JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Toxicological effect of single contaminants and contaminant mixtures associated with plant ingredients in novel salmon feeds.
Food Chem. Toxicol.
PUBLISHED: 09-02-2014
Show Abstract
Hide Abstract
Increasing use of plant feed ingredients may introduce contaminants not previously associated with farming of salmonids, such as pesticides and PAHs from environmental sources or from thermal processing of oil seeds. To screen for interaction effects of contaminants newly introduced in salmon feeds, Atlantic salmon primary hepatocytes were used. The xCELLigence cytotoxicity system was used to select optimal dosages of the PAHs benzo(a)pyrene and phenanthrene, the pesticides chlorpyrifos and endosulfan, and combinations of these. NMR and MS metabolic profiling and microarray transcriptomic profiling was used to identify novel biomarkers. Lipidomic and transcriptomic profiling suggested perturbation of lipid metabolism, as well as endocrine disruption. The pesticides gave the strongest responses, despite having less effect on cell viability than the PAHs. Only weak molecular responses were detected in PAH-exposed hepatocytes. Chlorpyrifos suppressed the synthesis of unsaturated fatty acids. Endosulfan affected steroid hormone synthesis, while benzo(a)pyrene disturbed vitamin D3 metabolism. The primary mixture effect was additive, although at high concentrations the pesticides acted in a synergistic fashion to decrease cell viability and down-regulate CYP3A and FABP4 transcription. This work highlights the usefulness of 'omics techniques and multivariate data analysis to investigate interactions within mixtures of contaminants with different modes of action.
Related JoVE Video
(1)H NMR metabolomics reveals contrasting response by male and female mussels exposed to reduced seawater pH, increased temperature, and a pathogen.
Environ. Sci. Technol.
PUBLISHED: 05-29-2014
Show Abstract
Hide Abstract
Human activities are fundamentally altering the chemistry of the world's oceans. Ocean acidification (OA) is occurring against a background of warming and an increasing occurrence of disease outbreaks, posing a significant threat to marine organisms, communities, and ecosystems. In the current study, (1)H NMR spectroscopy was used to investigate the response of the blue mussel, Mytilus edulis, to a 90-day exposure to reduced seawater pH and increased temperature, followed by a subsequent pathogenic challenge. Analysis of the metabolome revealed significant differences between male and female organisms. Furthermore, males and females are shown to respond differently to environmental stress. While males were significantly affected by reduced seawater pH, increased temperature, and a bacterial challenge, it was only a reduction in seawater pH that impacted females. Despite impacting males and females differently, stressors seem to act via a generalized stress response impacting both energy metabolism and osmotic balance in both sexes. This study therefore has important implications for the interpretation of metabolomic data in mussels, as well as the impact of environmental stress in marine invertebrates in general.
Related JoVE Video
A stable-isotope mass spectrometry-based metabolic footprinting approach to analyze exudates from phytoplankton.
Mar Drugs
PUBLISHED: 08-12-2013
Show Abstract
Hide Abstract
Phytoplankton exudates play an important role in pelagic ecology and biogeochemical cycles of elements. Exuded compounds fuel the microbial food web and often encompass bioactive secondary metabolites like sex pheromones, allelochemicals, antibiotics, or feeding attractants that mediate biological interactions. Despite this importance, little is known about the bioactive compounds present in phytoplankton exudates. We report a stable-isotope metabolic footprinting method to characterise exudates from aquatic autotrophs. Exudates from (13)C-enriched alga were concentrated by solid phase extraction and analysed by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. We used the harmful algal bloom forming dinoflagellate Alexandrium tamarense to prove the method. An algorithm was developed to automatically pinpoint just those metabolites with highly (13)C-enriched isotope signatures, allowing us to discover algal exudates from the complex seawater background. The stable-isotope pattern (SIP) of the detected metabolites then allowed for more accurate assignment to an empirical formula, a critical first step in their identification. This automated workflow provides an effective way to explore the chemical nature of the solutes exuded from phytoplankton cells and will facilitate the discovery of novel dissolved bioactive compounds.
