JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Nucleotide-oligomerization-domain-2 affects commensal gut microbiota composition and intracerebral immunopathology in acute Toxoplasma gondii induced murine ileitis.
PLoS ONE
PUBLISHED: 08-20-2014
Show Abstract
Hide Abstract
Within one week following peroral high dose infection with Toxoplasma (T.) gondii, susceptible mice develop non-selflimiting acute ileitis due to an underlying Th1-type immunopathology. The role of the innate immune receptor nucleotide-oligomerization-domain-2 (NOD2) in mediating potential extra-intestinal inflammatory sequelae including the brain, however, has not been investigated so far.
Related JoVE Video
Composition of intestinal microbiota in immune-deficient mice kept in three different housing conditions.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Abundance of commensals constituting the intestinal microbiota (IM) affects the immune system and predisposes to a variety of diseases, including intestinal infections, cancer, inflammatory and metabolic disorders. Housing conditions determine the IM and can hence influence the immune system. We analyzed how both variables affect the IM of four immune-compromized mouse lines kept under different housing conditions.
Related JoVE Video
Pituitary adenylate cyclase-activating polypeptide ameliorates experimental acute ileitis and extra-intestinal sequelae.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP) plays pivotal roles in immunity and inflammation. So far, potential immune-modulatory properties of PACAP have not been investigated in experimental ileitis.
Related JoVE Video
The role of serine protease HtrA in acute ulcerative enterocolitis and extra-intestinal immune responses during Campylobacter jejuni infection of gnotobiotic IL-10 deficient mice.
Front Cell Infect Microbiol
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Campylobacter jejuni infections have a high prevalence worldwide and represent a significant socioeconomic burden. C. jejuni can cross the intestinal epithelial barrier as visualized in biopsies derived from human patients and animal models, however, the underlying molecular mechanisms and associated immunopathology are still not well understood. We have recently shown that the secreted serine protease HtrA (high temperature requirement A) plays a key role in C. jejuni cellular invasion and transmigration across polarized epithelial cells in vitro. In the present in vivo study we investigated the role of HtrA during C. jejuni infection of mice. We used the gnotobiotic IL-10(-/-) mouse model to study campylobacteriosis following peroral infection with the C. jejuni wild-type (WT) strain NCTC11168 and the isogenic, non-polar NCTC11168?htrA deletion mutant. Six days post infection (p.i.) with either strain mice harbored comparable intestinal C. jejuni loads, whereas ulcerative enterocolitis was less pronounced in mice infected with the ?htrA mutant strain. Moreover, ?htrA mutant infected mice displayed lower apoptotic cell numbers in the large intestinal mucosa, less colonic accumulation of neutrophils, macrophages and monocytes, lower large intestinal nitric oxide, IFN-?, and IL-6 as well as lower TNF-? and IL-6 serum concentrations as compared to WT strain infected mice at day 6 p.i. Notably, immunopathological responses were not restricted to the intestinal tract given that liver and kidneys exhibited mild histopathological changes 6 days p.i. with either C. jejuni strain. We also found that hepatic and renal nitric oxide levels or renal TNF-? concentrations were lower in the ?htrA mutant as compared to WT strain infected mice. In conclusion, we show here that the C. jejuni HtrA protein plays a pivotal role in inducing host cell apoptosis and immunopathology during murine campylobacteriosis in the gut in vivo.
Related JoVE Video
Helicobacter pylori induced gastric immunopathology is associated with distinct microbiota changes in the large intestines of long-term infected Mongolian gerbils.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Gastrointestinal (GI) inflammation in mice and men are frequently accompanied by distinct changes of the GI microbiota composition at sites of inflammation. Helicobacter (H.) pylori infection results in gastric immunopathology accompanied by colonization of stomachs with bacterial species, which are usually restricted to the lower intestine. Potential microbiota shifts distal to the inflammatory process following long-term H. pylori infection, however, have not been studied so far.
Related JoVE Video
The impact of Toll-like-receptor-9 on intestinal microbiota composition and extra-intestinal sequelae in experimental Toxoplasma gondii induced ileitis.
Gut Pathog
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Following peroral Toxoplasma (T.) gondii infection, susceptible mice develop acute ileitis due to a microbiota-dependent Th1 type immunopathology. Toll-like-receptor (TLR)-9 is known to recognize bacterial DNA and mediates intestinal inflammation, but its impact on intestinal microbiota composition and extra-intestinal sequelae following T. gondii infection has not yet been elucidated.
