JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
GRP78 is a novel receptor initiating a vascular barrier protective response to oxidized phospholipids.
Mol. Biol. Cell
PUBLISHED: 05-14-2014
Show Abstract
Hide Abstract
Vascular integrity and the maintenance of blood vessel continuity are fundamental features of the circulatory system maintained through endothelial cell-cell junctions. Defects in the endothelial barrier become an initiating factor in several pathologies, including ischemia/reperfusion, tumor angiogenesis, pulmonary edema, sepsis, and acute lung injury. Better understanding of mechanisms stimulating endothelial barrier enhancement may provide novel therapeutic strategies. We previously reported that oxidized phospholipids (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine [OxPAPC]) promote endothelial cell (EC) barrier enhancement both in vitro and in vivo. This study examines the initiating mechanistic events triggered by OxPAPC to increase vascular integrity. Our data demonstrate that OxPAPC directly binds the cell membrane-localized chaperone protein, GRP78, associated with its cofactor, HTJ-1. OxPAPC binding to plasma membrane-localized GRP78 leads to GRP78 trafficking to caveolin-enriched microdomains (CEMs) on the cell surface and consequent activation of sphingosine 1-phosphate receptor 1, Src and Fyn tyrosine kinases, and Rac1 GTPase, processes essential for cytoskeletal reorganization and EC barrier enhancement. Using animal models of acute lung injury with vascular hyperpermeability, we observed that HTJ-1 knockdown blocked OxPAPC protection from interleukin-6 and ventilator-induced lung injury. Our data indicate for the first time an essential role of GRP78 and HTJ-1 in OxPAPC-mediated CEM dynamics and enhancement of vascular integrity.
Related JoVE Video
Splenectomy is modifying the vascular remodeling of thrombosis.
J Am Heart Assoc
PUBLISHED: 03-04-2014
Show Abstract
Hide Abstract
Splenectomy is a clinical risk factor for complicated thrombosis. We hypothesized that the loss of the mechanical filtering function of the spleen may enrich for thrombogenic phospholipids in the circulation, thereby affecting the vascular remodeling of thrombosis.
Related JoVE Video
Sesquiterpenes from Neurolaena lobata and their antiproliferative and anti-inflammatory activities.
J. Nat. Prod.
PUBLISHED: 01-29-2014
Show Abstract
Hide Abstract
Five new sesquiterpenes, neurolobatin A (1), neurolobatin B (2), 5?-hydroxy-8?-isovaleroyloxy-9?-hydroxycalyculatolide (3), 3-epi-desacetylisovaleroylheliangine (4), and 3?-acetoxy-8?-isovaleroyloxyreynosin (5), were isolated from the aerial parts of Neurolaena lobata. The structures were established by means of a combined spectroscopic data analysis, including ESIMS, APCI-MS, and 1D- and 2D-NMR techniques. Neurolobatin A (1) and B (2) are unusual isomeric seco-germacranolide sesquiterpenes with a bicyclic acetal moiety, compounds 3 and 4 are unsaturated epoxy-germacranolide esters, and compound 5 is the first eudesmanolide isolated from the genus Neurolaena. The isolated compounds (1-5) were shown to have noteworthy antiproliferative activities against human tumor cell lines (A2780, A431, HeLa, and MCF7). The anti-inflammatory effects of 1-5, evaluated in vitro using LPS- and TNF-?-induced IL-8 expression inhibitory assays, revealed that all these compounds strongly down-regulated the LPS-induced production of IL-8 protein, with neurolobatin B (2) and 3-epi-desacetylisovaleroylheliangine (4) being the most effective.
Related JoVE Video
Amphetamine actions at the serotonin transporter rely on the availability of phosphatidylinositol-4,5-bisphosphate.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 06-24-2013
Show Abstract
Hide Abstract
Nerve functions require phosphatidylinositol-4,5-bisphosphate (PIP2) that binds to ion channels, thereby controlling their gating. Channel properties are also attributed to serotonin transporters (SERTs); however, SERT regulation by PIP2 has not been reported. SERTs control neurotransmission by removing serotonin from the extracellular space. An increase in extracellular serotonin results from transporter-mediated efflux triggered by amphetamine-like psychostimulants. Herein, we altered the abundance of PIP2 by activating phospholipase-C (PLC), using a scavenging peptide, and inhibiting PIP2-synthesis. We tested the effects of the verified scarcity of PIP2 on amphetamine-triggered SERT functions in human cells. We observed an interaction between SERT and PIP2 in pull-down assays. On decreased PIP2 availability, amphetamine-evoked currents were markedly reduced compared with controls, as was amphetamine-induced efflux. Signaling downstream of PLC was excluded as a cause for these effects. A reduction of substrate efflux due to PLC activation was also found with recombinant noradrenaline transporters and in rat hippocampal slices. Transmitter uptake was not affected by PIP2 reduction. Moreover, SERT was revealed to have a positively charged binding site for PIP2. Mutation of the latter resulted in a loss of amphetamine-induced SERT-mediated efflux and currents, as well as a lack of PIP2-dependent effects. Substrate uptake and surface expression were comparable between mutant and WT SERTs. These findings demonstrate that PIP2 binding to monoamine transporters is a prerequisite for amphetamine actions without being a requirement for neurotransmitter uptake. These results open the way to target amphetamine-induced SERT-dependent actions independently of normal SERT function and thus to treat psychostimulant addiction.
