JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Characterization of the first intragenic SATB2 duplication in a girl with intellectual disability, nearly absent speech and suspected hypodontia.
Eur. J. Hum. Genet.
PUBLISHED: 08-13-2014
Show Abstract
Hide Abstract
SATB2, a gene encoding a highly conserved DNA-binding protein, is known to have an important role in craniofacial and neuronal development. Only a few patients with SATB2 variants have been described so far. Recently, Döcker et al provided a summary of these patients and delineated the SAS (SATB2-associated syndrome). We here report on a girl with intellectual disability, nearly absent speech and suspected hypodontia who was shown to carry an intragenic SATB2 tandem duplication hypothesized to lead to haploinsufficiency of SATB2. Preliminary information on this patient had already been included in the article by Döcker et al. We want to give a detailed description of the patient's phenotype and genotype, providing further insight into the spectrum of the molecular mechanisms leading to SAS.European Journal of Human Genetics advance online publication, 13 August 2014; doi:10.1038/ejhg.2014.163.
Related JoVE Video
Mosaic deletion of EXOC6B: Further evidence for an important role of the exocyst complex in the pathogenesis of intellectual disability.
Am. J. Med. Genet. A
PUBLISHED: 08-07-2014
Show Abstract
Hide Abstract
We describe a boy with developmental delay, speech delay, and minor dysmorphic features with a heterozygous de novo ?460?kb deletion at 2p13.2 involving only parts of EXOC6B present in about 50% of lymphocytes. This widely expressed gene encodes the exocyst component 6B, which is part of a multiprotein complex required for targeted exocytosis. Little is known about the effect of EXOC6B haploinsufficiency. In 2008, a patient with a complex syndromic phenotype, including left renal agenesis, neutropenia, recurrent pulmonary infections, long bone diaphysis broadening, growth retardation, and developmental delay (DD) was found to carry a de novo translocation t(2;7) involving TSN3 and EXOC6B. Further characterization of the translocation indicated that disruption of TSN3 may be responsible for the skeletal phenotype. Recently, a heterozygous deletion of EXOC6B along with a deletion of the CYP26B1 gene has been reported in a boy with intellectual disability, speech delay, hyperactivity, facial asymmetry, a dysplastic ear, brachycephaly, and mild joint contractures. Additionally, disruption of EXOC6B by a de novo balanced translocation t(2;8) has been described in a patient with developmental delay, epilepsy, autistic and aggressive behavior. This is the first report of a de novo deletion affecting only EXOC6B in an individual with developmental delay. In conclusion, based on our findings and recent data from the literature, there is evidence that EXOC6B and the exocyst complex might play an important role in the molecular pathogenesis of intellectual disability. © 2014 Wiley Periodicals, Inc.
Related JoVE Video
Oculoectodermal syndrome: Report of a new case with a broad clinical spectrum.
Am. J. Med. Genet. A
PUBLISHED: 05-09-2014
Show Abstract
Hide Abstract
Oculoectodermal syndrome (OMIM 600268) is rare and characterized by aplasia cutis congenita, epibulbar dermoids, and other abnormalities. We report herein on a newly recognized patient with oculoectodermal syndrome, which is the 19th reported patient with OES. The boy aged six years demonstrated a broad clinical spectrum of this condition, including aplasia cutis congenita, epibulbar dermoids, hyperkeratotic papule, mildly enlarged cisterna magna, and an enlarged fluid space in the quadrigeminal cistern, suggesting a cyst. He also manifested anomalies not reported associated with this disorder, including systematized epidermal nevus following Blaschko's lines, hypopigmented skin lesions, and mild digital anomaly. © 2014 Wiley Periodicals, Inc.
Related JoVE Video
3p25.3 microdeletion of GABA transporters SLC6A1 and SLC6A11 results in intellectual disability, epilepsy and stereotypic behavior.
Am. J. Med. Genet. A
PUBLISHED: 05-02-2014
Show Abstract
Hide Abstract
Small interstitial deletions affecting chromosome region 3p25.3 have been reported in only five patients so far, four of them with overlapping telomeric microdeletions 3p25.3 and variable features of 3p- syndrome, and one patient with a small proximal microdeletion and a distinct phenotype with intellectual disability (ID) and multiple congenital anomalies. Here we report on three novel patients with overlapping proximal microdeletions 3p25.3 of 1.1-1.5?Mb in size showing a consistent non-3p- phenotype with ID, epilepsy/EEG abnormalities, poor speech, ataxia and stereotypic hand movements. The smallest region of overlap contains two genes encoding sodium- and chloride-dependent GABA transporters which have not been associated with this disease phenotype in humans so far. The protein function, the phenotype in transporter deficient animal models and the effects of specific pharmacological transporter inhibition in mice and humans provide evidence that these GABA transporters are plausible candidates for seizures/EEG abnormalities, ataxia and ID in this novel group of patients. A fourth novel patient deleted for a 3.16?Mb region, both telomeric and centromeric to 3p25.3, confirms that the telomeric segment is critical for the 3p- syndrome phenotype. Finally, a region of 643?kb is suggested to harbor one or more genes causative for polydactyly which is part of the 3p- syndrome. © 2014 Wiley Periodicals, Inc.
