JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The human bitter taste receptor hTAS2R39 is the primary receptor for the bitterness of theaflavins.
Biosci. Biotechnol. Biochem.
PUBLISHED: 06-26-2014
Show Abstract
Hide Abstract
We purified several hundred mgs of four major theaflavins (theaflavin, theaflavin-3-O-gallate, theaflavin-3'-O-gallate, and theaflavin-3,3'-O-digallate). Among the 25 hTAS2Rs expressed in HEK293T cells, hTAS2R39 and hTAS2R14 were activated by theaflavins. Both hTAS2R39 and hTAS2R14 responded to theaflavin-3'-O-gallate. In addition, hTAS2R39 was activated by theaflavin and theaflavin-3,3'-O-gallate, but not by theaflavin-3-O-gallate. In contrast, hTAS2R14 responded to theaflavin-3-O-gallate.
Related JoVE Video
Location of ?-tocopherol and ?-tocotrienol to heterogeneous cell membranes and inhibition of production of peroxidized cholesterol in mouse fibroblasts.
Springerplus
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
?-Tocopherol (?-T) and ?-tocotrienol (?-T3) are well recognized as lipophilic antioxidants. Nevertheless, there is limited knowledge on their location in heterogeneous cell membranes. We first investigated the distribution of ?-T and ?-T3 to the cholesterol-rich microdomains (lipid rafts and caveolae) of heterogeneous cell membranes by incubating these antioxidants with cultured mouse fibroblasts.
Related JoVE Video
Immunomodulatory activity of enzymatically synthesized glycogen and its digested metabolite in a co-culture system consisting of differentiated Caco-2 cells and RAW264.7 macrophages.
Food Funct
PUBLISHED: 07-23-2013
Show Abstract
Hide Abstract
Previously, we developed enzymatically synthesized glycogen (ESG) from starch, and showed its immunomodulatory and dietary fiber-like activities. In this study, we investigated the metabolism of ESG and its immunomodulatory activity using differentiated Caco-2 cells as a model of the intestinal barrier. In a co-culture system consisting of differentiated Caco-2 cells and RAW264.7 macrophages, mRNA expression of IL-6, IL-8, IL-1? and BAFF cytokines was up-regulated in Caco-2 cells and IL-8 production in basolateral medium was induced after 24 h apical treatment with 5 mg ml(-1) of ESG. The mRNA level of iNOS was also up-regulated in RAW264.7 macrophages. After characterization of the binding of anti-glycogen monoclonal antibodies (IV58B6 and ESG1A9) to ESG and its digested metabolite resistant glycogen (RG), an enzyme-linked immunosorbent assay (ELISA) system was developed to quantify ESG and RG. Using this system, we investigated the metabolism of ESG in differentiated Caco-2 cells. When ESG (7000 kDa, 5 mg ml(-1)) was added to the apical side of Caco-2 monolayers, ESG disappeared and RG (about 3000 kDa, 3.5 mg ml(-1)) appeared in the apical solution during a 24 h incubation. Neither ESG nor RG was detected in the basolateral solution. In addition, both ESG and RG were bound to TLR2 in Caco-2 cells. In conclusion, we suggest that ESG is metabolized to a RG-like structure in the intestine, and this metabolite activates the immune system via stimulation of the intestinal epithelium, although neither ESG nor its metabolite could permeate the intestinal cells under our experimental conditions. These results provide evidence for the beneficial function of ESG as a food ingredient.
Related JoVE Video
Non-selective distribution of isomeric cholesterol hydroperoxides to microdomains in cell membranes and activation of matrix metalloproteinase activity in a model of dermal cells.