Related JoVE Video
Disruption of DNA methylation via S-adenosylhomocysteine is a key process in high incidence liver carcinogenesis in fish.
J. Proteome Res.
PUBLISHED: 05-06-2013
Show Abstract
Hide Abstract
Interactions between epigenome and the environment in biology and in disease are of fundamental importance. The incidence of hepatocellular adenomas in flatfish exceeds 20% in some environments forming a unique opportunity to study environmental tumorigenesis of general relevance to cancer in humans. We report the novel finding of marked DNA methylation and metabolite concentration changes in histopathologically normal tissue distal to tumors in fish liver. A multi-"omics" discovery approach led to targeted and quantitative gene transcription analyses and metabolite analyses of hepatocellular adenomas and histologically normal liver tissue in the same fish. We discovered a remarkable and consistent global DNA hypomethylation, modification of DNA methylation and gene transcription, and disruption of one-carbon metabolism in distal tissue compared to livers of non-tumor-bearing fish. The mechanism of this disruption is linked not to depletion of S-adenosylmethionine, as is often a feature of mammalian tumors, but to a decrease in choline and elevated S-adenosylhomocysteine, a potent inhibitor of DNA methyltransferase. This novel feature of normal-appearing tissue of tumor-bearing fish helps to understand the unprecedentedly high incidence of tumors in fish sampled from the field and adds weight to the controversial epigenetic progenitor model of tumorigenesis. With further studies, the modifications may offer opportunities as biomarkers of exposure to environmental factors influencing disease.
Related JoVE Video
Characterization of isotopic abundance measurements in high resolution FT-ICR and Orbitrap mass spectra for improved confidence of metabolite identification.
Anal. Chem.
PUBLISHED: 04-19-2011
Show Abstract
Hide Abstract
Currently there is limited information available on the accuracy and precision of relative isotopic abundance (RIA) measurements using high-resolution direct-infusion mass spectrometry (HR DIMS), and it is unclear if this information can benefit automated peak annotation in metabolomics. Here we characterize the accuracy of RIA measurements on the Thermo LTQ FT Ultra (resolution of 100,000-750,000) and LTQ Orbitrap (R = 100,000) mass spectrometers. This first involved reoptimizing the SIM-stitching method (Southam, A. D. Anal. Chem. 2007, 79, 4595-4602) for the LTQ FT Ultra, which achieved a ca. 3-fold sensitivity increase compared to the original method while maintaining a root-mean-squared mass error of 0.16 ppm. Using this method, we show the quality of RIA measurements is highly dependent on signal-to-noise ratio (SNR), with RIA accuracy increasing with higher SNR. Furthermore, a negative offset between the theoretical and empirically calculated numbers of carbon atoms was observed for both mass spectrometers. Increasing the resolution of the LTQ FT Ultra lowered both the sensitivity and the quality of RIA measurements. Overall, although the errors in the empirically calculated number of carbons can be large (e.g., 10 carbons), we demonstrate that RIA measurements do improve automated peak annotation, increasing the number of single empirical formula assignments by >3-fold compared to using accurate mass alone.
Related JoVE Video
Structure and function of BamE within the outer membrane and the ?-barrel assembly machine.
EMBO Rep.
PUBLISHED: 01-07-2011
Show Abstract
Hide Abstract
Insertion of folded proteins into the outer membrane of Gram-negative bacteria is mediated by the essential ?-barrel assembly machine (Bam). Here, we report the native structure and mechanism of a core component of this complex, BamE, and show that it is exclusively monomeric in its native environment of the periplasm, but is able to adopt a distinct dimeric conformation in the cytoplasm. BamE is shown to bind specifically to phosphatidylglycerol, and comprehensive mutagenesis and interaction studies have mapped key determinants for complex binding, outer membrane integrity and cell viability, as well as revealing the role of BamE within the Bam complex.
Related JoVE Video
Comparison of surface proteomes of enterotoxigenic (ETEC) and commensal Escherichia coli strains.