Related JoVE Video
The impact of serine protease HtrA in apoptosis, intestinal immune responses and extra-intestinal histopathology during Campylobacter jejuni infection of infant mice.
Gut Pathog
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Campylobacter jejuni has emerged as a leading cause of bacterial enterocolitis. The serine protease HtrA has been shown to be a pivotal, novel C. jejuni virulence factor involved in cell invasion and transmigration across polarised epithelial cells in vitro. However, the functional relevance of the htrA gene for the interaction of C. jejuni with the host immune system in the infant mouse infection model has not been investigated so far.
Related JoVE Video
Impact of Campylobacter jejuni cj0268c knockout mutation on intestinal colonization, translocation, and induction of immunopathology in gnotobiotic IL-10 deficient mice.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Although Campylobacter jejuni infections have a high prevalence worldwide and represent a significant socioeconomic burden, the underlying molecular mechanisms of induced intestinal immunopathology are still not well understood. We have recently generated a C. jejuni mutant strain NCTC11168::cj0268c, which has been shown to be involved in cellular adhesion and invasion. The immunopathological impact of this gene, however, has not been investigated in vivo so far.
Related JoVE Video
Validation of an rpoB gene PCR assay for detection of Tropheryma whipplei: 10 years experience in a National Reference Laboratory.
J. Clin. Microbiol.
PUBLISHED: 08-21-2013
Show Abstract
Hide Abstract
The performance of a real-time PCR assay targeting the Tropheryma whipplei rpoB gene was evaluated using test strains and 1,236 clinical specimens in a national reference laboratory. The novel rpoB-PCR assay proved to be specific, revealed improved analytical sensitivity, and substantially accelerated detection of T. whipplei DNA in clinical specimens.
Related JoVE Video
Survey of extra-intestinal immune responses in asymptomatic long-term Campylobacter jejuni-infected mice.
Eur J Microbiol Immunol (Bp)
PUBLISHED: 07-09-2013
Show Abstract
Hide Abstract
Campylobacter jejuni is among the most frequently reported bacterial pathogens causing diarrhea in humans worldwide. We recently reported a murine infection model mimicking key features of human campylobacteriosis. Six days following oral C. jejuni infection immediately after weaning, infant mice developed acute enterocolitis resolving within 2 weeks. Thereafter, C. jejuni could still be isolated from the intestines of asymptomatic mice at low levels accompanied by distinct immune responses, both at intestinal and extra-intestinal locations. We here show that, at day 103 post infection (p.i.), long-term C. jejuni-infected mice exhibited higher numbers of T lymphocytes in liver, lung, kindneys, and cardiac muscle as compared to uninfected controls. In addition, B lymphocytes were slightly higher, but macrophage numbers were significantly lower in liver and lung of C. jejuni-infected versus naive mice. As compared to uninfected control animals, proliferating cells were significantly lower in liver, lung, kidneys, cardiac muscle, and spleen at day 103 p.i., whereas more apoptotic cells were abundant in the spleen with predominance in the red pulp. This study underlines that post-infectious, immunological sequelae at extra-intestinal locations are of importance even in asymptomatic long-term C. jejuni carriers and need to be further studied in order to unravel the underlying molecular mechanisms.
Related JoVE Video
Impact of metal ion homeostasis of genetically modified Escherichia coli Nissle 1917 and K12 (W3110) strains on colonization properties in the murine intestinal tract.
Eur J Microbiol Immunol (Bp)
PUBLISHED: 07-02-2013
Show Abstract
Hide Abstract
Metal ions are integral parts of pro- as well as eukaryotic cell homeostasis. Escherichia coli proved a valuable in vitro model organism to elucidate essential mechanisms involved in uptake, storage, and export of metal ions. Given that E. coli Nissle 1917 is able to overcome murine colonization resistance, we generated several E. coli Nissle 1917 mutants with defects in zinc, iron, copper, nickel, manganese homeostasis and performed a comprehensive survey of the impact of metal ion transport and homeostasis for E. coli colonization capacities within the murine intestinal tract. Seven days following peroral infection of conventional mice with E. coli Nissle 1917 strains exhibiting defined defects in zinc or iron uptake, the respective mutant and parental strains could be cultured at comparable, but low levels from the colonic lumen. We next reassociated gnotobiotic mice in which the microbiota responsible for colonization resistance was abrogated by broad-spectrum antibiotics with six different E. coli K12 (W3110) mutants. Seven days following peroral challenge, each mutant and parental strain stably colonized duodenum, ileum, and colon at comparable levels. Taken together, defects in zinc, iron, copper, nickel, and manganese homeostasis do not compromise colonization capacities of E. coli in the murine intestinal tract.
