JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
RSPO fusion transcripts in colorectal cancer in Japanese population.
Mol. Biol. Rep.
PUBLISHED: 05-11-2014
Show Abstract
Hide Abstract
R-spondin (RSPO) gene fusions have recently been discovered in a subset of human colorectal cancer (CRC) in the U.S. population; however, whether the fusion is recurrent in CRC arising in patients from the other demographic areas and whether it is specific for CRC remain uncertain. In this study, we examined 75 primary CRCs and 121 primary lung cancers in the Japanese population for EIF3E-RSPO2 and PTPRK-RSPO3 fusion transcripts using RT-PCR and subsequent sequencing analyses. Although the expression of EIF3E-RSPO2 and PTPRK-RSPO3 was not detected in any of the lung carcinomas, RSPO fusions were detected in three (4%) of the 75 CRCs. Two CRCs contained EIF3E-RSPO2 fusion transcripts, and another CRC contained PTPRK-RSPO3 fusion transcripts. Interestingly, in one of the two EIF3E-RSPO2 fusion-positive CRCs, a novel fusion variant form of EIF3E-RSPO2 was identified: exon 1 of EIF3E was connected to exon 2 of RSPO2 by a 351-bp insertion. A quantitative RT-PCR analysis revealed that RSPO mRNA expression was upregulated in the three CRCs containing RSPO fusion transcripts, while it was downregulated in nearly all of the other CRCs. An immunohistochemical analysis and a mutational analysis revealed that the RSPO fusion-containing CRC had a CDX2 cell lineage, was positive for mismatch repair protein expression, and had the wild-type APC allele. Finally, the forced expression of RSPO fusion proteins were shown to endow colorectal cells with an increased growth ability. These results suggest that the expression of RSPO fusion transcripts is related to a subset of CRCs arising in the Japanese population.
Related JoVE Video
Robust quantitative assessments of cytosine modifications and changes in the expressions of related enzymes in gastric cancer.
Gastric Cancer
PUBLISHED: 04-17-2014
Show Abstract
Hide Abstract
The rediscovery of 5-hydroxymethylcytosine, the ten-eleven translocation (TET) family, thymine-DNA glycosylase (TDG) and isocitrate dehydrogenase (IDH) have opened new avenues in the study of DNA demethylation pathways in gastric cancer (GC). We performed a comprehensive and robust analysis of these genes and modified cytosines in gastric cancer.
Related JoVE Video
Identification and association study with lung cancer for novel insertion polymorphisms of human endogenous retrovirus.
Carcinogenesis
PUBLISHED: 07-19-2013
Show Abstract
Hide Abstract
Sequences of human endogenous retroviruses (HERVs) are members of the long terminal repeat (LTR) retrotransposon family. Although the expression of HERV has long been a topic of investigation, HERV-insertion polymorphisms are not well known, and a genetic association between HERV-insertion polymorphisms and cancer has never been reported. To identify novel HERV loci in the genome from cancer tissues, we carried out the inverse PCR method targeting a conserved LTR region of HML-2, which is the most recently acquired HERV group. Novel two insertions, HML-2_sLTR(1p13.2) and HML-2_sLTR(19q12), were identified as insertionally polymorphic solo LTRs. Furthermore, a significant prevalence of HML-2_sLTR(1p13.2) homozygosity was detected in female never-smoking patients aged 60 years and over who had lung adenocarcinoma [versus the other genotyping; odds ratio (OR): 1.97; 95% confidence interval (CI): 1.01-3.81]. In another cohort consisting of female never-smoking patients with lung adenocarcinoma, a prevalence of HML-2_sLTR(1p13.2) homozygosity tended to be high in patients aged 60 years and over (versus the other genotyping; OR: 2.03; 95% CI: 0.96-4.29), whereas a low prevalence of HML-2_sLTR(1p13.2) homozygosity was detected in patients <60 years old (versus the other genotyping; OR: 0.31; 95% CI: 0.11-0.94). Our results suggest that HML-2_sLTR(1p13.2) is involved with the susceptibility to lung adenocarcinoma in female never-smokers in an age-dependent manner and that other HERV polymorphisms related to human diseases might remain to be identified in the human genome.
Related JoVE Video
Accumulated phosphatidylcholine (16:0/16:1) in human colorectal cancer; possible involvement of LPCAT4.
Cancer Sci.
