decreased NADPH oxidase (NOX) 2 activation, reactive oxygen species production and oxygen consumption rate. Moreover, naloxone increased anti-apoptotic Bcl-2 expression, attenuated apoptotic protein (Bax, cytochrome c, and caspase) expression and decreased apoptotic death. Furthermore, naloxone also increased Smn mRNA and protein expression. In Smn knockdown NSC34 cells, Smn deficiency significantly increased H2O2 cytotoxicity. Naloxone exhibited neuroprotection at higher concentrations in Smn knockdown NSC34 cells than in control cells. In conclusion, naloxone attenuated neurotoxicity induced by H2O2 and Smn deficiency. Our findings also revealed the involvement of Smn protein in naloxone protection and oxidative stress-related neurotoxicity.
Related JoVE Video
Perceptual and neuronal boundary learned from higher-order stimulus probabilities.
J. Neurosci.
PUBLISHED: 02-22-2013
Show Abstract
Hide Abstract
During an early epoch of development, the brain is highly adaptive to the stimulus environment. Exposing young animals to a particular tone, for example, leads to an enlarged representation of that tone in primary auditory cortex. While the neural effects of simple tonal environments are well characterized, the principles that guide plasticity in more complex acoustic environments remain unclear. In addition, very little is known about the perceptual consequences of early experience-induced plasticity. To address these questions, we reared juvenile rats in complex multitone environments that differed in terms of the higher-order conditional probabilities between sounds. We found that the development of primary cortical acoustic representations, as well as frequency discrimination ability in adult animals, were shaped by the higher-order stimulus statistics of the early acoustic environment. Our results suggest that early experience-dependent cortical reorganization may mediate perceptual changes through statistical learning of the sensory input.
Related JoVE Video
Melamine activates NF?B/COX-2/PGE2 pathway and increases NADPH oxidase-dependent ROS production in macrophages and human embryonic kidney cells.
Toxicol In Vitro
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
Melamine is a wildly used compound in manufactures of plastics and resins. A variety of toxic effects from melamine, including nephrolithiasis, chronic kidney inflammation, and bladder carcinoma, have been mentioned. Oxidative stress is considered to be an important pathogenic mechanism of kidney disease which may develop from an increasing free radical production through inflammation. The aim of this study is to investigate melamine-induced oxidative stress and inflammation in macrophage-like cell line RAW 264.7 and human embryonic kidney cell line HEK293. Results indicated melamine activated nuclear factor (NF)-?B through increasing I?B-? degradation and NF-?B p65/p50 DNA-binding activity. In addition, melamine significantly increased COX-2 expression and prostaglandin E2 (PGE2) production. Moreover, melamine activated NADPH oxidase (NOX), including NOX1, NOX2 and NOX4, accompanied with an increase in reactive oxygen species (ROS) production. Furthermore, melamine-induced ROS production could be attenuated by apocynin, a NOX inhibitor. In conclusion, our findings suggest melamine increased inflammation and oxidative stress via activation of NF-?B/COX-2 and NOX/ROS pathway, and first revealed the critical role of NOX in melamine-induced ROS production, suggesting the potential of NOX inhibitor against melamine toxicity.
Related JoVE Video
Effects of spike sorting error on the Granger causality index.
Neural Netw
PUBLISHED: 01-08-2013
Show Abstract
Hide Abstract
Accurately sorting individual neurons is a technical challenge and plays an important role in identifying information flow among neurons. Spike sorting errors are almost unavoidable and can roughly be divided into two types: false positives (FPs) and false negatives (FNs). This study investigates how FPs and FNs affect results of the Granger causality (GC) analysis, a powerful method for detecting causal interactions between time series signals. We derived an explicit formula based on a first order vector autoregressive model to analytically study the effects of FPs and FNs. The proposed formula was able to reveal the intrinsic properties of the GC, and was verified by simulation studies. The effects of FPs and FNs were further evaluated using real experimental data from the ventroposterior medial nucleus of the thalamus. Some practical suggestions for spike sorting are also provided in this paper.
Related JoVE Video
Prediction of protein essentiality by the support vector machine with statistical tests.
Evol. Bioinform. Online
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Essential proteins include the minimum required set of proteins to support cell life. Identifying essential proteins is important for understanding the cellular processes of an organism. However, identifying essential proteins experimentally is extremely time-consuming and labor-intensive. Alternative methods must be developed to examine essential proteins. There were two goals in this study: identifying the important features and building learning machines for discriminating essential proteins. Data for Saccharomyces cerevisiae and Escherichia coli were used. We first collected information from a variety of sources. We next proposed a modified backward feature selection method and build support vector machines (SVM) predictors based on the selected features. To evaluate the performance, we conducted cross-validations for the originally imbalanced data set and the down-sampling balanced data set. The statistical tests were applied on the performance associated with obtained feature subsets to confirm their significance. In the first data set, our best values of F-measure and Matthews correlation coefficient (MCC) were 0.549 and 0.495 in the imbalanced experiments. For the balanced experiment, the best values of F-measure and MCC were 0.770 and 0.545, respectively. In the second data set, our best values of F-measure and MCC were 0.421 and 0.407 in the imbalanced experiments. For the balanced experiment, the best values of F-measure and MCC were 0.718 and 0.448, respectively. The experimental results show that our selected features are compact and the performance improved. Prediction can also be conducted by users at the following internet address: http://bio2.cse.nsysu.edu.tw/esspredict.aspx.
Related JoVE Video
A Tool Preference Choice Method for RNA Secondary Structure Prediction by SVM with Statistical Tests.