Related JoVE Video
Colonization resistance against genetically modified Escherichia coli K12 (W3110) strains is abrogated following broad-spectrum antibiotic treatment and acute ileitis.
Eur J Microbiol Immunol (Bp)
PUBLISHED: 07-02-2013
Show Abstract
Hide Abstract
Escherichia coli K12 (EcK12) is commonly used for gene technology purposes and regarded as a security strain due to its inability to adhere to epithelial cells. The conventional intestinal microbiota composition is critical for physiological colonization resistance against most bacterial species including pathogens. We were therefore interested whether intestinal colonization by a genetically modified EcK12 (W3110) strain carrying a chloramphenicol resistance cassette was facilitated following broad-spectrum antibiotic treatment eradicating the intestinal microbiota or induction of small intestinal inflammation accompanied by distinct microbiota shifts. Whereas conventional C57BL/6 and BALB/c mice had virtually expelled the EcK12 (W3110) strain within the first 3 days upon peroral infection, EcK12 (W3110) could establish within the small and large intestines of gnotobiotic mice generated by quintuple antibiotic treatment. Gnotobiotic mice perorally infected with EcK12 (W3110) plus fecal transplant from conventional donors harbored lower intestinal EcK12 (W3110) loads compared to animals challenged with EcK12 (W3110) alone. Furthermore, EcK12 (W3110) infection of conventional mice after but not before induction of ileitis resulted in stable colonization of ileum and colon by EcK12 (W3110). Taken together, broad-spectrum antibiotic treatment and intestinal inflammation compromise colonization resistance and thus facilitate colonization of the intestinal tract with genetically modified EcK12 security strains.
Related JoVE Video
Inhibition of Helicobacter pylori urease activity in vivo by the synthetic nickel binding protein Hpn.
Eur J Microbiol Immunol (Bp)
PUBLISHED: 01-04-2013
Show Abstract
Hide Abstract
Helicobacter pylori infection is the most common cause of gastroduodenal ulcerations worldwide. Adaptation of H. pylori to the acidic environment is mediated by urease splitting urea into carbon dioxide and ammonia. Whereas neutralization of acid by ammonia is essential for gastric H. pylori colonization, the catalytic activity of urease is mediated by nickel ions. Therefore, nickel uptake and metabolism play key roles in H. pylori infection and urease is considered first line target for drug development and vaccination. Since nickel binding within H. pylori cells is mediated by the Histidine-rich protein designated Hpn, we investigated whether nickel binding by a synthetic Hpn is capable of abrogating urease activity of live H. pylori in liquid cultures. Supplementation of growth media with synthetic Hpn completely inhibited urease acitivity in live cells, indicating that H. pylori nickel uptake is effectively blocked by Hpn. Thus, nickel chelation by Hpn is stronger than nickel uptake of H. pylori offering therapeutic use of Hpn. Although the nickel binding of Hpn was confirmed by binding assays in vitro, its use in anti-H. pylori directed strategy will further need to be adapted to the gastric environment given that protons interfere with nickel binding and Hpn is degraded by pepsin.
Related JoVE Video
Use of a commercial PCR-based line blot method for identification of bacterial pathogens and the mecA and van genes from BacTAlert blood culture bottles.
J. Clin. Microbiol.
PUBLISHED: 11-09-2011
Show Abstract
Hide Abstract
In this study, the PCR-based DNA strip assay GenoType BC for the identification of bacteria and the resistance genes mecA, vanA, vanB, vanC1, and vanC2/3 directly from positive BacTAlert blood culture bottles was evaluated in a multicenter study. Of a total of 511 positive blood cultures, correct identification percentages for Gram-negative bacteria, Gram-positive bacteria, and the mecA gene were 96.1%, 89.9%, and 92.9%, respectively. Results were available 4 h after growth detection.
Related JoVE Video
Novel murine infection models provide deep insights into the "ménage à trois" of Campylobacter jejuni, microbiota and host innate immunity.