Chem. Phys. Lipids
PUBLISHED: 04-11-2013
Show Abstract
Hide Abstract
Cholesterol hydroperoxides (ChOOHs) are included as lipid peroxidation products in the skin exposed to ultraviolet (UV) light irradiation. They may exert physicochemical actions affecting biomembrane rigidity because cholesterol is one of the major components of cell membranes. We investigated the distribution of isomeric ChOOHs in heterogeneous cell membranes with different lipid profiles using mouse fibroblast NIH-3T3 cells as a model of the dermis. Before and after UVA irradiation in the presence of hematoporphyrin, cell membranes were partitioned to microdomains (lipid rafts and caveolae) containing a higher amount of cholesterol and non-microdomains (containing a lower amount of cholesterol) by ultracentrifugation. By a combination of diphenylpyrenylphosphine-thin-layer chromatography blotting analyses and gas chromatography-electron ionization-mass spectrometry/selected ion monitoring analyses, ChOOH isomers were determined as their trimethylsilyloxyl derivatives. Cholesterol 5?-, 7?- and 7?-hydroperoxide were found as isomeric ChOOHs before irradiation. The amounts of the three ChOOH isomers increased significantly after photoirradiation for 2h. No difference was observed between microdomains and non-microdomains with regard to the ratio of the amounts of isomeric ChOOHs to that of cholesterol, suggesting that these ChOOH isomers were distributed equally in both parts depending on cholesterol content. When cells were treated with a purified mixture of ChOOH isomers, cell membranes incorporated ChOOHs into microdomains as well as non-microdomains evenly. Cellular matrix metalloproteinase-9 (MMP-9) activity was elevated by treatment with the purified mixture of ChOOH isomers. These results strongly suggest that ChOOHs accumulate in cell membranes irrespective of the heterogeneous microstructure and promote MMP activity if dermal cells are exposed to photodynamic actions.
Related JoVE Video
Plasma metabolites of dietary flavonoids after combination meal consumption with onion and tofu in humans.
Mol Nutr Food Res
PUBLISHED: 03-30-2013
Show Abstract
Hide Abstract
The effect of food combination on metabolic profile in postprandial plasma has hardly been reported. We investigated the absorption and metabolism of quercetin and soy isoflavones in humans after combination meal consumption.
Related JoVE Video
Plasma HDL reduces nonesterified fatty acid hydroperoxides originating from oxidized LDL: a mechanism for its antioxidant ability.
Lipids
PUBLISHED: 02-15-2013
Show Abstract
Hide Abstract
The antioxidant property of plasma high-density lipoprotein (HDL) is thought to be involved in potential anti-atherogenic effects but the exact mechanism is not known. We aimed to reveal the contribution of HDL on the elimination of lipid hydroperoxides (LOOH) derived from oxidized low-density lipoprotein (LDL). Oxidized LDL prepared by copper ion-induced oxidation contained nonesterified fatty acid hydroperoxides (FFA-OOH) and lysophosphatidylcholine (lysoPtdCho), in addition to cholesteryl ester hydroperoxides (CE-OOH) and phosphatidylcholine hydroperoxides (PtdCho-OOH). A platelet-activating factor-acetylhydrolase (PAF-AH) inhibitor suppressed formation of FFA-OOH and lysoPtdCho in oxidized LDL. Among LOOH species, FFA-OOH was preferentially reduced by incubating oxidized LDL with HDL. HDL exhibited selective FFA-OOH reducing ability if it was mixed with a liposomal solution containing FFA-OOH, CE-OOH and PtdCho-OOH. Two-electron reduction of the hydroperoxy group to the hydroxy group was confirmed by the formation of 13-hydroxyoctadecadienoic acid from 13-hydroperoxyoctadecadienoic acid in HPLC analyses. This reducing effect was also found in apolipoprotein A-1 (apoA-1). FFA-OOH released from PtdCho-OOH due to PAF-AH activity in oxidized LDL undergo two-electron reduction by the reducing ability of apoA1 in HDL. This preferential reduction of FFA-OOH may participate in the mechanism of the antioxidant property of HDL.
Related JoVE Video
Possible evidence of contamination by catechins in deconjugation enzymes from Helix pomatia and Abalone entrails.
Biosci. Biotechnol. Biochem.