Related JoVE Video
Genome-wide UPD screening in patients with intellectual disability.
Eur. J. Hum. Genet.
PUBLISHED: 02-28-2014
Show Abstract
Hide Abstract
Uniparental disomy (UPD) describes the inheritance of a pair of chromosomes from only one parent. It may occur as isodisomy, heterodisomy or a combination of both and may involve only chromosome segments. UPD can affect each chromosome. The incidence is estimated to be around 1:3500 in live births. Some parts of chromosomes are subject to 'parent-of-origin imprinting' and the phenotypic effect in UPD syndromes is mainly due to functional imbalance of imprinted genes. Isodisomy can result in mutation homozygosity in autosomal-recessive inherited diseases. UPD causes several well-defined imprinting syndromes associated with intellectual disability (ID). Although knowledge on frequency and size of UPDs in patients with unexplained ID remains largely unknown as no efficient genome-wide screening technique was available for detection of both isodisomic and heterodisomic UPDs. SNP microarrays have been proven to be capable to detect UPDs through Mendelian errors. The correct subclassification of UPD requires child-parent trio experiments. To further elucidate the role of UPD in patients with unexplained ID, we analyzed a total of 322 child-parent trios. We were not able to detect UPDs (isodisomies and heterodisomies) within our cohort spanning whole chromosomes or chromosomal segments. We conclude that UPD is rare in patients with unexplained ID.
Related JoVE Video
Clinical spectrum of females with HCCS mutation: from no clinical signs to a neonatal lethal form of the microphthalmia with linear skin defects (MLS) syndrome.
Orphanet J Rare Dis
PUBLISHED: 01-30-2014
Show Abstract
Hide Abstract
Segmental Xp22.2 monosomy or a heterozygous HCCS mutation is associated with the microphthalmia with linear skin defects (MLS) or MIDAS (microphthalmia, dermal aplasia, and sclerocornea) syndrome, an X-linked disorder with male lethality. HCCS encodes the holocytochrome c-type synthase involved in mitochondrial oxidative phosphorylation (OXPHOS) and programmed cell death.
Related JoVE Video
Sequencing of a patient with balanced chromosome abnormalities and neurodevelopmental disease identifies disruption of multiple high risk loci by structural variation.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Balanced chromosome abnormalities (BCAs) occur at a high frequency in healthy and diseased individuals, but cost-efficient strategies to identify BCAs and evaluate whether they contribute to a phenotype have not yet become widespread. Here we apply genome-wide mate-pair library sequencing to characterize structural variation in a patient with unclear neurodevelopmental disease (NDD) and complex de novo BCAs at the karyotype level. Nucleotide-level characterization of the clinically described BCA breakpoints revealed disruption of at least three NDD candidate genes (LINC00299, NUP205, PSMD14) that gave rise to abnormal mRNAs and could be assumed as disease-causing. However, unbiased genome-wide analysis of the sequencing data for cryptic structural variation was key to reveal an additional submicroscopic inversion that truncates the schizophrenia- and bipolar disorder-associated brain transcription factor ZNF804A as an equally likely NDD-driving gene. Deep sequencing of fluorescent-sorted wild-type and derivative chromosomes confirmed the clinically undetected BCA. Moreover, deep sequencing further validated a high accuracy of mate-pair library sequencing to detect structural variants larger than 10 kB, proposing that this approach is powerful for clinical-grade genome-wide structural variant detection. Our study supports previous evidence for a role of ZNF804A in NDD and highlights the need for a more comprehensive assessment of structural variation in karyotypically abnormal individuals and patients with neurocognitive disease to avoid diagnostic deception.
Related JoVE Video
Behavioral phenotype in five individuals with de novo mutations within the GRIN2B gene.