PLoS ONE
PUBLISHED: 02-25-2011
Show Abstract
Hide Abstract
Although Campylobacter jejuni-infections have a high prevalence worldwide and represent a significant socioeconomic burden, it is still not well understood how C. jejuni causes intestinal inflammation. Detailed investigation of C. jejuni-mediated intestinal immunopathology is hampered by the lack of appropriate vertebrate models. In particular, mice display colonization resistance against this pathogen.
Related JoVE Video
Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation.
PLoS ONE
PUBLISHED: 10-05-2010
Show Abstract
Hide Abstract
The health beneficial effects of Resveratrol, Curcumin and Simvastatin have been demonstrated in various experimental models of inflammation. We investigated the potential anti-inflammatory and immunomodulatory mechanisms of the above mentioned compounds in a murine model of hyper-acute Th1-type ileitis following peroral infection with Toxoplasma gondii.
Related JoVE Video
Molecular epidemiology and spatial distribution of Selenomonas spp. in subgingival biofilms.
Eur. J. Oral Sci.
PUBLISHED: 09-14-2010
Show Abstract
Hide Abstract
The aetiology of periodontal disease has been a field of intensive research in the past decades. Along with a variety of other putative pathogens, different members of the genus Selenomonas have repeatedly been associated with both generalized aggressive periodontitis and chronic periodontitis. For the present study, a specific oligonucleotide probe targeting the majority of all oral Selenomonas spp. was designed. Their prevalence was determined, using dot-blot hybridization, in a total of 742 subgingival samples collected from patients with generalized aggressive (n=62) and chronic periodontitis (n=82), and from periodontitis-resistant subjects (n=19). In addition, fluorescence in situ hybridization (FISH) and electron microscopy were performed to analyze the spatial arrangement of Selenomonas in subgingival biofilms collected from patients with generalized aggressive periodontitis. In the samples from patients, Selenomonas spp. showed a lower prevalence in both diseased groups compared with other putative pathogens, and a relatively high prevalence in the periodontitis-resistant group. Consequently, Selenomonas spp. do not seem to be suitable diagnostic marker organisms for periodontal disease. By contrast, FISH and electron microscopic analysis of periodontal carriers revealed that Selenomonas spp. appeared in large numbers in all parts of the collected biofilms and seemed, if present in a site from patients, to make a relevant contribution to their structural organization.
Related JoVE Video
MyD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease.
Gut
PUBLISHED: 07-20-2010
Show Abstract
Hide Abstract
The bacterial microflora aggravates graft-versus-host-disease (GvHD) after allogeneic stem cell transplantation, but the underlying mechanisms of manifestations of intestinal GvHD (iGvHD) in the gut remain poorly understood.
Related JoVE Video
Molecular characterization of Borrelia persica, the agent of tick borne relapsing fever in Israel and the Palestinian Authority.
PLoS ONE
PUBLISHED: 07-13-2010
Show Abstract
Hide Abstract
The identification of the Tick Borne Relapsing Fever (TBRF) agent in Israel and the Palestinian Authority relies on the morphology and the association of Borrelia persica with its vector Ornithodoros tholozani. Molecular based data on B. persica are very scarce as the organism is still non-cultivable. In this study, we were able to sequence three complete 16S rRNA genes, 12 partial flaB genes, 18 partial glpQ genes, 16 rrs-ileT intergenic spacers (IGS) from nine ticks and ten human blood samples originating from the West Bank and Israel. In one sample we sequenced 7231 contiguous base pairs that covered completely the region from the 5end of the 16S rRNA gene to the 5end of the 23S rRNA gene comprising the whole 16S rRNA (rrs), and the following genes: Ala tRNA (alaT), Ile tRNA (ileT), adenylosuccinate lyase (purB), adenylosuccinate synthetase (purA), methylpurine-DNA glycosylase (mag), hypoxanthine-guanine phosphoribosyltransferase (hpt), an hydrolase (HAD superfamily) and a 135 bp 5 fragment of the 23S rRNA (rrlA) genes. Phylogenic sequence analysis defined all the Borrelia isolates from O. tholozani and from human TBRF cases in Israel and the West Bank as B. persica that clustered between the African and the New World TBRF species. Gene organization of the intergenic spacer between the 16S rRNA and the 23S rRNA was similar to that of other TBRF Borrelia species and different from the Lyme disease Borrelia species. Variants of B. persica were found among the different genes of the different isolates even in the same sampling area.