Evol. Bioinform. Online
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The Prediction of RNA secondary structures has drawn much attention from both biologists and computer scientists. Many useful tools have been developed for this purpose. These tools have their individual strengths and weaknesses. As a result, based on support vector machines (SVM), we propose a tool choice method which integrates three prediction tools: pknotsRG, RNAStructure, and NUPACK. Our method first extracts features from the target RNA sequence, and adopts two information-theoretic feature selection methods for feature ranking. We propose a method to combine feature selection and classifier fusion in an incremental manner. Our test data set contains 720 RNA sequences, where 225 pseudoknotted RNA sequences are obtained from PseudoBase, and 495 nested RNA sequences are obtained from RNA SSTRAND. The method serves as a preprocessing way in analyzing RNA sequences before the RNA secondary structure prediction tools are employed. In addition, the performance of various configurations is subject to statistical tests to examine their significance. The best base-pair accuracy achieved is 75.5%, which is obtained by the proposed incremental method, and is significantly higher than 68.8%, which is associated with the best predictor, pknotsRG.
Related JoVE Video
Dissociation of diabetes and obesity in mice lacking orphan nuclear receptor small heterodimer partner.
J. Lipid Res.
PUBLISHED: 09-23-2011
Show Abstract
Hide Abstract
Mixed background SHP(-/-) mice are resistant to diet-induced obesity due to increased energy expenditure caused by enhanced PGC-1? expression in brown adipocytes. However, congenic SHP(-/-) mice on the C57BL/6 background showed normal expression of PGC-1? and other genes involved in brown adipose tissue thermogenesis. Thus, we reinvestigated the impact of small heterodimer partner (SHP) deletion on diet-induced obesity and insulin resistance using congenic SHP(-/-) mice. Compared with their C57BL/6 wild-type counterparts, SHP(-/-) mice subjected to a 6 month challenge with a Western diet (WestD) were leaner but more glucose intolerant, showed hepatic insulin resistance despite decreased triglyceride accumulation and increased ?-oxidation, exhibited alterations in peripheral tissue uptake of dietary lipids, maintained a higher respiratory quotient, which did not decrease even after WestD feeding, and displayed islet dysfunction. Hepatic mRNA expression analysis revealed that many genes expressed higher in SHP(-/-) mice fed WestD were direct peroxisome proliferator-activated receptor alpha (PPAR?) targets. Indeed, transient transfection and chromatin immunoprecipitation verified that SHP strongly repressed PPAR?-mediated transactivation. SHP is a pivotal metabolic sensor controlling lipid homeostasis in response to an energy-laden diet through regulating PPAR?-mediated transactivation. The resultant hepatic fatty acid oxidation enhancement and dietary fat redistribution protect the mice from diet-induced obesity and hepatic steatosis but accelerate development of type 2 diabetes.
Related JoVE Video
Brain magnetic resonance imaging abnormalities in eosinophilic meningitis caused by Angiostrongylus cantonensis infection.
Vector Borne Zoonotic Dis.
PUBLISHED: 09-16-2011
Show Abstract
Hide Abstract
Angiostrongylus cantonensis is a parasite endemic in the Southeast Asian and Pacific regions. Humans are incidentally infected either by eating uncooked intermediate hosts or by consuming vegetables containing the living third-stage larvae. Reports on brain magnetic resonance imaging (MRI) findings and how they correlate with clinical features are limited in the literature. In this retrospective study, we investigated the brain MR features of eosinophilic meningitis caused by human infection with A. cantonensis. A detailed clinical study of 26 of these patients was conducted. The brain MRI findings were nonspecific, ranging from normal (n=1), leptomeningeal enhancement (n=21), hyperintense signal lesions (n=11) on T2-weighted MRI and nodular enhancing lesions in gadolinium-enhanced T1W1 (n=1). There was an association between the presence of brain MRI high signal intensities with peripheral eosinophilia (p=0.02), cerebrospinal fluid (CSF), eosinophil count ?10%, and the presence of CSF antibodies to A. cantonensis (p=0.01). The patients with leptomeningeal enhancement in brain MRI tended to be younger and predominantly men (p=0.03). The time from onset of symptom to spinal tapping or brain MRI studies did not have an effect on the presence of brain MRI abnormalities. The brain MRI findings did not add any additional importance to the clinical evaluation of patients with eosinophilic meningitis in this series. Further studies are required to clarify the role of brain MRI in eosinophilic meningitis.
Related JoVE Video
A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats.
J. Neurosci. Methods
PUBLISHED: 05-25-2011
Show Abstract
Hide Abstract
Chronic single-unit recording in subcortical brain regions is increasingly important in neurophysiological studies. However, methods for long-term, stable recording of multiple single-units in deep brain regions and in dura-surrounded ganglion have not yet been established. In the present study, we propose a bundled microwire array design which is capable of long-term recording of the trigeminal ganglion and deep-brain units. This electrode set is easy to construct from common materials and tools found in an electrophysiological laboratory. The salient features of our design include: (1) short and separated tungsten microwires for stable chronic recording; (2) the use of a 30-guage stainless steel guide tube for facilitating penetration and aiming for deep targets as well as electrical grounding; (3) the inclusion of a reference of the same microwire material inside the bundle to enhance common mode rejection of far field noises; and (4) an adjustable connector. In our case, we used a 90° backward bending connector so that implanted rats could perform the same hole-seeking behavior and their faces and the whiskers could be stimulated in the behaving state. It was demonstrated that this multi-channel electrode caused minimal tissue damage at the recording site and we were able to obtain good, stable single-unit recordings from the trigeminal ganglion and ventroposterior medial thalamus areas of freely moving rats for up to 80 days. This methodology is useful for the studies that require long term and high quality unit recording in the deep brain or in the trigeminal system.
Related JoVE Video
Diallyl disulfide induces Ca2+ mobilization in human colon cancer cell line SW480.