Behav Brain Funct
PUBLISHED: 05-10-2013
Show Abstract
Hide Abstract
BACKGROUND: Intellectual disability (ID) is often associated with behavioral problems or disorders. Mutations in the GRIN2B gene (MRD6, MIM613970) have been identified as a common cause of ID (prevalence of 0.5 -- 1% in individuals with ID) associated with EEG and behavioral problems. METHODS: We assessed five GRIN2B mutation carriers aged between 3 and 14 years clinically and via standardized questionnaires to delineate a detailed behavioral phenotype. Parents and teachers rated problem behavior of their affected children by completing the Developmental Behavior Checklist (DBC) and the Conners Rating Scales Revised (CRS-R:L). RESULTS: All individuals had mild to severe ID and needed guidance in daily routine. They showed characteristic behavior problems with prominent hyperactivity, impulsivity, distractibility and a short attention span. Stereotypies, sleeping problems and a friendly but boundless social behavior were commonly reported. CONCLUSION: Our observations provide an initial delineation of the behavioral phenotype of GRIN2B mutation carriers.
Related JoVE Video
The phenotypic spectrum of duplication 5q35.2-q35.3 encompassing NSD1: is it really a reversed Sotos syndrome?
Am. J. Med. Genet. A
PUBLISHED: 04-15-2013
Show Abstract
Hide Abstract
Loss-of-function mutations of NSD1 and 5q35 microdeletions encompassing NSD1 are a major cause of Sotos syndrome (Sos), which is characterized by overgrowth, macrocephaly, characteristic facies, and variable intellectual disability (ID). Microduplications of 5q35.2-q35.3 including NSD1 have been reported in only five patients so far and described clinically as a reversed Sos resulting from a hypothetical gene dosage effect of NSD1. Here, we report on nine patients from five families with interstitial duplication 5q35 including NSD1 detected by molecular karyotyping. The clinical features of all 14 individuals are reviewed. Patients with microduplications including NSD1 appear to have a consistent phenotype consisting of short stature, microcephaly, learning disability or mild to moderate ID, and distinctive facial features comprising periorbital fullness, short palpebral fissures, a long nose with broad or long nasal tip, a smooth philtrum and a thin upper lip vermilion. Behavioral problems, ocular and minor hand anomalies may be associated. Based on our findings, we discuss the possible etiology and conclude that it is possible, but so far unproven, that a gene dosage effect of NSD1 may be the major cause.
Related JoVE Video
Rett syndrome: a study of the face.
Am. J. Med. Genet. A
PUBLISHED: 03-12-2011
Show Abstract
Hide Abstract
Rett syndrome is a unique disorder of neurodevelopment that is characterized by an evolving behavioral and developmental phenotype, which emerges after an apparently normal early infantile period. It almost exclusively affects females. The face of Rett syndrome is said to resemble that of Angelman syndrome, although there seems little objective support for this impression and it is not a concept with universal support. This observational and anthropometric study was carried out to define the key facial characteristics of females with Rett syndrome and to evaluate whether any changes of significance occur with age. Thirty-seven affected Caucasian females, from 2 to 20 years of age, were evaluated. Thirty-five of them had a documented mutation in MECP2 while the remaining two fulfilled the clinical criteria for Rett syndrome and had been diagnosed by an experienced clinician. Few unusual facial features were noted. Almost all facial measurements were within the normal range although head circumference tended to fall below the normal range with increasing age. The pattern of measurements was constant over time, with the exception of increased facial width in the under 3-year-old girls. The face of Rett syndrome does not demonstrate marked prognathism, wide mouth, spaced teeth or striking microcephaly, all features of Angelman syndrome. Thus, while Rett and Angelman syndromes have similar clinical, neurological, and behavioral phenotypes, they do not appear to share similar facial features.
Related JoVE Video
Identification of FOXP1 deletions in three unrelated patients with mental retardation and significant speech and language deficits.
Hum. Mutat.
PUBLISHED: 09-18-2010
Show Abstract
Hide Abstract
Mental retardation affects 2-3% of the population and shows a high heritability.Neurodevelopmental disorders that include pronounced impairment in language and speech skills occur less frequently. For most cases, the molecular basis of mental retardation with or without speech and language disorder is unknown due to the heterogeneity of underlying genetic factors.We have used molecular karyotyping on 1523 patients with mental retardation to detect copy number variations (CNVs) including deletions or duplications. These studies revealed three heterozygous overlapping deletions solely affecting the forkhead box P1 (FOXP1) gene. All three patients had moderate mental retardation and significant language and speech deficits. Since our results are consistent with a de novo occurrence of these deletions, we considered them as causal although we detected a single large deletion including FOXP1 and additional genes in 4104 ancestrally matched controls. These findings are of interest with regard to the structural and functional relationship between FOXP1 and FOXP2. Mutations in FOXP2 have been previously related to monogenic cases of developmental verbal dyspraxia. Both FOXP1 and FOXP2 are expressed in songbird and human brain regions that are important for the developmental processes that culminate in speech and language.