Related JoVE Video
Retinal pigment epithelium cells produce VEGF in response to oxidized phospholipids through mechanisms involving ATF4 and protein kinase CK2.
Exp. Eye Res.
PUBLISHED: 05-17-2013
Show Abstract
Hide Abstract
Oxidized phospholipids (OxPLs) are pleiotropic lipid mediators known to induce proangiogenic and proinflammatory cellular effects that are increasingly recognized to be involved in a number of physiologic and pathologic processes in the retina. Immunohistochemical studies have detected OxPLs in retinal structures, such as retinal pigment epithelium (RPE) or photoreceptor cells. This study analyzed whether OxPLs could play a role in upregulation of VEGF, which is a cause of pathological neovascularization characteristic of eye diseases such as age-related macular degeneration. We confirmed accumulation of OxPLs in the eye using reversed-phase liquid chromatography coupled to mass spectrometry. Multiple species of oxidized phosphatidylcholines (OxPCs) were detected in human vitreous, including biologically active fragmented species POVPC, PGPC, PONPC and PAzPC. In in vitro experiments human fetal RPE and primary RPE cells were stimulated with OxPLs. Primary RPE cells were transfected with small interfering RNAs targeting ATF4. mRNA levels of VEGF in fetal and primary RPE cells were determined by real-time quantitative PCR. VEGF protein concentrations were measured in culture medium by ELISA. We found that OxPCs and other classes of OxPLs upregulated the expression of VEGF in fetal and primary RPE cells, which critically depended on ATF4. In addition, upregulation of VEGF in primary RPE cells was blocked by a chemical inhibitor of protein kinase CK2 known to suppress induction of ATF4 and VEGF by OxPLs. Our data show that different species of OxPLs, which are present in the human eye are capable of stimulating expression of VEGF in fetal and primary RPE cells via ATF4-dependent mechanisms.
Related JoVE Video
WAVE1 mediates suppression of phagocytosis by phospholipid-derived DAMPs.
J. Clin. Invest.
PUBLISHED: 05-02-2013
Show Abstract
Hide Abstract
Clearance of invading pathogens is essential to preventing overwhelming inflammation and sepsis that are symptomatic of bacterial peritonitis. Macrophages participate in this innate immune response by engulfing and digesting pathogens, a process called phagocytosis. Oxidized phospholipids (OxPL) are danger-associated molecular patterns (DAMPs) generated in response to infection that can prevent the phagocytic clearance of bacteria. We investigated the mechanism underlying OxPL action in macrophages. Exposure to OxPL induced alterations in actin polymerization, resulting in spreading of peritoneal macrophages and diminished uptake of E. coli. Pharmacological and cell-based studies showed that an anchored pool of PKA mediates the effects of OxPL. Gene silencing approaches identified the A-kinase anchoring protein (AKAP) WAVE1 as an effector of OxPL action in vitro. Chimeric Wave1(-/-) mice survived significantly longer after infection with E. coli and OxPL treatment in vivo. Moreover, we found that endogenously generated OxPL in human peritoneal dialysis fluid from end-stage renal failure patients inhibited phagocytosis via WAVE1. Collectively, these data uncover an unanticipated role for WAVE1 as a critical modulator of the innate immune response to severe bacterial infections.
Related JoVE Video
Dual role of the antioxidant enzyme peroxiredoxin 6 in skin carcinogenesis.
Cancer Res.
PUBLISHED: 04-10-2013
Show Abstract
Hide Abstract
The antioxidant enzyme peroxiredoxin 6 (Prdx6) is a key regulator of the cellular redox balance, particularly under stress conditions. We identified Prdx6 as an important player in different phases of skin carcinogenesis. Loss of Prdx6 in mice enhanced the susceptibility to skin tumorigenesis, whereas overexpression of Prdx6 in keratinocytes of transgenic mice had the opposite effect. The tumor-preventive effect of Prdx6, which was observed in a human papilloma virus 8-induced and a chemically induced tumor model, was not due to alterations in keratinocyte proliferation, apoptosis, or in the inflammatory response. Rather, endogenous and overexpressed Prdx6 reduced oxidative stress as reflected by the lower levels of oxidized phospholipids in the protumorigenic skin of Prdx6 transgenic mice and the higher levels in Prdx6-knockout mice than in control animals. In contrast to its beneficial effect in tumor prevention, overexpression of Prdx6 led to an acceleration of malignant progression of existing tumors, revealing a dual function of this enzyme in the pathogenesis of skin cancer. Finally, we found strong expression of PRDX6 in keratinocytes of normal human skin and in the tumor cells of squamous cell carcinomas, indicating a role of Prdx6 in human skin carcinogenesis. Taken together, our data point to the potential usefulness of Prdx6 activators or inhibitors for controlling different stages of skin carcinogenesis.