PUBLISHED: 08-07-2011
Show Abstract
Hide Abstract
?-Glucuronidase and sulfatase are the major deconjugating enzymes used in the cleavage of the glucuronate and sulfate moieties, respectively, from certain conjugated food factors including polyphenols. In the present study, we found that compounds having the same molecular weights as catechins were present in Helix pomatia- and/or Abalone entrails-derived ?-glucuronidase and sulfatase by liquid chromatography tandem mass spectrometry (LC-MS/MS) with multiple reaction monitoring methods. On the other hand, the same molecular weights as catechins were undetectable in Escherichia coli-derived ?-glucuronidase and Aerobacter aerogenes-derived sulfatase. By high performance liquid chromatography, enzyme-derived catechins were not detected because of approximately 1,000-fold lower sensitivity as compared to LC-MS/MS. These results suggest that the catechins in these enzymes might be attributed to the diets of the organisms as the enzyme sources.
Related JoVE Video
Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats.
Free Radic. Biol. Med.
PUBLISHED: 06-04-2011
Show Abstract
Hide Abstract
Quercetin is widely distributed in vegetables and herbs and has been suggested to act as a neuroprotective agent. Here, we demonstrate that quercetin can accumulate enough to exert biological activity in rat brain tissues. Homogenates of perfused rat brain without detectable hemoglobin contaminants were treated with ?-glucuronidase/sulfatase and the released quercetin and its methylated form were analyzed using high-performance liquid chromatography (HPLC) with three different detection methods. Both quercetin and the methylated form were detected in the brain of quercetin-administered rats using HPLC-UV and HPLC with electrochemical detection and were further identified using HPLC-tandem mass spectrometry. Oral administration of quercetin (50mg/kg body wt) attenuated the increased oxidative stress in the hippocampus and striatum of rats exposed to chronic forced swimming. The possible transport of quercetin derivatives into the brain tissue was reproduced in vitro by using a rat brain capillary endothelial cell line, a model of the blood-brain barrier. These results show that quercetin could be a potent nutrient that can access the brain and protect it from disorders associated with oxidative stress.
Related JoVE Video
Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood-brain barrier model.
J. Biol. Chem.
PUBLISHED: 04-06-2011
Show Abstract
Hide Abstract
Apolipoprotein E (apoE) is a major apolipoprotein in the brain. The ?4 allele of apoE is a major risk factor for Alzheimer disease, and apoE deficiency in mice leads to blood-brain barrier (BBB) leakage. However, the effect of apoE isoforms on BBB properties are as yet unknown. Here, using an in vitro BBB model consisting of brain endothelial cells and pericytes prepared from wild-type (WT) mice, and primary astrocytes prepared from human apoE3- and apoE4-knock-in mice, we show that the barrier function of tight junctions (TJs) was impaired when the BBB was reconstituted with primary astrocytes from apoE4-knock-in mice (apoE4-BBB model). The phosphorylation of occludin at Thr residues and the activation of protein kinase C (PKC)? in mBECs were attenuated in the apoE4-BBB model compared with those in the apoE3-BBB model. The differential effects of apoE isoforms on the activation of PKC?, the phosphorylation of occludin at Thr residues, and TJ integrity were abolished following the treatment with an anti-low density lipoprotein receptor-related protein 1 (LRP1) antibody or a LRP1 antagonist receptor-associated protein. Consistent with the results of in vitro studies, BBB permeability was higher in apoE4-knock-in mice than in apoE3-knock-in mice. Our studies provide evidence that TJ integrity in BBB is regulated by apoE in an isoform-dependent manner.
Related JoVE Video
Stereoselective coupling reaction of dimethylzinc and alkyne toward nickelacycles.
Org. Lett.
PUBLISHED: 03-30-2011
Show Abstract
Hide Abstract
Ni catalyst promotes the three-component coupling reaction of vinyloxacyclopropane, alkyne, and dimethylzinc to provide 2,5-heptadienyl alcohol in high yields. Vinylcyclopropane also participates in a similar three-component coupling reaction to afford dimethyl (?-heptadienyl)malonate with excellent E-stereoselectivity.
Related JoVE Video
Immunochemical detection of food-derived isothiocyanate as a lysine conjugate.
Biosci. Biotechnol. Biochem.