Arch. Toxicol.
PUBLISHED: 04-12-2011
Show Abstract
Hide Abstract
Diallyl disulfide (DADS), one of the major organosulfur compounds of garlic, is recognized as a group of potential chemopreventive compounds. In this study, we examines the early signaling effects of DADS on human colorectal cancer cells SW480 loaded with Ca(2+)-sensitive dye fura-2. It was found that DADS caused an immediate and sustained rise of [Ca(2+)](i) in a concentration-dependent manner (EC(50) = 232 ?M). DADS also induced a [Ca(2+)](i) elevation when extracellular Ca(2+) was removed, but the magnitude was reduced by 45%. Depletion of intracellular Ca(2+) stores with 2 ?M carbonylcyanide m-chlorophenylhydrazone, a mitochondrial uncoupler, didnt affect DADSs effect. In Ca(2+)-free medium, the DADS-induced [Ca(2+)](i) rise was abolished by depleting stored Ca(2+) with 1 ?M thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor). DADS-caused [Ca(2+)](i) rise in Ca(2+)-containing medium was not affected by modulation of protein kinase C activity. The DADS-induced Ca(2+) influx was blocked by nicardipine (10 ?M). U73122, an inhibitor of phospholipase C, abolished ATP (but not DADS)-induced [Ca(2+)](i) rise. These findings suggest that DADS induced a significant rise in [Ca(2+)](i) in SW480 colon cancer cells by stimulating both extracellular Ca(2+) influx and thapsigargin-sensitive intracellular Ca(2+) release via as yet unidentified mechanisms.
Related JoVE Video
Non-nosocomial healthcare-associated infective endocarditis in Taiwan: an underrecognized disease with poor outcome.
BMC Infect. Dis.
PUBLISHED: 03-29-2011
Show Abstract
Hide Abstract
Non-nosocomial healthcare-associated infective endocarditis (NNHCA-IE) is a new category of IE of increasing importance. This study described the clinical and microbiological characteristics and outcome of NNHCA-IE in Taiwan.
Related JoVE Video
Preparation of highly luminescent mannose-gold nanodots for detection and inhibition of growth of Escherichia coli.
Biosens Bioelectron
PUBLISHED: 03-29-2011
Show Abstract
Hide Abstract
In this paper, we describe a novel, simple, and convenient method for preparing water-soluble biofunctional gold nanodots (Au NDs) for the sensitive and selective detection of Escherichia coli (E. coli) and the inhibition of its growth. We obtained luminescent mannose-capped Au NDs (Man-Au NDs) from as-prepared 2.9-nm Au nanoparticles (Au NPs) and 29,29-dithio bis(3,6,9,12,15,18-hexaoxa-nonacosyl ?-D-mannopyranoside) (Man-RSSR-Man). To obtain improved quantum yield (>20%), luminescent Man-Au NDs (1.8 nm) were prepared from Au NPs (0.47 ?M) and Man-RSSR-Man (2.5 mM) in the presence of sodium borohydride (NaBH(4); 1.0 mM). The highly luminescent properties of Man-Au NDs prepared by the NaBH(4)-assisted method were characterized by UV-vis absorption, photoluminescence, and X-ray photoelectron spectroscopies. The results supported the high-density coverage of the NDs surface by Man-RS ligands. Multivalent interactions between Man-Au NDs and FimH proteins located on the bacterial pili of E. coli resulted in the formation of aggregated cell clusters. After concentrating this agglutinative E. coli from a large-volume cell solution (5 mL), Man-Au NDs were displaced by mannose (100 mM) and stabilized by Man-RSSR-Man (5 mM). Monitoring the luminescence of Man-Au NDs allowed the detection of E. coli at levels as low as 150 CFU/mL. Man-Au NDs were also found to be efficient antibacterial agents, selectively inhibiting the growth of E. coli through Man-Au ND-induced agglutination. Our small-diameter Man-Au NDs, which provided an ultra high ligand density (local concentration) of mannose units for multivalent interactions with E. coli, have great potential for use as an antibacterial agent in other applications.
Related JoVE Video
Structural conversion of intramolecular and intermolecular G-quadruplexes of bcl2mid: the effect of potassium concentration and ion exchange.
J Phys Chem B
PUBLISHED: 02-22-2011
Show Abstract
Hide Abstract
The gel assay, circular dichroism, and differential scanning calorimetry results all demonstrate that a major monomer component of bcl2mid exists at low [K(+)] and an additional dimer component appears at high [K(+)]. This implies that bcl2mid is a good candidate for elucidating the mechanisms of structural conversion between different G-quadruplexes. We further discovered that the conversion between the monomer and dimer forms of bcl2mid does not occur at room temperature but is detected when heated above the melting point. In addition, the use of the lithium cation to keep the same ionic strength in a K(+) solution favors the formation of the bcl2mid dimer. We also found that the bcl2mid dimer is more stable than the monomer. However, after the bcl2mid monomer is formed in a K(+) solution, there is no appreciable structural conversion from the monomer to the dimer detected with addition of Li(+) at room temperature. Furthermore, the spectral changes of bcl2mid when transitioning from sodium form to potassium form take place upon K(+) titration. The absence of the dimer form for bcl2mid after the direct addition of 150 mM [K(+)] at room temperature suggests that the spectral changes are not due to rapid unfolding and refolding. In addition, this work reveals the conditions that would be useful for NMR studies of G-quadruplexes.
Related JoVE Video
Clinical manifestations of eosinophilic meningitis caused by Angiostrongylus cantonensis: 18 years experience in a medical center in southern Taiwan.