Related JoVE Video
Thermodynamic and kinetic investigations of the release of oxidized phospholipids from lipid membranes and its effect on vascular integrity.
Chem. Phys. Lipids
PUBLISHED: 01-25-2013
Show Abstract
Hide Abstract
The lipid membrane not only provides a rich interface with an array of receptor signaling complexes with which a cell communicates, but it also serves as a source of lipid derived bioactive molecules. In pathologic conditions of acute lung injury (ALI) associated with activation of oxidative stress, unsaturated phosphatidyl cholines overlooking a luminal space undergo oxidation leading to generation of fragmented phospholipids such as 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPC), or 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) full length oxygenation products (oxPAPC). Using Langmuir monolayers as models of the lipid bilayer, we evaluated the propensity of these phospholipids to solubilize from the cell membrane. The results suggest that lysoPC is rapidly released as it is produced, while oxPAPC has a longer membrane bound lifetime. After being released from cell membranes, these oxidized phospholipids exhibit potent agonist-like effects on neighboring cells. Therefore, we correlate the presence of the two phospholipid groups with the onset and resolution of increased vascular leakiness associated with ALI through testing their effect on vascular endothelial barrier integrity. Our work shows that cells respond differently to these two groups of products of phosphatidyl choline oxidation. LysoPC disrupts cell-cell junctions and increases endothelial permeability while oxPAPC enhances endothelial barrier. These data suggest a model whereby rapid release of lysoPC results in onset of ALI associated vascular leak, and the release of a reserve of oxPAPC as oxidative stress subsides restores the vascular barrier properties.
Related JoVE Video
Autophagy is induced by UVA and promotes removal of oxidized phospholipids and protein aggregates in epidermal keratinocytes.
J. Invest. Dermatol.
PUBLISHED: 01-22-2013
Show Abstract
Hide Abstract
The skin is exposed to environmental insults such as UV light that cause oxidative damage to macromolecules. A centerpiece in the defense against oxidative stress is the Nrf2 (nuclear factor (erythroid-derived-2)-like 2)-mediated transcriptional upregulation of antioxidant and detoxifying enzymes and the removal of oxidatively damaged material. Autophagy has an important role in the intracellular degradation of damaged proteins and entire organelles, but its role in the epidermis has remained elusive. Here, we show that both UVA and UVA-oxidized phospholipids induced autophagy in epidermal keratinocytes. Oxidative stressors induced massive accumulation of high-molecular-weight protein aggregates containing the autophagy adaptor protein p62/SQSTM1 in autophagy-deficient (autophagy-related 7 (ATG7) negative) keratinocytes. Strikingly, even in the absence of exogenous stress, the expression of Nrf2-dependent genes was elevated in autophagy-deficient keratinocytes. Furthermore, we show that autophagy-deficient cells contained significantly elevated levels of reactive oxidized phospholipids. Thus, our data demonstrate that autophagy is crucial for both the degradation of proteins and lipids modified by environmental UV stress and for limiting Nrf2 activity in keratinocytes. Lipids that promote inflammation and tissue damage because of their reactivity and signaling functions are commonly observed in aged and diseased skin, and thus targeting autophagy may be a promising strategy to counteract the damage promoted by excessive lipid oxidation.
Related JoVE Video
Differential regulation of endothelial cell permeability by high and low doses of oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine.
Am. J. Respir. Cell Mol. Biol.
PUBLISHED: 10-13-2011
Show Abstract
Hide Abstract
The generation of phospholipid oxidation products in atherosclerosis, sepsis, and lung pathologies affects endothelial barrier function, which exerts significant consequences on disease outcomes in general. Our group previously showed that oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (OxPAPC) at low concentrations increases endothelial cell (EC) barrier function, but decreases it at higher concentrations. In this study, we determined the mechanisms responsible for the pulmonary endothelial cell barrier dysfunction induced by high OxPAPC concentrations. OxPAPC at a range of 5-20 ?g/ml enhanced EC barriers, as indicated by increased transendothelial electrical resistance. In contrast, higher OxPAPC concentrations (50-100 ?g/ml) rapidly increased EC permeability, which was accompanied by increased total cell protein tyrosine (Tyr) phosphorylation, phosphorylation at Tyr-418, the activation of Src kinase, and the phosphorylation of adherens junction (AJ) protein vascular endothelial cadherin (VE-cadherin) at Tyr-731 and Tyr-658, which was not observed in ECs stimulated with low OxPAPC doses. The early tyrosine phosphorylation of VE-cadherin was linked to the dissociation of VE-cadherin-p120-catenin/?-catenin complexes and VE-cadherin internalization, whereas low OxPAPC doses promoted the formation of VE-cadherin-p120-catenin/?-catenin complexes. High but not low doses of OxPAPC increased the production of reactive oxygen species (ROS) and protein oxidation. The inhibition of Src by PP2 and ROS production by N-acetyl cysteine inhibited the disassembly of VE-cadherin-p120-catenin complexes, and attenuated high OxPAPC-induced EC barrier disruption. These results show the differential effects of OxPAPC doses on VE-cadherin-p120-catenin complex assembly and EC barrier function. These data suggest that the rapid tyrosine phosphorylation of VE-cadherin and other potential targets mediated by Src and ROS-dependent mechanisms plays a key role in the dissociation of AJ complexes and EC barrier dysfunction induced by high OxPAPC doses.