PUBLISHED: 06-17-2013
Show Abstract
Hide Abstract
The identification of cancer biomarkers is critical for target-linked cancer therapy. The overall level of phosphatidylcholine (PC) is elevated in colorectal cancer (CRC). To investigate which species of PC is overexpressed in colorectal cancer, an imaging mass spectrometry was performed using a panel of non-neoplastic mucosal and CRC tissues. In the present study, we identified a novel biomarker, PC(16:0/16:1), in CRC using imaging mass spectrometry. Specifically, elevated levels of PC(16:0/16:1) expression were observed in the more advanced stage of CRC. Our data further showed that PC(16:0/16:1) was specifically localized in the cancer region when examined using imaging mass spectrometry. Notably, because the ratio of PC(16:0/16:1) to lyso-PC(16:0) was higher in CRC, we postulated that lyso-PC acyltransferase (LPCAT) activity is elevated in CRC. In an in vitro analysis, we showed that LPCAT4 is involved in the deregulation of PC(16:0/16:1) in CRC. In an immunohistochemical analysis, LPCAT4 was shown to be overexpressed in CRC. These data indicate the potential usefulness of PC(16:0/16:1) for the clinical diagnosis of CRC and implicate LPCAT4 in the elevated expression of PC(16:0/16:1) in CRC.
Related JoVE Video
SGOL1 variant B induces abnormal mitosis and resistance to taxane in non-small cell lung cancers.
Sci Rep
PUBLISHED: 05-01-2013
Show Abstract
Hide Abstract
Mitosis is the most conspicuous cell cycle phase and Shugoshin-like 1 (SGOL1) is a key protein in protecting sister chromatids from precocious separation during mitosis. We studied the role of SGOL1 and its splice variants in non-small cell lung cancer (NSCLC) using 82 frozen NSCLC tissue samples. SGOL1-B expression was prevalent in smokers, in cases with a wild-type (WT) EGFR status, and in cases with the focal copy number amplification of genes that are known to be important for defining the biological behaviors of NSCLC. The overexpression of SGOL1-B1 in an NSCLC cell line induced aberrant chromosome missegregation, precociously separated chromatids, and delayed mitotic progression. A higher level of SGOL1-B mRNA was related to taxane resistance, while the forced downregulation of SGOL1-B increased the sensitivity to taxane. These results suggest that the expression of SGOL1-B causes abnormal mitosis and taxane resistance in NSCLC cells.
Related JoVE Video
Visualization of phosphatidylcholine (16:0/16:0) in type II alveolar epithelial cells in the human lung using imaging mass spectrometry.
Pathol. Int.
PUBLISHED: 04-03-2013
Show Abstract
Hide Abstract
Imaging mass spectrometry (MS) is an emerging technique that can detect numerous biomolecular distributions in a non-targeting manner. In the present study, we applied a mass imaging modality, mass microscopy, to human lung tissue and identified several molecules including surfactant constituents in a specific structure of the lung alveoli. Four peaks were identified using imaging MS, and the ion at m/z 772.5, in particular, was localized at some spots in the alveolar walls. Using an MS/MS analysis, the ion was identified as phosphatidylcholine (PC)(16:0/16:0), which is the main component of lung surfactant. In a larger magnification of the lung specimen, PC (16:0/16:0) was distributed in a mottled fashion in a section of the lung. Importantly, the distribution of PC (16:0/16:0) was identical to that of anti-SLC34A2 antibody immunoreactivity, which is known to be a specific marker of type II alveolar epithelial cells, in the same section. Our experience suggests that imaging MS has excellent potential in human pathology research.
Related JoVE Video
Establishment and characterization of a mutagenized cell line exhibiting the cell-in-cell phenotype at a high frequency.
Genes Cells
PUBLISHED: 01-30-2013
Show Abstract
Hide Abstract
Cell-in-cell structures represent live cell events in which one cell internalizes another. Because formation of cell-in-cell structures is a rare event in most cell types and the event is associated with cell death, there has been limited clarification of this phenomenon, and its physiological role and molecular mechanism are yet to be precisely elucidated. In this study, we established a mutagenized cell line that exhibited cell-in-cell structures at a more than 10-fold higher frequency as compared to the parent cells. Interestingly, both engulfment and invasion were increased in the mutagenized cell line as compared with that in the parent cell line in the suspension culture condition. This finding indicates that this mutagenized cell line showed an interchangeable status in terms of its ability to form cell-in-cell structures, and the system described here could be useful for elucidation of the mechanisms regulating the formation of cell-in-cell structures, including engulfment and invasion, in a given cellular environment. Further studies using this cell line are warranted to understand the mechanism of formation and biological significance of the cell-in-cell formation.
Related JoVE Video
Cisplatin induces Sirt1 in association with histone deacetylation and increased Werner syndrome protein in the kidney.
Clin. Exp. Nephrol.
PUBLISHED: 01-21-2011
Show Abstract
Hide Abstract
Sirt1, a mammalian homolog of silent information regulator 2 (Sir2), is the founding member of class III histone deacetylase (HDAC).