J Microbiol Immunol Infect
PUBLISHED: 01-20-2011
Show Abstract
Hide Abstract
With the improvement of public health, eosinophilic meningitis associated with Angiostrongylus cantonensis infection is now seldom reported in Taiwan. Eosinophilic meningitis typically occurred sporadically in children. This study aims to analyze the clinical manifestations and change in the contemporary epidemiology of eosinophilic meningitis in Taiwan.
Related JoVE Video
NlpI contributes to Escherichia coli K1 strain RS218 interaction with human brain microvascular endothelial cells.
Infect. Immun.
PUBLISHED: 04-26-2010
Show Abstract
Hide Abstract
Escherichia coli K1 is the most common Gram-negative bacillary organism causing neonatal meningitis. E. coli K1 binding to and invasion of human brain microvascular endothelial cells (HBMECs) is a prerequisite for its traversal of the blood-brain barrier (BBB) and penetration into the brain. In the present study, we identified NlpI as a novel bacterial determinant contributing to E. coli K1 interaction with HBMECs. The deletion of nlpI did not affect the expression of the known bacterial determinants involved in E. coli K1-HBMEC interaction, such as type 1 fimbriae, flagella, and OmpA, and the contribution of NlpI to HBMECs binding and invasion was independent of those bacterial determinants. Previous reports have shown that the nlpI mutant of E. coli K-12 exhibits growth defect at 42 degrees C at low osmolarity, and its thermosensitive phenotype can be suppressed by a mutation on the spr gene. The nlpI mutant of strain RS218 exhibited similar thermosensitive phenotype, but additional spr mutation did not restore the ability of the nlpI mutant to interact with HBMECs. These findings suggest the decreased ability of the nlpI mutant to interact with HBMECs is not associated with the thermosensitive phenotype. NlpI was determined as an outer membrane-anchored protein in E. coli, and the nlpI mutant was defective in cytosolic phospholipase A(2)alpha (cPLA(2)alpha) phosphorylation compared to the parent strain. These findings illustrate the first demonstration of NlpIs contribution to E. coli K1 binding to and invasion of HBMECs, and its contribution is likely to involve cPLA(2)alpha.
Related JoVE Video
Grape seed extract inhibits the growth and pathogenicity of Staphylococcus aureus by interfering with dihydrofolate reductase activity and folate-mediated one-carbon metabolism.
Int. J. Food Microbiol.
PUBLISHED: 04-16-2010
Show Abstract
Hide Abstract
Staphylococcus aureus (S. aureus) is one of the most common pathogens that causes infectious and foodborne diseases worldwide. Searching for drug and chemical compounds against this bacterium is still in demand. We found that grape seed extract (GSE), a natural food product rich in polyphenols, inhibited the dihydrofolate reductase activity and growth of S. aureus. In addition, the intracellular content of tetrahydrofolate (THF), the major folate species identified in S. aureus, was significantly decreased when GSE was present in medium. The GSE-induced growth inhibition was reversed by adding, THF, 5,10-methylenetetrahydrofolate or methionine to the medium. The differential rescuing effects elicited by thymidine and methionine indicated that GSE-induced perturbation in folate-mediated one-carbon metabolism has more profound impact on methionine cycle than on thymidine monophosphate (TMP) synthesis. Significantly reduced inflammatory responses and mortality were observed in zebrafish infected with S. aureus pre-incubated with GSE. We conclude that GSE might serve as an effective natural alternative for the control of food poisoning caused by S. aureus with proper safety measure.
Related JoVE Video
A review of photocatalysts prepared by sol-gel method for VOCs removal.
Int J Mol Sci
PUBLISHED: 04-12-2010
Show Abstract
Hide Abstract
The sol-gel process is a wet-chemical technique (chemical solution deposition), which has been widely used in the fields of materials science, ceramic engineering, and especially in the preparation of photocatalysts. Volatile organic compounds (VOCs) are prevalent components of indoor air pollution. Among the approaches to remove VOCs from indoor air, photocatalytic oxidation (PCO) is regarded as a promising method. This paper is a review of the status of research on the sol-gel method for photocatalyst preparation and for the PCO purification of VOCs. The review and discussion will focus on the preparation and coating of various photocatalysts, operational parameters, and will provide an overview of general PCO models described in the literature.
Related JoVE Video
Arecoline, a major alkaloid of the areca nut, causes neurotoxicity through enhancement of oxidative stress and suppression of the antioxidant protective system.
Free Radic. Biol. Med.
PUBLISHED: 04-09-2010
Show Abstract
Hide Abstract
Arecoline, an areca nut alkaloid, has been noted for its potential cognition-enhancing effects in patients with Alzheimer dementia. However, it has been confirmed that areca nut use is associated with oral and pharyngeal cancers. In addition, arecoline is genotoxic and cytotoxic both in vitro and in vivo through oxidative stress-dependent mechanisms. The aim of this study was to investigate whether arecoline would interfere with the antioxidant defense system and induce cytotoxicity in rat primary cortical neurons. Results indicate that arecoline (50-200 ?M) induces neuronal cell death, and catalase, NADPH oxidase inhibitors (diphenyleneiodonium chloride and apocynin), and a caspase inhibitor (z-VAD-fmk) can prevent arecoline-induced cell death. Furthermore, arecoline increased reactive oxygen species production and upregulated protein expression and mRNA levels of NADPH oxidase 2, which could be attenuated by catalase and NADPH oxidase inhibitors. Arecoline also attenuated neuronal antioxidant defense by decreasing glutathione (GSH) level and superoxide dismutase activity. In addition, arecoline enhanced the expression of proapoptotic proteins (cytochrome c, Bax, caspase-9, and caspase-3) and attenuated the expression of the antiapoptotic protein Bcl-2. Moreover, NADPH oxidase inhibitors could attenuate the arecoline-induced GSH depletion and reverse arecoline-induced changes in proapoptotic and antiapoptotic proteins. In conclusion, the results indicate that arecoline could induce neuronal apoptotic death by attenuating antioxidant defense and enhancing oxidative stress.