Related JoVE Video
Pharmacophore-based discovery of FXR agonists. Part I: Model development and experimental validation.
Bioorg. Med. Chem.
PUBLISHED: 06-17-2011
Show Abstract
Hide Abstract
The farnesoid X receptor (FXR) is involved in glucose and lipid metabolism regulation, which makes it an attractive target for the metabolic syndrome, dyslipidemia, atherosclerosis, and type 2 diabetes. In order to find novel FXR agonists, a structure-based pharmacophore model collection was developed and theoretically evaluated against virtual databases including the ChEMBL database. The most suitable models were used to screen the National Cancer Institute (NCI) database. Biological evaluation of virtual hits led to the discovery of a novel FXR agonist with a piperazine scaffold (compound 19) that shows comparable activity as the endogenous FXR agonist chenodeoxycholic acid (CDCA, compound 2).
Related JoVE Video
Pharmacophore-based discovery of FXR-agonists. Part II: identification of bioactive triterpenes from Ganoderma lucidum.
Bioorg. Med. Chem.
PUBLISHED: 06-17-2011
Show Abstract
Hide Abstract
The farnesoid X receptor (FXR) belonging to the metabolic subfamily of nuclear receptors is a ligand-induced transcriptional activator. Its central function is the physiological maintenance of bile acid homeostasis including the regulation of glucose and lipid metabolism. Accessible structural information about its ligand-binding domain renders FXR an attractive target for in silico approaches. Integrated to natural product research these computational tools assist to find novel bioactive compounds showing beneficial effects in prevention and treatment of, for example, the metabolic syndrome, dyslipidemia, atherosclerosis, and type 2 diabetes. Virtual screening experiments of our in-house Chinese Herbal Medicine database with structure-based pharmacophore models, previously generated and validated, revealed mainly lanostane-type triterpenes of the TCM fungus Ganoderma lucidum Karst. as putative FXR ligands. To verify the prediction of the in silico approach, two Ganoderma fruit body extracts and compounds isolated thereof were pharmacologically investigated. Pronounced FXR-inducing effects were observed for the extracts at a concentration of 100 ?g/mL. Intriguingly, five lanostanes out of 25 secondary metabolites from G. lucidum, that is, ergosterol peroxide (2), lucidumol A (11), ganoderic acid TR (12), ganodermanontriol (13), and ganoderiol F (14), dose-dependently induced FXR in the low micromolar range in a reporter gene assay. To rationalize the binding interactions, additional pharmacophore profiling and molecular docking studies were performed, which allowed establishing a first structure-activity relationship of the investigated triterpenes.
Related JoVE Video
Oxidized phospholipids are more potent antagonists of lipopolysaccharide than inducers of inflammation.
J. Immunol.
PUBLISHED: 11-10-2010
Show Abstract
Hide Abstract
Polyunsaturated fatty acids are precursors of multiple pro- and anti-inflammatory molecules generated by enzymatic stereospecific and positionally specific insertion of oxygen, which is a prerequisite for recognition of these mediators by cellular receptors. However, nonenzymatically oxidized free and esterified polyunsaturated fatty acids also demonstrate activities relevant to inflammation. In particular, phospholipids containing oxidized fatty acid residues (oxidized phospholipids; OxPLs) were shown to induce proinflammatory changes in endothelial cells but paradoxically also to inhibit inflammation induced via TLR4. In this study, we show that half-maximal inhibition of LPS-induced elevation of E-selectin mRNA in endothelial cells developed at concentrations of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) 10-fold lower than those required to induce proinflammatory response. Similar concentration difference was observed for other classes and molecular species of OxPLs. Upon injection into mice, OxPAPC did not elevate plasma levels of IL-6 and keratinocyte chemoattractant but strongly inhibited LPS-induced upregulation of these inflammatory cytokines. Thus, both in vitro and in vivo, anti-LPS effects of OxPLs are observed at lower concentrations than those required for their proinflammatory action. Quantification of the most abundant oxidized phosphatidylcholines by HPLC/tandem mass spectrometry showed that circulating concentrations of total oxidized phosphatidylcholine species are close to the range where they demonstrate anti-LPS activity but significantly lower than that required for induction of inflammation. We hypothesize that low levels of OxPLs in circulation serve mostly anti-LPS function and protect from excessive systemic response to TLR4 ligands, whereas proinflammatory effects of OxPLs are more likely to develop locally at sites of tissue deposition of OxPLs (e.g., in atherosclerotic vessels).