Related JoVE Video
Investigation of the intestinal microbiota in preterm infants using different methods.
Anaerobe
PUBLISHED: 05-28-2010
Show Abstract
Hide Abstract
Modifications in microbial colonization of the human gut are believed to affect intestinal homeostasis and increase the risk of gastrointestinal diseases. The present study examined different methods for investigating the dynamic characterization of the intestinal microbiota in preterm infants. Fecal samples were collected weekly from ten preterm infants during their stay in a neonatal intensive care unit. The infants had a mean gestational age of 29 weeks (range: 28-32 weeks) and a mean birth weight of 1233g (range: 935-1450g). Bacterial colonization was assessed using conventional culture techniques and molecular biological methods. More specifically, the recently developed denaturing high performance liquid chromatography (dHPLC) technique was compared to established methods such as temporal temperature gradient gel electrophoresis (TTGE) and rRNA gene library sequencing. Our results indicate that the gastrointestinal tract of preterm infants, born at a gestational age of less than 33 weeks, has a low biodiversity of mainly, culturable bacteria. Finally, dHPLC was evaluated in terms of speed, labor and sensitivity for its use as a tool to analyze microbial colonization in preterm infants. We found that this technique provided major improvements over gel-based fingerprinting methods, such as TTGE, that are commonly used for studying microbial ecology. As such, it may become a common analytical tool for this purpose.
Related JoVE Video
Filifactor alocis--involvement in periodontal biofilms.
BMC Microbiol.
PUBLISHED: 03-01-2010
Show Abstract
Hide Abstract
Bacteria in periodontal pockets develop complex sessile communities that attach to the tooth surface. These highly dynamic microfloral environments challenge both clinicians and researchers alike. The exploration of structural organisation and bacterial interactions within these biofilms is critically important for a thorough understanding of periodontal disease. In recent years, Filifactor alocis, a fastidious, Gram-positive, obligately anaerobic rod was repeatedly identified in periodontal lesions using DNA-based methods. It has been suggested to be a marker for periodontal deterioration. The present study investigated the epidemiology of F. alocis in periodontal pockets and analysed the spatial arrangement and architectural role of the organism in in vivo grown subgingival biofilms.
Related JoVE Video
Loss of Toll-like receptor 2 and 4 leads to differential induction of endoplasmic reticulum stress and proapoptotic responses in the intestinal epithelium under conditions of chronic inflammation.
J. Proteome Res.
PUBLISHED: 08-18-2009
Show Abstract
Hide Abstract
Toll-like receptors (TLRs) play an important role in the recognition of microbial molecular patterns of infectious and commensal bacteria and their expression in various tissues including the intestinal epithelium orchestration of the innate and adaptive immune defense mechanisms. Changes in the TLR signaling pathways due to host genetic predispositions may turn a physiological response into a pathological situation including failure of bacterial clearance and development of chronic inflammation. The aim of this study was to characterize the role of TLR2 or TLR4 deficiency in epithelial cell stress responses under noninflamed and inflamed conditions using TLR-deficient mice and TLR(-/-) cross-bred IL-10-deficient mice as a model for genetically driven experimental colitis. Primary intestinal epithelial cells (IEC) were isolated from specific-pathogen-free wild-type, TLR2-, TLR4-, IL-10-, IL-10XTLR2- and IL-10XTLR4-deficient mice at the age of 1, 8, and 16 weeks. Histopathological analysis showed absence of tissue pathology (score 0-12) in distal colon sections of TLR2- and TLR4-deficient mice. In addition, TLR2- but not TLR4-deficient mice cross-bred to the IL-10-deficient background develop moderate colitis, suggesting different effects of these pattern recognition receptors in regulating disease mechanisms. Proteome analysis revealed significantly regulated proteins associated with endoplasmic reticulum (ER) and mitochondrial stress responses in the epithelium. In contrast to TLR2(-/-) and IL-10XTLR2(-/-) mice, the induction of the ER-associated chaperone grp-78 was dissociated from the activation of proapoptotic caspase 3 cleavage in noninflamed TLR4(-/-) and IL10XTLR4(-/-) mice. These results suggest that ER-associated cellular stress responses play an important role in epithelial cells homeostasis leading to beneficial but also deleterious effects. We hypothesize that ER stress-associated processes in the absence of TLR2 and TLR4 differentially affect host responses and epithelial functions under conditions of genetically driven chronic intestinal inflammation.