Related JoVE Video
Intragenic deletions of IL1RAPL1: Report of two cases and review of the literature.
Am. J. Med. Genet. A
PUBLISHED: 04-14-2010
Show Abstract
Hide Abstract
IL1RAPL1 (interleukin-1 receptor accessory protein-like 1) located at Xp21.3-22.1 has repeatedly been shown to be deleted in patients with a contiguous gene syndrome also affecting neighboring genes, in particular DMD (dystrophin), DAX-1 (NR0B1, nuclear receptor subfamily 0, group B, member 1), and GK (glycerol kinase). In contrast, intragenic deletions of IL1RAPL1 or other mutations or cytogenetic aberrations affecting IL1RAPL1 have only rarely been identified. Up to date, they have mostly been associated with nonspecific mental retardation (MRX). We report on two nonrelated patients with MR and additional dysmorphic features who both show intragenic deletions of IL1RAPL1, one of them being de novo (exon 2) and the other one being inherited from his mother (exons 3-5). Deletions were identified by microarray-based chromosome analysis and confirmed by multiplex PCR and FISH, respectively. These data, along with recent functional studies indicating its role in neuronal development, provide further evidence for the relevance of IL1RAPL1 in the pathogenesis of X-linked MR and add knowledge to the phenotypic spectrum of IL1RAPL1 mutations.
Related JoVE Video
Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes.
Nat. Genet.
PUBLISHED: 04-01-2010
Show Abstract
Hide Abstract
N-methyl-D-aspartate (NMDA) receptors mediate excitatory neurotransmission in the mammalian brain. Two glycine-binding NR1 subunits and two glutamate-binding NR2 subunits each form highly Ca²(+)-permeable cation channels which are blocked by extracellular Mg²(+) in a voltage-dependent manner. Either GRIN2B or GRIN2A, encoding the NMDA receptor subunits NR2B and NR2A, was found to be disrupted by chromosome translocation breakpoints in individuals with mental retardation and/or epilepsy. Sequencing of GRIN2B in 468 individuals with mental retardation revealed four de novo mutations: a frameshift, a missense and two splice-site mutations. In another cohort of 127 individuals with idiopathic epilepsy and/or mental retardation, we discovered a GRIN2A nonsense mutation in a three-generation family. In a girl with early-onset epileptic encephalopathy, we identified the de novo GRIN2A mutation c.1845C>A predicting the amino acid substitution p.N615K. Analysis of NR1-NR2A(N615K) (NR2A subunit with the p.N615K alteration) receptor currents revealed a loss of the Mg²(+) block and a decrease in Ca²(+) permeability. Our findings suggest that disturbances in the neuronal electrophysiological balance during development result in variable neurological phenotypes depending on which NR2 subunit of NMDA receptors is affected.
Related JoVE Video
Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation.
Nat. Genet.
PUBLISHED: 01-21-2010
Show Abstract
Hide Abstract
Using microarrays, we identified de novo copy number variations in the SHANK2 synaptic scaffolding gene in two unrelated individuals with autism-spectrum disorder (ASD) and mental retardation. DNA sequencing of SHANK2 in 396 individuals with ASD, 184 individuals with mental retardation and 659 unaffected individuals (controls) revealed additional variants that were specific to ASD and mental retardation cases, including a de novo nonsense mutation and seven rare inherited changes. Our findings further link common genes between ASD and intellectual disability.
Related JoVE Video
A novel microdeletion syndrome involving 5q14.3-q15: clinical and molecular cytogenetic characterization of three patients.
Eur. J. Hum. Genet.
PUBLISHED: 05-27-2009
Show Abstract
Hide Abstract
Molecular karyotyping is being increasingly applied to delineate novel disease causing microaberrations and related syndromes in patients with mental retardation of unknown aetiology. We report on three unrelated patients with overlapping de novo interstitial microdeletions involving 5q14.3-q15. All three patients presented with severe psychomotor retardation, epilepsy or febrile seizures, muscular hypotonia and variable brain and minor anomalies. Molecular karyotyping revealed three overlapping microdeletions measuring 5.7, 3.9 and 3.6 Mb, respectively. The microdeletions were identified using single nucleotide polymorphism (SNP) arrays (Affymetrix 100K and Illumina 550K) and array comparative genomic hybridization (1 Mb Sanger array-CGH). Confirmation and segregation studies were performed using fluorescence in situ hybridization (FISH) and quantitative PCR. All three aberrations were confirmed and proven to have occurred de novo. The boundaries and sizes of the deletions in the three patients were different, but an overlapping region of around 1.6 Mb in 5q14.3 was defined. It included five genes: CETN3, AC093510.2, POLR3G, LYSMD3 and the proximal part of GPR98/MASS1, a known epilepsy gene. Haploinsufficiency of GPR98/MASS1 is probably responsible for the seizure phenotype in our patients. At least one other gene contained in the commonly deleted region, LYSMD3, shows a high level of central nervous expression during embryogenesis and is also, therefore, a good candidate gene for other central nervous system (CNS) symptoms, such as psychomotor retardation, brain anomalies and muscular hypotonia of the 5q14.3 microdeletion syndrome.