Related JoVE Video
Involvement of CK2 in activation of electrophilic genes in endothelial cells by oxidized phospholipids.
J. Lipid Res.
PUBLISHED: 10-08-2010
Show Abstract
Hide Abstract
Oxidized phospholipids (OxPLs) are increasingly recognized as pleiotropic lipid mediators demonstrating a variety of biological activities. In particular, OxPLs induce electrophilic stress response and stimulate expression of NF-E2-related factor 2 (NRF2)-dependent genes. The mechanisms of NRF2 upregulation in response to OxPLs, however, are incompletely understood. Here we show that upregulation of NRF2 by OxPLs depends on the activity of the CK2 protein kinase. Inactivation of CK2 by chemical inhibitors or gene silencing resulted in diminished accumulation of NRF2 and its target genes, GCLM, HMOX1, and NQO1, downstream in response to OxPLs. Furthermore, inhibition of CK2 suppressed NRF2-dependent induction of ATF4 and its downstream gene VEGF. Thus, inactivation of CK2 in OxPL-treated endothelial cells results in inhibition of the NRF2-ATF4-VEGF axis and is likely to produce antiangiogenic effects. This work characterizes novel cross-talk between CK2 and cellular stress pathways, which may provide additional insights into the mechanisms of beneficial action and side-effects of CK2 inhibitors.
Related JoVE Video
Analysis of oxidized phospholipids by MALDI mass spectrometry using 6-aza-2-thiothymine together with matrix additives and disposable target surfaces.
Anal. Chem.
PUBLISHED: 06-11-2010
Show Abstract
Hide Abstract
6-Aza-2-thiothymine (ATT) is introduced as novel matrix system for the analysis of oxidized phospholipids (OxPLs) by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). A systematic evaluation comparing different established and novel matrix substances, especially 2,4,6-THAP matrix (Stubiger, G.; Belgacem O. Anal. Chem. 2007, 79, 3206-3213) as reference compound for phospholipid analysis, and specific matrix additives was performed. Thereby, ATT turned out to be the reagent of choice for MALDI analysis of major biologically relevant OxPL classes (e.g., OxPC, OxPE, and OxPS) in positive and negative ionization mode. ATT used together with specific chaotropic reagents at low concentration (0.5-2 mM) acting as OxPL ionization enhancers revealed an excellent comatrix system for application with MALDI instrument types employing UV- and Nd:YAG laser systems (337 and 355 nm). Moreover, disposable MALDI targets surfaces with specific physicochemical properties (e.g., metallized glass or polymeric substrates) were revealed as superior over stainless steel in terms of reduced chemical background noise ( approximately 10-fold better S/N ratios), increased mass spectral reproducibility, and enhanced sensitivity (LOD approximately 250-500 fg on target). The combination of these parameters offers a significant advantage for highly sensitive OxPL profiling by MALDI-MS of biological samples (e.g., human plasma) at trace levels.
Related JoVE Video
Invariant natural killer T cells: linking inflammation and neovascularization in human atherosclerosis.
Eur. J. Immunol.
PUBLISHED: 04-27-2010
Show Abstract
Hide Abstract
Atherosclerosis, a chronic inflammatory lipid storage disease of large arteries, is complicated by cardiovascular events usually precipitated by plaque rupture or erosion. Inflammation participates in lesion progression and plaque rupture. Identification of leukocyte populations involved in plaque destabilization is important for effective prevention of cardiovascular events. This study investigates CD1d-expressing cells and invariant NKT cells (iNKT) in human arterial tissue, their correlation with disease severity and symptoms, and potential mechanisms for their involvement in plaque formation and/or destabilization. CD1d-expressing cells were present in advanced plaques in patients who suffered from cardiovascular events in the past and were most abundant in plaques with ectopic neovascularization. Confocal microscopy detected iNKT cells in plaques, and plaque-derived iNKT cell lines promptly produced proinflammatory cytokines when stimulated by CD1d-expressing APC-presenting ?-galactosylceramide lipid antigen. Furthermore, iNKT cells were diminished in the circulating blood of patients with symptomatic atherosclerosis. Activated iNKT cell-derived culture supernatants showed angiogenic activity in a human microvascular endothelial cell line HMEC-1-spheroid model of in vitro angiogenesis and strongly activated human microvascular endothelial cell line HMEC-1 migration. This functional activity was ascribed to IL-8 released by iNKT cells upon lipid recognition. These findings introduce iNKT cells as novel cellular candidates promoting plaque neovascularization and destabilization in human atherosclerosis.
Related JoVE Video
T-cadherin attenuates the PERK branch of the unfolded protein response and protects vascular endothelial cells from endoplasmic reticulum stress-induced apoptosis.