Related JoVE Video
Are putative periodontal pathogens reliable diagnostic markers?
J. Clin. Microbiol.
PUBLISHED: 04-22-2009
Show Abstract
Hide Abstract
Periodontitis is one of the most common chronic inflammatory diseases. A number of putative bacterial pathogens have been associated with the disease and are used as diagnostic markers. In the present study, we compared the prevalence of oral bacterial species in the subgingival biofilm of generalized aggressive periodontitis (GAP) (n = 44) and chronic periodontitis (CP) (n = 46) patients with that of a periodontitis-resistant control group (PR) (n = 21). The control group consisted of subjects at least 65 years of age with only minimal or no periodontitis and no history of periodontal treatment. A total of 555 samples from 111 subjects were included in this study. The samples were analyzed by PCR of 16S rRNA gene fragments and subsequent dot blot hybridization using oligonucleotide probes specific for Aggregatibacter (Actinobacillus) actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia, a Treponema denticola-like phylogroup (Treponema phylogroup II), Treponema lecithinolyticum, Campylobacter rectus, Fusobacterium spp., and Fusobacterium nucleatum, as well as Capnocytophaga ochracea. Our data confirm a high prevalence of the putative periodontal pathogens P. gingivalis, P. intermedia, and T. forsythia in the periodontitis groups. However, these species were also frequently detected in the PR group. For most of the species tested, the prevalence was more associated with increased probing depth than with the subject group. T. lecithinolyticum was the only periodontopathogenic species showing significant differences both between GAP and CP patients and between GAP patients and PR subjects. C. ochracea was associated with the PR subjects, regardless of the probing depth. These results indicate that T. lecithinolyticum may be a diagnostic marker for GAP and C. ochracea for periodontal health. They also suggest that current presumptions of the association of specific bacteria with periodontal health and disease require further evaluation.
Related JoVE Video
Acylated cholesteryl galactosides are specific antigens of borrelia causing lyme disease and frequently induce antibodies in late stages of disease.
J. Biol. Chem.
PUBLISHED: 03-23-2009
Show Abstract
Hide Abstract
Borrelia burgdorferi sensu lato is the causative agent of Lyme disease (LD), an infectious disease occurring in North America, Europe, and Asia in different clinical stages. B. burgdorferi sensu lato encompasses at least 12 species, with B. burgdorferi sensu stricto, B. garinii, and B. afzelii being of highest clinical importance. Immunologic testing for LD as well as recent vaccination strategies exclusively refer to proteinaceous antigens. However, B. burgdorferi sensu stricto exhibits glycolipid antigens, including 6-O-acylated cholesteryl beta-D-galactopyranoside (ACGal), and first the data indicated that this compound may act as an immunogen. Here we investigated whether B. garinii and B. afzelii also possess this antigen, and whether antibodies directed against these compounds are abundant among patients suffering from different stages of LD. Gas-liquid chromatography/mass spectroscopy and NMR spectroscopy showed that both B. garinii and B. afzelii exhibit ACGal in high quantities. In contrast, B. hermsii causing relapsing fever features 6-O-acylated cholesteryl beta-D-glucopyranoside (ACGlc). Sera derived from patients diagnosed for LD contained antibodies against ACGal, with 80% of patients suffering from late stage disease exhibiting this feature. Antibodies reacted with ACGal from all three B. burgdorferi species tested, but not with ACGlc from B. hermsii. These data show that ACGal is present in all clinically important B. burgdorferi species, and that specific antibodies against this compound are frequently found during LD. ACGal may thus be an interesting tool for improving diagnostics as well as for novel vaccination strategies.
Related JoVE Video
Rapid and accurate diagnosis of human intestinal spirochetosis by fluorescence in situ hybridization.