Related JoVE Video
EPH-EPHRIN in human gastrointestinal cancers.
World J Gastrointest Oncol
PUBLISHED: 08-31-2010
Show Abstract
Hide Abstract
Ever since its discovery two decades ago, the erythropoietin-producing hepatoma (EPH)-EPHRIN system has been shown to play multifaceted roles in human gastroenterological cancer as well as neurodevelopment. Over-expression, amplification and point mutations have been found in many human cancers and many investigators have shown correlations between these up-regulations and tumor angiogenesis. Thus, the genes in this family are considered to be potential targets of cancer therapy. On the other hand, the down-regulation of some members as a result of epigenetic changes has also been reported in some cancers. Furthermore, the correlation between altered expressions and clinical prognosis seems to be inconclusive. A huge amount of protein-protein interaction studies on the EPH-EPHRIN system have provided a basic scheme for signal transductions, especially bi-directional signaling involving EPH-ERPHRIN molecules at the cell membrane. This information also provides a manipulative strategy for harnessing the actions of these molecules. In this review, we summarize the known alterations of EPH-EPHRIN genes in human tumors of the esophagus, stomach, colorectum, liver and pancreas and present the perspective that the EPH-EPHRIN system could be a potential target of cancer therapy.
Related JoVE Video
Induction of endothelial nitric oxide synthase, SIRT1, and catalase by statins inhibits endothelial senescence through the Akt pathway.
Arterioscler. Thromb. Vasc. Biol.
PUBLISHED: 08-12-2010
Show Abstract
Hide Abstract
Statins (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors) have pleiotropic vascular protective effects besides cholesterol lowering. Recently, experimental and clinical studies have indicated that senescence of endothelial cells is involved in endothelial dysfunction and atherogenesis. Therefore, the present study was performed to determine whether statins would reduce endothelial senescence and to clarify the molecular mechanisms underlying the antisenescent property of statins.
Related JoVE Video
Detection of kinase amplifications in gastric cancer archives using fluorescence in situ hybridization.
Pathol. Int.
Show Abstract
Hide Abstract
To test the feasibility of using bacterial artificial chromosomes (BAC) containing kinases for pathological diagnosis using fluorescence in situ hybridization (FISH), 10 BAC probes containing a gene amplified in 5% or more of a pilot cohort were selected from a previous survey using arbitrarily selected BAC clones harboring 100 kinases. In this report, we describe the prevalence and association with the clinicopathological profile of these selected 10 BAC probes in 365 gastric cancer tissues. FISH analyses using these 10 BAC probes containing loci encoding EGFR, ERBB2(HER2), EPHB3, PIK3CA, MET, PTK7, ACK1, STK15, SRC, and HCK showed detectable amplifications in paraffin-embedded tissue in 2.83% to 13.6% of the gastric cancer tissues. Considerable numbers of the cases showed the co-amplification of two or more of the probes that were tested. BAC probes located within a genome neighborhood, such as PIK3CA, EPHB3, and ACK1 at 3q26-29 or HCK, SRC, and STK15 at 20q11-13.1, were often co-amplified in the same cases, but non-random co-amplifications of genes at distant genomic loci were also observed. These findings provide basic information regarding the creation of a strategy for personalizing gastric cancer therapy, especially when using multiple kinase inhibitors.
Related JoVE Video
Testosterone deficiency accelerates neuronal and vascular aging of SAMP8 mice: protective role of eNOS and SIRT1.
PLoS ONE
Show Abstract
Hide Abstract
Oxidative stress and atherosclerosis-related vascular disorders are risk factors for cognitive decline with aging. In a small clinical study in men, testosterone improved cognitive function; however, it is unknown how testosterone ameliorates the pathogenesis of cognitive decline with aging. Here, we investigated whether the cognitive decline in senescence-accelerated mouse prone 8 (SAMP8), which exhibits cognitive impairment and hypogonadism, could be reversed by testosterone, and the mechanism by which testosterone inhibits cognitive decline. We found that treatment with testosterone ameliorated cognitive function and inhibited senescence of hippocampal vascular endothelial cells of SAMP8. Notably, SAMP8 showed enhancement of oxidative stress in the hippocampus. We observed that an NAD(+)-dependent deacetylase, SIRT1, played an important role in the protective effect of testosterone against oxidative stress-induced endothelial senescence. Testosterone increased eNOS activity and subsequently induced SIRT1 expression. SIRT1 inhibited endothelial senescence via up-regulation of eNOS. Finally, we showed, using co-culture system, that senescent endothelial cells promoted neuronal senescence through humoral factors. Our results suggest a critical role of testosterone and SIRT1 in the prevention of vascular and neuronal aging.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.