Related JoVE Video
Peritonitis-induced peroxynitrite and lung damage depends on c-Jun NH2-terminal kinase signaling of hematopoietic cells.
Crit. Care Med.
PUBLISHED: 02-16-2010
Show Abstract
Hide Abstract
Abdominal sepsis is a common, life-threatening condition in critically ill patients, and pseudomonas peritonitis remains a serious clinical complication of peritoneal dialysis. This study was performed to determine whether peritonitis induces lung damage through the c-Jun NH2-terminal kinase.
Related JoVE Video
The destruction of dichloroethane over a gamma-alumina supported manganese oxide catalyst.
J. Hazard. Mater.
PUBLISHED: 02-09-2010
Show Abstract
Hide Abstract
Halogenated VOCs emissions are associated to a wide range of industrial processes; for instance, dichloroethane (DCEA) is mainly used in metal degreasing processes and known to be hazardous to the environment and public health. The effects of operating parameters on the catalytic incineration of DCEA over the Mn(2)O(3)/gamma-Al(2)O(3) catalyst were performed in this study. The results show that conversion of DCEA increases as inlet temperature and oxygen concentration increase, and decreases with the increases of DCEA concentration and space velocity. The effects of O(2) and DCEA content in carrier gas on the catalytic reaction rate are also observed. Experimental results indicate that the oxidation kinetic behavior of DCEA with the catalyst can be expressed by using the rate expression of the power rate law. The experimental results are compared with those predicted from the kinetic model. The products and reactants distributions from the oxidation of DCEA over Mn(2)O(3)/gamma-Al(2)O(3) were observed. The results show that the DCEA conversion starts from 15% at 450K and rises to 100% in the 700-800K ranges and the CO(2) yield is complete (100%) in the same temperature ranges. HCl and Cl(2) are the other main products with little halogenated VOC intermediates.
Related JoVE Video
The correlation of mean sympathetic activity with low-frequency blood pressure and sympathetic variability.
Clin. Exp. Hypertens.
PUBLISHED: 11-06-2009
Show Abstract
Hide Abstract
The low-frequency (0.2-0.8 Hz) component of blood pressure (BP) variability (LF(BP)) is used as an index of the low-frequency variability of sympathetic nerve activity (SNA) (LF(SNA)) in rats. It is unclear whether the LF(BP) can be used as an index of the mean SNA (mSNA). We investigated the correlation of the LF(BP) with different levels of the mSNA in this study to evaluate if it is a feasible tool for detecting differences in mSNA under physiological conditions. Correlation of the LF(SNA) with different mSNA levels was also investigated. The BP and renal SNA of rats were recorded in a nonanesthetized state. Values of the mSNA obtained from 531 recording epochs in six rats were graded into 30 levels with a bin resolution of 0.05 normalized units. A linear regression analysis showed that the correlation between the mSNA and LF(SNA) was higher than that between the mSNA and LF(BP). The mSNA was well correlated with the LF(SNA) over a wider mSNA range, while it was correlated with the LF(BP) only in a restricted range. These results demonstrated a restricted condition under which measuring the LF(BP) can be a definitive index of the mSNA, and further suggest the possibility of using the weighted LF(BP) as an index of the mSNA via intermediation by the LF(SNA) for a wider mSNA range.
Related JoVE Video
Recombinant zebrafish {gamma}-glutamyl hydrolase exhibits properties and catalytic activities comparable with those of mammalian enzyme.
Drug Metab. Dispos.
PUBLISHED: 05-15-2009
Show Abstract
Hide Abstract
A cDNA encoding for zebrafish gamma-glutamyl hydrolase (gammaGH) was cloned and inserted into a pET43.1a vector via SmaI and EcoRI sites and expressed in Rosetta (DE3) cells as a Nus-His-tag fusion enzyme (NH-zgammaGH). After induction with isopropyl thiogalactoside, the enzyme was purified with a Ni-Sepharose column, and approximately 8 mg of pure enzyme was obtained per liter of culture. The primary sequence of the recombinant zgammaGH was similar to mammalian gammaGH. Thrombin digestion of this NH-zgammaGH fusion protein resulted in zgammaGH with approximately 2-fold higher catalytic activity compared with the NH-zgammaGH fusion enzyme. This recombinant zgammaGH is active and exhibits comparable endopeptidase activity with folate substrate and antifolate drug methotrexate. Use of this recombinant zgammaGH significantly increased efficiency in folylpolyglutamate hydrolysis for folate analysis compared with current protocols.
Related JoVE Video
Circadian dysregulation disrupts bile acid homeostasis.
PLoS ONE
PUBLISHED: 04-30-2009
Show Abstract
Hide Abstract
Bile acids are potentially toxic compounds and their levels of hepatic production, uptake and export are tightly regulated by many inputs, including circadian rhythm. We tested the impact of disrupting the peripheral circadian clock on integral steps of bile acid homeostasis.
Related JoVE Video
Correlation of discharges of rostral ventrolateral medullary neurons with the low-frequency sympathetic rhythm in rats.
Neurosci. Lett.