J. Clin. Microbiol.
PUBLISHED: 03-11-2009
Show Abstract
Hide Abstract
Human intestinal spirochetosis (HIS) is associated with overgrowth of the large intestine by spirochetes of the genus Brachyspira. The microbiological diagnosis of HIS is hampered by the fastidious nature and slow growth of Brachyspira spp. In clinical practice, HIS is diagnosed histopathologically, and a significant portion of cases may be missed. Fluorescence in situ hybridization (FISH) is a molecular method that allows the visualization and identification of single bacteria within tissue sections. In this study, we analyzed intestinal biopsy samples from five patients with possible HIS. All specimens yielded positive results by histopathological techniques. PCR amplification and sequencing of the 16S rRNA gene were performed. Sequences of two isolates clustered in the group of Brachyspira aalborgi, whereas in three cases, the sequences were highly similar to that of Brachyspira pilosicoli. Three phylotypes showed mismatches at distinct nucleotide positions with Brachyspira sp. sequences published previously. In addition, culture for Brachyspira was successful in three cases. On the basis of these data, we designed and evaluated a Brachyspira genus-specific 16S rRNA-directed FISH probe that detects all of the Brachyspira spp. published to date. FISH of biopsy samples resulted in strong, unequivocal signals of brush-like formations at the crypt surfaces. This technique allowed simultaneous visualization of single spirochetes and their identification as Brachyspira spp. In conclusion, FISH provides a fast and accurate technique for the visualization and identification of intestinal spirochetes in tissue sections. It therefore represents a valuable tool for routine diagnosis of HIS.
Related JoVE Video
Campylobacter jejuni induces acute enterocolitis in gnotobiotic IL-10-/- mice via Toll-like-receptor-2 and -4 signaling.
PLoS ONE
Show Abstract
Hide Abstract
Campylobacter jejuni is a leading cause of foodborne bacterial enterocolitis worldwide. Investigation of immunopathology is hampered by a lack of suitable vertebrate models. We have recently shown that gnotobiotic mice as well as conventional IL-10(-/-) animals are susceptible to C. jejuni infection and develop intestinal immune responses. However, clinical symptoms of C. jejuni infection were rather subtle and did not reflect acute bloody diarrhea seen in human campylobacteriosis.
Related JoVE Video
Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice.
PLoS ONE
Show Abstract
Hide Abstract
Postmortem microbiological examinations are performed in forensic and medical pathology for defining uncertain causes of deaths and for screening of deceased tissue donors. Interpretation of bacteriological data, however, is hampered by false-positive results due to agonal spread of microorganisms, postmortem bacterial translocation, and environmental contamination.
Related JoVE Video
Co-localized or randomly distributed? Pair cross correlation of in vivo grown subgingival biofilm bacteria quantified by digital image analysis.
PLoS ONE
Show Abstract
Hide Abstract
The polymicrobial nature of periodontal diseases is reflected by the diversity of phylotypes detected in subgingival plaque and the finding that consortia of suspected pathogens rather than single species are associated with disease development. A number of these microorganisms have been demonstrated in vitro to interact and enhance biofilm integration, survival or even pathogenic features. To examine the in vivo relevance of these proposed interactions, we extended the spatial arrangement analysis tool of the software daime (digital image analysis in microbial ecology). This modification enabled the quantitative analysis of microbial co-localization in images of subgingival biofilm species, where the biomass was confined to fractions of the whole-image area, a situation common for medical samples. Selected representatives of the disease-associated red and orange complexes that were previously suggested to interact with each other in vitro (Tannerella forsythia with Fusobacterium nucleatum and Porphyromonas gingivalis with Prevotella intermedia) were chosen for analysis and labeled with specific fluorescent probes via fluorescence in situ hybridization. Pair cross-correlation analysis of in vivo grown biofilms revealed tight clustering of F. nucleatum/periodonticum and T. forsythia at short distances (up to 6 µm) with a pronounced peak at 1.5 µm. While these results confirmed previous in vitro observations for F. nucleatum and T. forsythia, random spatial distribution was detected between P. gingivalis and P. intermedia in the in vivo samples. In conclusion, we successfully employed spatial arrangement analysis on the single cell level in clinically relevant medical samples and demonstrated the utility of this approach for the in vivo validation of in vitro observations by analyzing statistically relevant numbers of different patients. More importantly, the culture-independent nature of this approach enables similar quantitative analyses for "as-yet-uncultured" phylotypes which cannot be characterized in vitro.
Related JoVE Video
Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice.
PLoS ONE
Show Abstract
Hide Abstract
The zoonotic pathogen Campylobacter jejuni is a leading cause of bacterial foodborne enterocolitis in humans worldwide. The understanding of immunopathology underlying human campylobacteriosis is hampered by the fact that mice display strong colonization resistance against the pathogen due to their host specific gut microbiota composition.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.