PUBLISHED: 03-07-2010
Show Abstract
Hide Abstract
In a previous study we prepared monoclonal antibody against allyl isothiocyanate (AITC)-modified lysine (Lys), and found that AITC reacted with Lys under physiological conditions in vitro (T. Nakamura et al., Chem. Res. Toxicol., 22, 536-542 (2009)). In the present study, antibodies against benzyl isothiocyanate (ITC), 6-methylsulfinylhexyl ITC and phenethyl ITC modified protein were prepared, and the respective monoclonal antibodies, B6C9, 6MS3D10, and PE3A10 were obtained. These antibodies were applied to ITC detection in food using shredded Wasabia japonica (wasabi) and ground Carica papaya (papaya) seed by trapping ITC with biotin-labeled bovine serum albumin. ITC formation from the wasabi and papaya seed samples was confirmed using the antibodies in a dose-dependent manner. These antibodies might be applicable in identifying food-derived ITC.
Related JoVE Video
alpha-Oligoglucosylation of a sugar moiety enhances the bioavailability of quercetin glucosides in humans.
Arch. Biochem. Biophys.
PUBLISHED: 01-30-2010
Show Abstract
Hide Abstract
Dietary intake of quercetin is suggested to be potentially beneficial for the prevention of various diseases. We examined the effect of alpha-oligoglucosylation of the sugar moiety of quercetin monoglucoside on its bioavailability in humans. Enzymatically modified isoquercitrin (EMIQ) was prepared by enzymatic deglycosylation and the subsequent of alpha-oligoglucosylation of quercetin 3-O-beta-rutinode (rutin). The plasma level of quercetin metabolites was instantly increased by oral intake of EMIQ and its absorption efficiency was significantly higher than that of isoquercitrin (quercetin 3-O-beta-glucoside; Q3G), and rutin. The profile of plasma quercetin metabolites after EMIQ consumption did not differ from that after Q3G consumption. The apparent log P of EMIQ indicated that EMIQ is more hydrophilic than Q3G but less than quercetin 3,4-O-beta-diglucoside. These data indicated that enzymatic alpha-oligoglucosylation to the sugar moiety is effective for enhancing the bioavailability of quercetin glucosides in humans.
Related JoVE Video
[Symptoms of prostate cancer that required treatment in the terminal stage for two years].
Hinyokika Kiyo
PUBLISHED: 01-28-2010
Show Abstract
Hide Abstract
We conducted a study of the symptoms of prostate cancer that required medical treatment in terminal patients intermittently hospitalized over a period of two years. We examined the medical records of 54 out of 55 patients who died of prostate cancer between January 2000 and December 2008. The period from the initial visit to death was between 6 and 179 months (median : 48 months). The frequency of hospitalization per patient within two years before death was between 0 and 12 times (median : 3 times). The leading causes of hospitalization (a total of 191 times) were pain (44 times), a poor physical condition (30 times), hematuria (23 times), cancer treatment (22 times), anemia (18 times), and urinary retention (12 times). Thirty-two cases required the use of opioids (0.5 to 25 months before death, median : 5 months), 25 cases required blood transfusion (0.5 to 24, median : 5 months), 17 cases required long-term catheterization (0.5 to 16, median : 4 months), 10 cases required external beam radiation (2 to 25, median : 15 months), 6 cases required percutaneous nephrostomy (0.5 to 7, median : 2 months), three cases required transurethral resection of the prostate (3 to 23, median : 23 months), and two cases required fracture fixation (5 to 6 months before death). Since urologists are in charge of patients from their initial visit to the terminal stage, they are required not only to immediately address, or prevent if possible, these symptoms appearing in the terminal stage, but also to help enhance the quality of life of patients by providing palliative care based on expert knowledge.
Related JoVE Video
Apolipoprotein E4 (1-272) fragment is associated with mitochondrial proteins and affects mitochondrial function in neuronal cells.