Cell. Signal.
PUBLISHED: 03-08-2010
Show Abstract
Hide Abstract
Endoplasmic reticulum (ER) stress activated by perturbations in ER homeostasis induces the unfolded protein response (UPR) with chaperon Grp78 as the key activator of UPR signalling. The aim of UPR is to restore normal ER function; however prolonged or severe ER stress triggers apoptosis of damaged cells to ensure protection of the whole organism. Recent findings support an association of ER stress-induced apoptosis of vascular cells with cardiovascular pathologies. T-cadherin (T-cad), an atypical glycosylphosphatidylinositol-anchored member of the cadherin superfamily is upregulated in atherosclerotic lesions. Here we investigate the ability of T-cad to influence UPR signalling and endothelial cell (EC) survival during ER stress. EC were treated with a variety of ER stress-inducing compounds (thapsigargin, dithiothereitol, brefeldin A, tunicamycin, A23187 or homocysteine) and induction of ER stress validated by increases in levels of UPR signalling molecules Grp78 (glucose-regulated protein of 78kDa), phospho-eIF2alpha (phosphorylated eukaryotic initiation factor 2alpha) and CHOP (C/EBP homologous protein). All compounds also increased T-cad mRNA and protein levels. Overexpression or silencing of T-cad in EC respectively attenuated or amplified the ER stress-induced increase in phospho-eIF2alpha, Grp78, CHOP and active caspases. Effects of T-cad-overexpression or T-cad-silencing on ER stress responses in EC were not affected by inclusion of either N-acetylcysteine (reactive oxygen species scavenger), LY294002 (phosphatidylinositol-3-kinase inhibitor) or SP6000125 (Jun N-terminal kinase inhibitor). The data suggest that upregulation of T-cad on EC during ER stress attenuates the activation of the proapoptotic PERK (PKR (double-stranded RNA-activated protein kinase)-like ER kinase) branch of the UPR cascade and thereby protects EC from ER stress-induced apoptosis.
Related JoVE Video
Oxidized phospholipids regulate expression of ATF4 and VEGF in endothelial cells via NRF2-dependent mechanism: novel point of convergence between electrophilic and unfolded protein stress pathways.
Arterioscler. Thromb. Vasc. Biol.
PUBLISHED: 02-25-2010
Show Abstract
Hide Abstract
The ATF4 arm of the unfolded protein response is increasingly recognized for its relevance to pathology, and in particular to angiogenic reactions. Oxidized phospholipids (OxPLs), known to accumulate in atherosclerotic vessels, were shown to upregulate vascular endothelial growth factor (VEGF) and induce angiogenesis via an ATF4-dependent mechanism. In this study, we analyzed the mechanism of ATF4 upregulation by OxPLs and more specifically the involvement of NRF2, the major transcriptional mediator of electrophilic stress response.
Related JoVE Video
Oncostatin M-enhanced vascular endothelial growth factor expression in human vascular smooth muscle cells involves PI3K-, p38 MAPK-, Erk1/2- and STAT1/STAT3-dependent pathways and is attenuated by interferon-?.
Basic Res. Cardiol.
PUBLISHED: 02-01-2010
Show Abstract
Hide Abstract
The pleiotropic cytokine oncostatin M (OSM), a member of the glycoprotein (gp)130 ligand family, plays a key role in inflammation and cardiovascular disease. As inflammation precedes and accompanies pathological angiogenesis, we investigated the effect of OSM and other gp130 ligands on vascular endothelial growth factor (VEGF) production in human vascular smooth muscle cells (SMC). Human coronary artery SMC (HCASMC) and human aortic SMC (HASMC) were treated with different gp130 ligands. VEGF protein was determined by ELISA. Specific mRNA was detected by RT-PCR. Western blotting was performed for signal transducers and activators of transcription1 (STAT1), STAT3, Akt and p38 mitogen-activated protein kinase (p38 MAPK). OSM mRNA and VEGF mRNA expression was analyzed in human carotid endaterectomy specimens from 15 patients. OSM increased VEGF production in both HCASMC and HASMC derived from different donors. OSM upregulated VEGF and OSM receptor-specific mRNA in these cells. STAT3 inhibitor WP1066, p38 MAPK inhibitors SB-202190 and BIRB 0796, extracellular signal-regulated kinase1/2 (Erk1/2) inhibitor U0126, and phosphatidylinositol 3-kinase (PI3K) inhibitors LY-294002 and PI-103 reduced OSM-induced VEGF synthesis. We found OSM expression in human atherosclerotic lesions where OSM mRNA correlated with VEGF mRNA expression. Interferon-? (IFN-?), but not IL-4 or IL-10, reduced OSM-induced VEGF production in vascular SMC. Our findings that OSM, which is present in human atherosclerotic lesions and correlates with VEGF expression, stimulates production of VEGF by human coronary artery and aortic SMC indicate that OSM could contribute to plaque angiogenesis and destabilization. IFN-? reduced OSM-induced VEGF production by vascular SMC.