PUBLISHED: 02-17-2009
Show Abstract
Hide Abstract
The rostral ventrolateral medulla (RVLM) is critically important in the generation of sympathetic activity. The purpose of this study was to investigate whether discharges of RVLM neurons contribute to low-frequency (LF) sympathetic rhythms. Blood pressure (BP), renal sympathetic nerve activity (SNA), and neuronal activity in the RVLM were simultaneously recorded in seven anesthetized, paralyzed, and artificially ventilated rats. Fifty-one RVLM neurons were recorded and classified into three differential functional groups according to their activities related to baroreceptor input. Those in the category of spike firing inhibited by a BP increase (BP(I)) and which excited sympathetic discharges was the most abundant (24%). Coherence analysis was used to examine the relationship of the firing frequency of RVLM neurons with the LF (0.2-0.8Hz) rhythm of SNA. Forty-one percent of RVLM neurons showed a significant correlation to LF rhythms, and BP(I) neurons with sympathoexcitatory properties were the major contributors. In another 4 baroreceptor-denervated rats, 36 RVLM neurons were recorded. In these rats, RVLM neuronal activities no longer changed with BP fluctuations. Nevertheless, more than 40% of RVLM neurons were sympathoexcitatory, and 36% of RVLM neurons were still correlated with the LF SNA rhythm. Our results suggest that there are RVLM neurons involved in generating the LF rhythm in SNA and that the baroreflex can induce the participation of more neurons in LF rhythm generation.
Related JoVE Video
Progression of precancerous lesions to oral cancer: results based on the Taiwan National Health Insurance Database.
Oral Oncol.
Show Abstract
Hide Abstract
Oral cancer (OC) is the leading cause of death from cancer in men between the ages of 25 and 44 in Taiwan. The survival rate for the last stage of OC is <20% while that for the earliest stage is >75%, which suggests the importance of the diagnosis of oral precancerous lesions (OPLs) in reducing OC mortality. The aim of this study was to analyze the time to OC event after OPL diagnosis, and to suggest the surveillance period necessary according to OPL type.
Related JoVE Video
Long-term changes in trigeminal ganglionic and thalamic neuronal activities following inferior alveolar nerve transection in behaving rats.
J. Neurosci.
Show Abstract
Hide Abstract
The transection of the inferior alveolar nerve (IANx) produces allodynia in the whisker pad (V2 division) of rats. Ectopic discharges from injured trigeminal ganglion (TG) neurons and thalamocortical reorganization are possible contributors to the sensitization of uninjured V2 primary and CNS neurons. To test which factor is more important, TG and ventroposterior medial nucleus (VPM) neurons were longitudinally followed before, during, and after IANx for up to 80 d. Spontaneous discharges and mechanical stimulation-evoked responses were recorded in conscious and in anesthetized states. Results show (1) a sequential increase in spontaneous activities, first in the injured TG neurons of the IAN (2-30 d), followed by uninjured V2 ganglion neurons (6-30 d), and then VPM V2 neurons (7-30 d) after IANx; (2) ectopic discharges included burst and regular firing patterns in the IAN and V2 branches of the TG neurons; and (3) the receptive field expanded, the modality shifted, and long-lasting after-discharges occurred only in VPM V2 neurons. All of these changes appeared in the late or maintenance phase (7-30 d) and disappeared during the recovery phase (40-60 d). These observations suggest that ectopic barrages in the injured IAN contribute more to the development of sensitization, whereas the modality shift and evoked after-discharges in the VPM thalamic neurons contribute more to the maintenance phase of allodynia by redirecting tactile information to the cortex as nociceptive.
Related JoVE Video
Hand hygiene among patients: attitudes, perceptions, and willingness to participate.
Am J Infect Control
Show Abstract
Hide Abstract
Patient participation has been proven to increase hand hygiene compliance of health care workers. The objective of the study is to better understand patients attitudes and perceptions toward hand hygiene, and to identify patients with the highest motivation to participate in hand hygiene.
Related JoVE Video
The neurophysiological performance of visuospatial working memory in children with developmental coordination disorder.
Dev Med Child Neurol
Show Abstract
Hide Abstract
The objective of this study was to investigate the mechanisms underlying the deficit in visuospatial working memory (VSWM) seen in children with developmental coordination disorder (DCD) and to compare brain activity while performing a VSWM task in children with DCD and typically developing children.
Related JoVE Video
Nrf2-Keap1 antioxidant defense and cell survival signaling are upregulated by 17?-estradiol in homocysteine-treated dopaminergic SH-SY5Y cells.
Neuroendocrinology
Show Abstract
Hide Abstract
A recent neuroimaging study discovered the neurotoxicity effects of homocysteine (Hcy), which is only seen in elderly women. Estrogens exert a variety of actions on brain function that influence cognitive function, mood, and neuroprotection. The Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant defense pathway has been well-known to afford neuroprotection. Here, we first demonstrate the roles of Nrf2-Keap1 in 17?-estradiol (E2) cytoprotection and Hcy toxicity and the protective mechanisms of E2 on Hcy cytotoxicity in human dopaminergic SH-SY5Y cells.
Related JoVE Video
A mass spectrometry-based immunosensor for bacteria using antibody-conjugated gold nanoparticles.
Chem. Commun. (Camb.)
Show Abstract
Hide Abstract
We have developed a simple mass spectrometry-based immunosensor using antibody (Ab)-modified gold nanoparticles (Ab-Au NPs) for the rapid quantitation of bacteria via the analysis of Au clusters under pulsed laser irradiation.
Related JoVE Video
Adaptive acid tolerance response of Vibrio parahaemolyticus as affected by acid adaptation conditions, growth phase, and bacterial strains.
Foodborne Pathog. Dis.
