JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Selective targeting of TGF-? activation to treat fibroinflammatory airway disease.
Sci Transl Med
PUBLISHED: 06-20-2014
Show Abstract
Hide Abstract
Airway remodeling, caused by inflammation and fibrosis, is a major component of chronic obstructive pulmonary disease (COPD) and currently has no effective treatment. Transforming growth factor-? (TGF-?) has been widely implicated in the pathogenesis of airway remodeling in COPD. TGF-? is expressed in a latent form that requires activation. The integrin ?v?8 (encoded by the itgb8 gene) is a receptor for latent TGF-? and is essential for its activation. Expression of integrin ?v?8 is increased in airway fibroblasts in COPD and thus is an attractive therapeutic target for the treatment of airway remodeling in COPD. We demonstrate that an engineered optimized antibody to human ?v?8 (B5) inhibited TGF-? activation in transgenic mice expressing only human and not mouse ITGB8. The B5 engineered antibody blocked fibroinflammatory responses induced by tobacco smoke, cytokines, and allergens by inhibiting TGF-? activation. To clarify the mechanism of action of B5, we used hydrodynamic, mutational, and electron microscopic methods to demonstrate that ?v?8 predominantly adopts a constitutively active, extended-closed headpiece conformation. Epitope mapping and functional characterization of B5 revealed an allosteric mechanism of action due to locking-in of a low-affinity ?v?8 conformation. Collectively, these data demonstrate a new model for integrin function and present a strategy to selectively target the TGF-? pathway to treat fibroinflammatory airway diseases.
Related JoVE Video
Mouse and human lung fibroblasts regulate dendritic cell trafficking, airway inflammation, and fibrosis through integrin ?v?8-mediated activation of TGF-?.
J. Clin. Invest.
PUBLISHED: 04-13-2011
Show Abstract
Hide Abstract
The airway is a primary portal of entry for noxious environmental stimuli that can trigger airway remodeling, which contributes significantly to airway obstruction in chronic obstructive pulmonary disease (COPD) and chronic asthma. Important pathologic components of airway remodeling include fibrosis and abnormal innate and adaptive immune responses. The positioning of fibroblasts in interstitial spaces suggests that they could participate in both fibrosis and chemokine regulation of the trafficking of immune cells such as dendritic cells, which are crucial antigen-presenting cells. However, physiological evidence for this dual role for fibroblasts is lacking. Here, in two physiologically relevant models - conditional deletion in mouse fibroblasts of the TGF-?-activating integrin ?v?8 and neutralization of ?v?8 in human COPD fibroblasts - we have elucidated a mechanism whereby lung fibroblast chemokine secretion directs dendritic cell trafficking, in a manner that is critically dependent on ?v?8-mediated activation of TGF-? by fibroblasts. Our data therefore indicate that fibroblasts have a crucial role in regulating both fibrotic and immune responses in the lung.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.