Related JoVE Video
Epigenetic regulation of dendritic cell differentiation and function by oxidized phospholipids.
Blood
PUBLISHED: 10-28-2009
Show Abstract
Hide Abstract
Dendritic cells (DCs) are the key cell type in the regulation of an adaptive immune response. Under inflammatory conditions monocytes can give rise to immunostimulatory DCs, depending on microenvironmental stimuli. Here we show that oxidized phospholipids (Ox-Pls), which are generated during inflammatory reactions, dysregulate the differentiation of DCs. DCs generated in the presence of Ox-Pls up-regulated the typical DC marker DC-SIGN but did not express CD1a, CD1b, and CD1c. These DCs generated in the presence of Ox-Pls had a substantially diminished T cell-stimulating capacity after stimulation with Toll-like receptor ligands. Toll-like receptor ligand-induced production of interleukin-12 also was strongly diminished, whereas induction of CD83 was not altered. In addition, we found that Ox-Pls strongly inhibit inflammatory stimuli-induced phosphorylation of histone H3, a key step of interleukin-12 production, yet leaving activation of nuclear factor-kappaB unaltered. Taken together, Ox-Pls present during differentiation yielded DCs with a reduced capacity to become immunostimulatory mature DCs. Furthermore, the presence of Ox-Pls blocked histone modifications required for full activation of DCs. Therefore, inflammation-derived Ox-Pls control DC functions in part by epigenetic mechanisms.
Related JoVE Video
Cytoplasmic proteome and secretome profiles of differently stimulated human dendritic cells.
J. Proteome Res.
PUBLISHED: 04-09-2009
Show Abstract
Hide Abstract
Dendritic cells (DCs), the most potent and specialized antigen-presenting cells, play a key role in the regulation of the adaptive immunity. Immature DCs were generated by in vitro culturing of peripheral blood monocytes and functionally activated with the classical pathogen-associated molecular pattern lipopolysaccharide (LPS). Alternative activation resulting in Th-2 polarization was induced with lipid oxidation products derived from 1-palmitoyl-2-arachidoyl-sn-glycerol-3-phosphorylcholin (OxPAPC). Tolerogenic cells were obtained by treating DCs with human rhinovirus (HRV). The aim of this study was the identification of proteome profiles related to the functionally different dendritic cell phenotypes. Cytoplasmic proteins were analyzed by shotgun proteomics resulting in the identification of 1690 proteins. While mature and alternatively activated DCs displayed highly distinct protein expression profiles, HRV-treated DCs showed minor proteome alterations. As DCs exert many specific functions via secretion, we investigated the secretomes by a combination of 2D-PAGE and shotgun proteomics. We successfully identified a broad variety of cytokines (e.g., GM-CSF, TNF-alpha, interleukin-1beta, 6, 12 beta, 28B and 29), chemokines (e.g., CCL3, 5, 8, 17, 18, 19, 24, CXCL1, 2, 9 and 10) and growth factors (growth/differentiation factor 8, C-type lectin domain family 11 member A). The relative composition of secretome profiles, although comprising much less proteins, was found to be much more affected by functional alteration of cells than the cytoplasmic protein composition. In conclusion, we demonstrate that functional distinct subsets of DCs display distinct proteome profiles which comprise biomarker candidates. These proteins may prove useful for the interpretation of complex clinical proteomics data.
Related JoVE Video
Multi-hit inhibition of circulating and cell-associated components of the toll-like receptor 4 pathway by oxidized phospholipids.
Arterioscler. Thromb. Vasc. Biol.
PUBLISHED: 03-06-2009
Show Abstract
Hide Abstract
Oxidized phospholipids (OxPLs) that are abundant in atherosclerotic lesions are increasingly recognized as context-dependent lipid mediators demonstrating both pro- and antiinflammatory activities. Molecular mechanisms of their effects are largely unknown. Here we present novel information on the mechanisms whereby OxPLs modulate activation of TLR4 by lipopolysaccharide (LPS).
Related JoVE Video
Targeted profiling of atherogenic phospholipids in human plasma and lipoproteins of hyperlipidemic patients using MALDI-QIT-TOF-MS/MS.
Atherosclerosis
Show Abstract
Hide Abstract
Phospholipids (PLs) are increasingly recognized as key molecules with potential diagnostic value in acute inflammation, CVD and atherosclerosis. We introduce a pioneer mass spectrometry (MS)-based approach aiming to investigate the relationship of specific plasma PL-subsets with atherogenic blood parameters in young patients with familial hyperlipidemia representing high-CVD-risk groups.
Related JoVE Video
Permissive role of miR-663 in induction of VEGF and activation of the ATF4 branch of unfolded protein response in endothelial cells by oxidized phospholipids.