Mol Neurodegener
PUBLISHED: 07-08-2009
Show Abstract
Hide Abstract
Apolipoprotein E allele epsilon4 (apoE4) is a strong risk factor for developing Alzheimers disease (AD). Secreted apoE has a critical function in redistributing lipids among central nervous system cells to maintain normal lipid homeostasis. In addition, previous reports have shown that apoE4 is cleaved by a protease in neurons to generate apoE4(1-272) fragment, which is associated with neurofibrillary tanglelike structures and mitochondria, causing mitochondrial dysfunction. However, it still remains unclear how the apoE fragment associates with mitochondria and induces mitochondrial dysfunction.
Related JoVE Video
Covalent modification of lysine residues by allyl isothiocyanate in physiological conditions: plausible transformation of isothiocyanate from thiol to amine.
Chem. Res. Toxicol.
PUBLISHED: 02-17-2009
Show Abstract
Hide Abstract
We investigated the reactivity of allyl isothiocyanate (AITC) with amino groups under physiological conditions. First, the chemical reaction of AITC with bovine serum albumin (BSA) was investigated. When BSA was incubated with AITC in a phosphate buffer (pH 7.4), the loss of Lys residues was observed. Second, the Lys residue N(alpha)-benzoyl-glycyl-L-lysine (BGK) was reacted with AITC in the buffer, and a novel peak was detected using high performance liquid chromatography (HPLC). The peak was purified and identified as AITC-modified BGK with a N(epsilon)-thiocarbamoyl linkage. However, a thiol residue is known to be a predominant target of an isothiocyanate (ITC). Although AITC may react with a thiol moiety in vivo, a thiocarbamoyl linkage between ITC and thiol is unstable, and an AITC molecule may be regenerated. To prove the plausible transformation of ITC from thiol to amine, synthetic AITC-conjugated N(alpha)-acetyl-L-cysteine (NAC) was incubated with BGK at 37 degrees C in physiological buffer, and the generation of AITC-Lys was analyzed. The loss of the AITC-NAC adduct corresponded to the formation of the AITC-BGK adduct. Furthermore, using a novel monoclonal antibody (A4C7mAb) specific for AITC-Lys, we found that the AITC-Lys residue was generated from the reaction between AITC-NAC and BSA. Although AITC preferentially reacts with thiol rather than with Lys, AITC can be liberated from thiols and can then react with amino groups. The ITC-Lys adduct may be a useful marker for ITC target molecules.
Related JoVE Video
Quantification of Modified Tyrosines in Healthy and Diabetic Human Urine using Liquid Chromatography/Tandem Mass Spectrometry.
J Clin Biochem Nutr
PUBLISHED: 01-30-2009
Show Abstract
Hide Abstract
The quantification of urinary oxidized tyrosines, dityrosine (DiY), nitrotyrosine (NY), bromotyrosine (BrY), and dibromotyrosine (DiBrY), was accomplished by quadruple liquid chromatography-tandem mass spectrometry (LC/MS/MS). The sample was partially purified by solid phase extraction, and was then applied to the LC/MS/MS using multiple-reaction monitoring (MRM) methods. The analysis for the DiY quantification was done first. The residual samples were further butylated with n-butanol/HCl, and the other modified tyrosines were then quantified with isotopic dilution methods. MRM peaks of the modified tyrosines (DiY, NY, BrY, and DiBrY) from human urine were measured and the elution times coincided with the authentic and isotopic standards. The amounts of modified tyrosines in healthy human urine (n = 23) were 8.8 +/- 0.6 (DiY), 1.4 +/- 0.4 (NY), 3.8 +/- 0.3 (BrY), and 0.7 +/- 0.1 (DiBrY) micromol/mol of creatinine, respectively. A comparison of the modified tyrosines with urinary 8-oxo-deoxyguanosine, pentosidine, and N(epsilon)-(hexanoyl)lysine was also performed. Almost all products, except for NY, showed good correlations with each other. The amounts of the modified tyrosines (NY, BrY, and DiBrY) in the diabetic urine were higher than those in the urine from healthy people.
Related JoVE Video
Fermented tea improves glucose intolerance in mice by enhancing translocation of glucose transporter 4 in skeletal muscle.