Show Abstract
Hide Abstract
Vibrio parahaemolyticus strain 690 was isolated from gastroenteritis patients. Its thermal and ethanol stress responses have been reported in our previous studies. In this study, we further investigated the effects of various acid adaptation conditions including pH (5.0-6.0) and time (30-90?min) on the acid tolerance in different growth phases of V. parahaemolyticus 690. Additionally, the adaptive acid tolerance among different V. parahaemolyticus strains was compared. Results indicated that the acid tolerance of V. parahaemolyticus 690 was significantly increased after acid adaptation at pH 5.5 and 6.0 for 30-90?min. Among the various acid adaptation conditions examined, V. parahaemolyticus 690 acid-adapted at pH 5.5 for 90?min exhibited the highest acid tolerance. The acid adaptation also influenced the acid tolerance of V. parahaemolyticus 690 in different growth phases with late-exponential phase demonstrating the greatest acid tolerance response (ATR) than other phases. Additionally, the results also showed that the induction of adaptive ATR varied with different strains of V. parahaemolyticus. An increase in acid tolerance of V. parahaemolyticus was observed after prior acid adaptation in five strains (556, 690, BCRC 13023, BCRC 13025, and BCRC 12864), but not in strains 405 and BCRC 12863.
Related JoVE Video
NlpI facilitates deposition of C4bp on Escherichia coli by blocking classical complement-mediated killing, which results in high-level bacteremia.
Infect. Immun.
Show Abstract
Hide Abstract
Neonatal meningitis Escherichia coli (NMEC) is the most common Gram-negative organism that is associated with neonatal meningitis, which usually develops as a result of hematogenous spread of the bacteria. There are two key pathogenesis processes for NMEC to penetrate into the brain, the essential step for the development of E. coli meningitis: a high-level bacteremia and traversal of the blood-brain barrier (BBB). Our previous study has shown that the bacterial outer membrane protein NlpI contributes to NMEC binding to and invasion of brain microvascular endothelial cells, the major component cells of the BBB, suggesting a role for NlpI in NMEC crossing of the BBB. In this study, we showed that NlpI is involved in inducing a high level of bacteremia. In addition, NlpI contributed to the recruitment of the complement regulator C4bp to the surface of NMEC to evade serum killing, which is mediated by the classical complement pathway. NlpI may be involved in the interaction between C4bp and OmpA, which is an outer membrane protein that directly interacts with C4bp on the bacterial surface. The involvement of NlpI in two key pathogenesis processes of NMEC meningitis may make this bacterial factor a potential target for prevention and therapy of E. coli meningitis.
Related JoVE Video
Memantine inhibits ?3?2-nAChRs-mediated nitrergic neurogenic vasodilation in porcine basilar arteries.
PLoS ONE
Show Abstract
Hide Abstract
Memantine, an NMDA receptor antagonist used for treatment of Alzheimers disease (AD), is known to block the nicotinic acetylcholine receptors (nAChRs) in the central nervous system (CNS). In the present study, we examined by wire myography if memantine inhibited ?3?2-nAChRs located on cerebral perivascular sympathetic nerve terminals originating in the superior cervical ganglion (SCG), thus, leading to inhibition of nicotine-induced nitrergic neurogenic dilation of isolated porcine basilar arteries. Memantine concentration-dependently blocked nicotine-induced neurogenic dilation of endothelium-denuded basilar arteries without affecting that induced by transmural nerve stimulation, sodium nitroprusside, or isoproterenol. Furthermore, memantine significantly inhibited nicotine-elicited inward currents in Xenopous oocytes expressing ?3?2-, ?7- or ?4?2-nAChR, and nicotine-induced calcium influx in cultured rat SCG neurons. These results suggest that memantine is a non-specific antagonist for nAChR. By directly inhibiting ?3?2-nAChRs located on the sympathetic nerve terminals, memantine blocks nicotine-induced neurogenic vasodilation of the porcine basilar arteries. This effect of memantine is expected to reduce the blood supply to the brain stem and possibly other brain regions, thus, decreasing its clinical efficacy in the treatment of Alzheimers disease.
Related JoVE Video
Zebrafish larvae exposed to ginkgotoxin exhibit seizure-like behavior that is relieved by pyridoxal-5-phosphate, GABA and anti-epileptic drugs.
Dis Model Mech
Show Abstract
Hide Abstract
The etiology of epilepsy is a very complicated, multifactorial process that is not completely understood. Therefore, the availability of epilepsy animal models induced by different mechanisms is crucial in advancing our knowledge and developing new therapeutic regimens for this disorder. Considering the advantages of zebrafish, we have developed a seizure model in zebrafish larvae using ginkgotoxin, a neurotoxin naturally occurring in Ginkgo biloba and hypothesized to inhibit the formation of the neurotransmitter ?-aminobutyric acid (GABA). We found that a 2-hour exposure to ginkgotoxin induced a seizure-like behavior in zebrafish larvae. This seizure-like swimming pattern was alleviated by the addition of either pyridoxal-5-phosphate (PLP) or GABA and responded quickly to the anti-convulsing activity of gabapentin and phenytoin, two commonly prescribed anti-epileptic drugs (AEDs). Unexpectedly, the ginkgotoxin-induced PLP depletion in our experimental setting did not affect the homeostasis of folate-mediated one-carbon metabolism, another metabolic pathway playing a crucial role in neural function that also relies on the availability of PLP. This ginkgotoxin-induced seizure behavior was also relieved by primidone, which had been tested on a pentylenetetrazole-induced zebrafish seizure model but failed to rescue the seizure phenotype, highlighting the potential use and complementarity of this ginkgotoxin-induced seizure model for AED development. Structural and morphological characterization showed that a 2-hour ginkgotoxin exposure did not cause appreciable changes in larval morphology and tissues development. In conclusion, our data suggests that this ginkgotoxin-induced seizure in zebrafish larvae could serve as an in vivo model for epileptic seizure research and potential AED screening.
Related JoVE Video
Neuroprotective Effects of San-Huang-Xie-Xin-Tang in the MPP(+)/MPTP Models of Parkinsons Disease In Vitro and In Vivo.