Related JoVE Video
Aspartylglucosaminuria: unusual neonatal presentation in qatari twins with a novel aspartylglucosaminidase gene mutation and 3 new cases in a Turkish family.
J. Child Neurol.
Show Abstract
Hide Abstract
Aspartylglucosaminuria is a rare autosomal recessive lysosomal storage disorder leading early to a progressive intellectual disability. Monozygous Qatari twins presented with an unusual perinatal manifestation characterized by severe muscular hypotonia, scarce spontaneous movements, multiple contractures, and respiratory insufficiency. Biochemical investigations suggested aspartylglucosaminuria, and a novel homozygous mutation c.439T>C (p.S147P) was found in the aspartylglucosaminidase gene. However, it cannot be excluded that the unusual neonatal presentation is due to an additional autosomal recessive disease in this multiply consanguineous family. The classical aspartylglucosaminuria phenotype (progressive speech delay, psychomotor retardation, and behavioral abnormalities) was observed in 3 Turkish siblings. Although aspartylglucosaminuria was suspected early, the definite diagnosis was not confirmed until the age of 18 years. A novel homozygous mutation c.346C>T (p.R116W) was found. These 5 cases emphasize that aspartylglucosaminuria is panethnic and may possibly present with prenatal manifestation. Screening for aspartylglucosaminuria should be done in all patients with unexplained psychomotor retardation.
Related JoVE Video
Hepatoblastoma in two siblings and familial adenomatous polyposis: causal nexus or coincidence?
Fam. Cancer
Show Abstract
Hide Abstract
Infantile and childhood hepatoblastoma (HB) occurs more frequently in children with hereditary predisposition to familial adenomatous polyposis (FAP) than in the general population. The occurrence of HB in two infant siblings is reported. The sister died of the disease. The brother survived the HB and was later diagnosed with familial adenomatous polyposis and advanced rectal cancer. He was found to carry a germline mutation of the APC gene. Presuming that the HB in the two siblings was the first manifestation of FAP we performed APC mutation analysis in DNA from archived tumour tissue of his sister and in blood samples of both parents. Surprisingly, the mutation was neither found in both parents, nor in the tissue samples of the sister. We outline the impact of this finding for genetic counselling and review the literature on FAP and HB.
Related JoVE Video
A 15q24 microdeletion in transient myeloproliferative disease (TMD) and acute megakaryoblastic leukaemia (AMKL) implicates PML and SUMO3 in the leukaemogenesis of TMD/AMKL.
Br. J. Haematol.
Show Abstract
Hide Abstract
Transient myeloproliferative disorder (TMD) of the newborn and acute megakaryoblastic leukaemia (AMKL) in children with Down syndrome (DS) represent paradigmatic models of leukaemogenesis. Chromosome 21 gene dosage effects and truncating mutations of the X-chromosomal transcription factor GATA1 synergize to trigger TMD and AMKL in most patients. Here, we report the occurrence of TMD, which spontaneously remitted and later progressed to AMKL in a patient without DS but with a distinct dysmorphic syndrome. Genetic analysis of the leukaemic clone revealed somatic trisomy 21 and a truncating GATA1 mutation. The analysis of the patients normal blood cell DNA on a genomic single nucleotide polymorphism (SNP) array revealed a de novo germ line 2·58 Mb 15q24 microdeletion including 41 known genes encompassing the tumour suppressor PML. Genomic context analysis of proteins encoded by genes that are included in the microdeletion, chromosome 21-encoded proteins and GATA1 suggests that the microdeletion may trigger leukaemogenesis by disturbing the balance of a hypothetical regulatory network of normal megakaryopoiesis involving PML, SUMO3 and GATA1. The 15q24 microdeletion may thus represent the first genetic hit to initiate leukaemogenesis and implicates PML and SUMO3 as novel components of the leukaemogenic network in TMD/AMKL.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.