J. Agric. Food Chem.
Show Abstract
Hide Abstract
The antihyperglycemic effects of tea are well documented. However, the effects of fermented tea on the translocation of glucose transporter 4 (GLUT4), the major glucose transporter for glucose uptake in the postprandial period, in skeletal muscle and the underlying molecular mechanisms are not fully understood. This study investigated the translocation of GLUT4 and its related signaling pathways in skeletal muscle of male ICR mice given fermented tea. Intake of oolong, black, or pu-erh tea for 7 days enhanced GLUT4 translocation to the plasma membrane of skeletal muscle. Each type of fermented tea stimulated the phosphorylation of phosphoinositide 3-kinase (PI3K), Akt/protein kinase B, and AMP-activated protein kinase (AMPK). Fermented tea also increased the protein expression of insulin receptor. These results strongly suggest that fermented tea activates both PI3K/Akt- and AMPK-dependent signaling pathways to induce GLUT4 translocation and increases the expression of insulin receptor to improve glucose intolerance.
Related JoVE Video
Absorption and metabolism of 4-hydroxyderricin and xanthoangelol after oral administration of Angelica keiskei (Ashitaba) extract in mice.
Arch. Biochem. Biophys.
Show Abstract
Hide Abstract
To investigate the absorption and metabolism of 4-hydroxyderricin and xanthoangelol, we established an analytical method based on liquid chromatography-tandem mass spectrometry and measured these compounds in the plasma, urine, feces, liver, kidney, spleen, muscle and white adipose tissues of mice orally administered with Ashitaba extract (50-500mg/kg body weight). 4-Hydroxyderricin and xanthoangelol were quickly absorbed into the plasma, with time-to-maximum plasma concentrations of 2 and 0.5h for 4-hydroxyderricin and xanthoangelol, respectively. Although these compounds have similar structures, the total plasma concentration of 4-hydroxyderricin and its metabolites was approximately 4-fold greater than that of xanthoangelol and its metabolites at 24h. 4-Hydroxyderricin and xanthoangelol were mostly excreted in their aglycone forms and related metabolites (glucuronate and/or sulfate forms) in urine between 2 and 4h after oral administration of Ashitaba extract. On the other hand, these compounds were only excreted in their aglycone forms in feces. When tissue distribution of 4-hydroxyderricin and xanthoangelol was estimated 2h after administration of Ashitaba extract, both compounds were detected in all of the tissues assessed, mainly in their aglycone forms, except in the mesenteric adipose tissue. These results suggest that 4-hydroxyderricin and xanthoangelol are rapidly absorbed and distributed to various tissues.
Related JoVE Video
Comparative analysis of carbohydrate-binding specificities of two anti-glycogen monoclonal antibodies using ELISA and surface plasmon resonance.
Carbohydr. Res.
Show Abstract
Hide Abstract
For immunological experiments on glycogens, anti-glycogen antibodies are indispensable to capture, detect, and visualize sugar molecules. An anti-glycogen monoclonal antibody (IV58B6) and newly constructed antibody (ESG1A9mAb) have a common immunoglobulin type (IgM) and binding ability to glycogens, but overall possess different binding features. Therefore, they may prove useful for the construction of an advanced system of quantitative ELISA based on their molecular structures. For this purpose, detailed information on the carbohydrate-specificities of ESG1A9mAb and IV58B6 is first required, but their fine specificities for various types of glycogens have not been elucidated. To overcome this problem, we performed interaction analysis by ELISA of ESG1A9mAb and IV58B6 toward 15 glucose polymers, that is, 5 enzymatically-synthesized glycogens (ESGs), 6 natural source glycogens (NSGs), 3 enzymatically digested glycogens (EDGs), and soluble starch. To provide a more detailed analysis, we determined the association constants (K(a)) of the two antibodies toward these glycogens by surface plasmon resonance. The results indicated that the carbohydrate-binding properties toward NSGs of ESG1A9mAb and IV58B6 were similar, but markedly differed for ESGs and EDGs. ESG1A9mAb showed significant affinity for all the ESGs and NSGs tested, whereas IV58B6 had only slight affinity for ESGs, although the affinities were increased when the ESGs were enzymatically digested. This information should be helpful for the design of both in vitro and in vivo immunological assays.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.