Evid Based Complement Alternat Med
Show Abstract
Hide Abstract
San-Huang-Xie-Xin-Tang (SHXT), composed of Coptidis rhizoma, Scutellariae radix, and Rhei rhizoma, is a traditional Chinese medicine used for complementary and alternative therapy of cardiovascular and neurodegenerative diseases via its anti-inflammatory and antioxidative effects. The aim of this study is to investigate the protective effects of SHXT in the 1-methyl-4-phenylpyridinium (MPP(+))/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) models of Parkinsons disease. Rat primary mesencephalic neurons and mouse Parkinson disease model were used in this study. Oxidative stress was induced by MPP(+) in vitro and MPTP in vivo. In MPP(+)-treated mesencephalic neuron cultures, SHXT significantly increased the numbers of TH-positive neurons. SHXT reduced apoptotic signals (cytochrome and caspase) and apoptotic death. MPP(+)-induced gp91(phox) activation and ROS production were attenuated by SHXT. In addition, SHXT increased the levels of GSH and SOD in MPP(+)-treated neurons. In MPTP animal model, SHXT markedly increased TH-positive neurons in the substantia nigra pars compacta (SNpc) and improved motor activity of mice. In conclusion, the present results reveal the evidence that SHXT possesses beneficial protection against MPTP-induced neurotoxicity in this model of Parkinsons disease via its antioxidative and antiapoptotic effects. SHXT might be a potentially alternative and complementary medicine for neuroprotection.
Related JoVE Video
Effects of exercise intervention on event-related potential and task performance indices of attention networks in children with developmental coordination disorder.
Brain Cogn
Show Abstract
Hide Abstract
The study investigated whether 10-week soccer training can benefit the inhibitory control and neuroelectric indices in children with developmental coordination disorder (DCD). Fifty-one children were divided into groups of typically developing (TD, n=21), DCD-training (n=16), and DCD non-training (n=14) individuals using the for Children test, and, before and after training, were assessed with the visuospatial attention orienting task with their lower extremities, while brain event-related potentials (ERPs) were concurrently recorded. The results indicated that, when compared to TD children, children with DCD responded significantly more slowly across conditions of the visuospatial attention orienting task and showed a deficit of inhibitory control capacity in their lower extremities, whereas no group differences were observed for the accuracy rate. Neuroelectric data indicated that, before training, P3 amplitude was smaller and P3 latency was slower for both DCD groups compared to TD children across conditions of the visuospatial attention orienting task; after training, the beneficial effects were seen in the strength of inhibitory control and P3 latency in the DCD-training group. The data suggest that soccer training resulted in significant improvements in ERP and task performance indices for the children with DCD.
Related JoVE Video
Nanoparticle uptake and gene transfer efficiency for MSCs on chitosan and chitosan-hyaluronan substrates.
Biomaterials
Show Abstract
Hide Abstract
Nanoparticles (NPs) are usually surface modified to increase endocytosis for applications in cellular imaging and gene delivery. The influence of cell culture substrates on endocytosis remains relatively unexplored. This study investigated the substrate-mediated effects on the uptake of NPs by mesenchymal stem cells (MSCs). Two types of NPs were employed, negatively charged paramagnetic iron oxide (Fe(3)O(4)) NPs (~5 nm) and bare plasmid DNA pTRE-Tight-DsRED2 (3.3 kb, ~5 nm), each of which were poorly endocytosed by the adipose-derived MSCs grown on tissue culture polystyrene (TCPS). When cells were cultured on chitosan or hyaluronan-modified chitosan (chitosan-HA) membranes, significant increases (>5-fold) in the intracellular uptake of Fe(3)O(4) NPs as well as transfectability of plasmid DNA were demonstrated. The enhancement in transgene expression was more pronounced than that using the transfection agent. The beneficial effects were not caused by elevated proliferation or a change in the differentiation state of interacting MSCs. On chitosan and chitosan-HA, cells moved fast and formed spheroids. The cytoskeletal arrangement associated with the up-regulated RhoA activity during spheroid formation may have accounted for the increased endocytosis. Using different inhibitors, the endocytosis pathways were further clarified. Both Fe(3)O(4) NPs and plasmid DNA were taken up primarily by clathrin-mediated endocytosis on chitosan (~50%). The caveolae-mediated endocytosis on chitosan-HA was more evident (~30-40%) than that on chitosan (<25%). For plasmid DNA but not Fe(3)O(4) NPs, macropinocytosis also occurred on both substrates. Chitosan and chitosan-HA as cell culture substrates may activate different endocytic pathways of MSCs to increase NP internalization or plasmid transfection. The substrate-mediated endocytosis described here may represent a new and potentially attractive approach to facilitate stem cell labeling or to improve gene delivery efficiency without altering cell viability and differentiation.
Related JoVE Video
Thoracic empyema in patients with liver cirrhosis: clinical characteristics and outcome analysis of thoracoscopic management.
J. Thorac. Cardiovasc. Surg.
Show Abstract
Hide Abstract
Thoracic empyema in cirrhotic patients is a challenging situation, and the clinical characteristics are rarely reported. The objective of this study was to report the clinical characteristics among this group and to evaluate whether thoracoscopic intervention would affect clinical outcomes.
Related JoVE Video
Triptolide increases transcript and protein levels of survival motor neurons in human SMA fibroblasts and improves survival in SMA-like mice.
Br. J. Pharmacol.
Show Abstract
Hide Abstract
Spinal muscular atrophy (SMA) is a progressive neuromuscular disease. Since disease severity is related to the amount of survival motor neuron (SMN) protein, up-regulated functional SMN protein levels from the SMN2 gene are considered a major SMA drug-discovery strategy. In this study, we investigated the possible effects of triptolide, a diterpene triepoxide purified from Tripterygium wilfordii Hook. F., as a new compound for increasing SMN protein.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.