J. Microbiol. Methods
PUBLISHED: 05-11-2010
Show Abstract
Hide Abstract
Pathogenesis of enterotoxigenic Escherichia coli (ETEC) infections involves colonization of the small intestine mediated by cell-surface fimbriae (CS) or colonization fimbriae antigens (CFA). However, protection against reinfection of ETEC is also conferred by somatic antigens rather than by virulence factors. To discover ETEC specific somatic antigens, the surface proteome of the ETEC H10406 strain was compared with that of non-pathogenic E. coli K12 strains. In this study, we were using stable isotope labelling with amino acids in cell culture (SILAC) technology for the labelling and relative quantification of surface proteins in order to identify polypeptides that are specifically present on ETEC strains. Outer membrane proteins were isolated, separated by gel electrophoresis, and identified by mass spectrometry. Twenty-three differentially expressed cell-surface polypeptides of ETEC were identified and evaluated by bioinformatics for protein vaccine candidates. The combination of being surface-exposed and present differentially makes these polypeptides highly suitable as targets for antibodies and thus for use in passive or active immunisation/vaccination.
Related JoVE Video
O-glycosylation of protein subpopulations in alcohol-extracted rice proteins.
J. Plant Physiol.
PUBLISHED: 06-11-2009
Show Abstract
Hide Abstract
Mucin-type O-glycosylation has been well characterized in mammalian systems but not in plants. In this study, the purified alcohol-soluble, non-reduced protein (prolamin) fraction from rice seed was investigated for the occurrence of O-linked oligosaccharides. As storage prolamins are unlikely to be O-glycosylated, any O-glycosylation found was likely to belong to co-extracted proteins, whether because of association with the protein body or solubility. SDS-PAGE and MS analyses revealed 14 and 16kDa protein families in fractions that bound to the lectins peanut agglutinin (PNA), Vicia villosa lectin (VVL) and Jacalin, indicative of the presence of O-linked saccharides. Enzymatic cleavage, fluorescent labeling and high-performance liquid chromatography (HPLC) analysis demonstrated a peak consistent with Gal-beta-(1-->3)-GalNAc, with similar MS/MS fragmentation. Additionally, upon chemical analysis, a GlcNAc-containing O-linked carbohydrate moiety was discovered. Protein blotting with anti-O-GlcNAc antibody (clone CTD110.6) was positive in a subpopulation of the 14kDa alcohol-soluble protein fraction, but a hot capping experiment was negative. Therefore, the GlcNAc residue in this case is unlikely to be terminal. Additionally, a positive reaction with CTD110.6mAb cannot be taken as absolute proof of O-GlcNAc modification and further confirmatory experiments should be employed. We hypothesize that O-glycosylation may contribute to protein functionality or regulation. Further investigation is required to identify the specific proteins with these modifications. This reverse approach could lead to the identification of proteins involved in mRNA targeting, signaling, translation, anchoring or maintenance of translational quiescence and may be applied to germinating rice seed extracts for further elucidation of protein function and regulation.
Related JoVE Video
Structural details and composition of Trichomonas vaginalis lipophosphoglycan in relevance to the epithelial immune function.
Glycoconj. J.
PUBLISHED: 03-20-2009
Show Abstract
Hide Abstract
Trichomonas vaginalis causes the most common non-viral sexually transmitted infection linked to increased risk of premature birth, cervical cancer and HIV. This study defines molecular domains of the parasite surface glycoconjugate lipophosphoglycan (LPG) with distinct functions in the host immunoinflammatory response. The ceramide phospho-inositol glycan core (CPI-GC) released by mild acid had Mr of approximately 8,700 Da determined by MALDI-TOF MS. Rha, GlcN, Gal and Xyl and small amounts of GalN and Glc were found in CPI-GC. N-acetyllactosamine repeats were identified by endo-beta-galactosidase treatment followed by MALDI-MS and MS/MS and capLC/ESI-MS/MS analyses. Mild acid hydrolysis led to products rich in internal deoxyhexose residues. The CPI-GC induced chemokine production, NF-kappaB and extracellular signal-regulated kinase (ERK)1/2 activation in human cervicovaginal epithelial cells, but neither the released saccharide components nor the lipid-devoid LPG showed these activities. These results suggest a dominant role for CPI-GC in the pathogenic epithelial response to trichomoniasis.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.