Atherosclerosis
Show Abstract
Hide Abstract
Atherosclerotic lesions contain high concentrations of oxidized phospholipids (OxPLs) known to induce VEGF via the ATF4 arm of unfolded protein response (UPR), and to promote angiogenic reactions thus potentially contributing to the progression and destabilization of atherosclerotic plaques. In order to get further insights into the mechanisms of cellular stress-induced angiogenesis we studied the role of a specific microRNA (miR-663) in the mechanisms of VEGF induction by OxPLs and inducers of UPR.
Related JoVE Video
Effects on inflammatory responses by the sphingoid base 4,8-sphingadienine.
Int. J. Mol. Med.
Show Abstract
Hide Abstract
Sphingolipids (SLs) are a class of lipids, which are structural cell components involved in the regulation of cellular processes such as cell proliferation, differentiation, apoptosis and inflammation. Dietary SLs are enzymatically hydrolyzed in the gut lumen into metabolites, namely ceramides and sphingoid bases. The sphingoid base 4,8-sphingadienine (4,8-SD) is the metabolite of glucocerebrosides derived from plants that are part of the human diet. The present findings provide insight into the effects of 4,8-SD on inflammatory responses that may be of nutritional and therapeutic benefit. We demonstrated that 4,8-SD significantly inhibited tumor necrosis factor-? (TNF-?)- and lipopolysaccharide (LPS)-induced expression of IL-8 and E-selectin in human endothelial cells in a dose-dependent manner. The anti-inflammatory effect was observed at significantly lower concentrations of 4,8-SD compared those affecting cell viability as judged by the LDH and WST-1 assays.
Related JoVE Video
12/15-lipoxygenase orchestrates the clearance of apoptotic cells and maintains immunologic tolerance.
Immunity
Show Abstract
Hide Abstract
Noninflammatory clearance of apoptotic cells (ACs) is crucial to maintain self-tolerance. Here, we have reported a role for the enzyme 12/15-lipoxygenase (12/15-LO) as a central factor governing the sorting of ACs into differentially activated monocyte subpopulations. During inflammation, uptake of ACs was confined to a population of 12/15-LO-expressing, alternatively activated resident macrophages (resM?), which blocked uptake of ACs into freshly recruited inflammatory Ly6C(hi) monocytes in a 12/15-LO-dependent manner. ResM? exposed 12/15-LO-derived oxidation products of phosphatidylethanolamine (oxPE) on their plasma membranes and thereby generated a sink for distinct soluble receptors for ACs such as milk fat globule-EGF factor 8, which were essential for the uptake of ACs into inflammatory monocytes. Loss of 12/15-LO activity, in turn, resulted in an aberrant phagocytosis of ACs by inflammatory monocytes, subsequent antigen presentation of AC-derived antigens, and a lupus-like autoimmune disease. Our data reveal an unexpected key role for enzymatic lipid oxidation during the maintenance of self-tolerance.
Related JoVE Video
Identification of novel liver X receptor activators by structure-based modeling.
J Chem Inf Model
Show Abstract
Hide Abstract
Liver X receptors (LXRs) are members of the nuclear receptor family. Activators of LXRs are of high pharmacological interest as LXRs regulate cholesterol, fatty acid, and carbohydrate metabolism as well as inflammatory processes. On the basis of different X-ray crystal structures, we established a virtual screening workflow for the identification of novel LXR modulators. A two-step screening concept to identify active compounds included 3D-pharmacophore filters and rescoring by shape alignment. Eighteen virtual hits were tested in vitro applying a reporter gene assay, where concentration-dependent activity was proven for four novel lead structures. The most active compound 10, a 1,4-naphthochinone, has an estimated EC?? of around 5 ?M.
Related JoVE Video
A simplified procedure for semi-targeted lipidomic analysis of oxidized phosphatidylcholines induced by UVA irradiation.
J. Lipid Res.
Show Abstract
Hide Abstract
Oxidized phospholipids (OxPLs) are increasingly recognized as signaling mediators that are not only markers of oxidative stress but are also "makers" of pathology relevant to disease pathogenesis. Understanding the biological role of individual molecular species of OxPLs requires the knowledge of their concentration kinetics in cells and tissues. In this work, we describe a straightforward "fingerprinting" procedure for analysis of a broad spectrum of molecular species generated by oxidation of the four most abundant species of polyunsaturated phosphatidylcholines (OxPCs). The approach is based on liquid-liquid extraction followed by reversed-phase HPLC coupled to electrospray ionization MS/MS. More than 500 peaks corresponding in retention properties to polar and oxidized PCs were detected within 8 min at 99 m/z precursor values using a single diagnostic product ion in extracts from human dermal fibroblasts. Two hundred seventeen of these peaks were fluence-dependently and statistically significantly increased upon exposure of cells to UVA irradiation, suggesting that these are genuine oxidized or oxidatively fragmented species. This method of semitargeted lipidomic analysis may serve as a simple first step for characterization of specific "signatures" of OxPCs produced by different types of oxidative stress in order to select the most informative peaks for identification of their molecular structure and biological role.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.