JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Biolistic DNA delivery to leaf tissue of plants with the non-vacuum gene gun (HandyGun).
Methods Mol. Biol.
PUBLISHED: 03-23-2013
Show Abstract
Hide Abstract
Non-vacuum gene guns such as HandyGun are flexible tools for bombardment of targets of varying size. Construction of HandyGun is simpler and cheaper than vacuum gene guns and will be described here. The conditions for maximal transient transformation efficiency of plant cells with plasmid DNA using HandyGun will be provided.
Related JoVE Video
HandGun-mediated inoculation of plants with viral pathogens for mechanistic studies.
Methods Mol. Biol.
PUBLISHED: 03-23-2013
Show Abstract
Hide Abstract
Particle bombardment is an efficient method for virus inoculation of intact plants. This technique enables inoculation with full-length infectious clone cDNA, PCR products, virus from sap or virus preparation, and in vitro viral transcripts. The inoculation of some phloem-limited RNA and circular DNA viruses is also possible. The technique of bombardment without the use of vacuum permits the inoculation of soft-leaved plants that do not usually survive bombardment inoculation, the investigation of viral recombination in planta, promoter analysis, monitoring virus movement using an infectious clone bearing a reporter gene and the inoculation of large numbers of plants. The inoculation of whitefly-borne circular DNA begomoviruses is now possible due to direct genome amplification by Rolling Circle Amplification (RCA), followed by bombardment using a device that does not require a vacuum for operation. Here we describe the inoculation of intact plants with (a) RNA virus infective clones and (b) begomoviruses after direct genome amplification by RCA, using a handheld bombardment device.
Related JoVE Video
A high level of transgenic viral small RNA is associated with broad potyvirus resistance in cucurbits.
Mol. Plant Microbe Interact.
PUBLISHED: 09-09-2011
Show Abstract
Hide Abstract
Gene-silencing has been used to develop resistance against many plant viruses but little is known about the transgenic small-interfering RNA (t-siRNA) that confers this resistance. Transgenic cucumber and melon lines harboring a hairpin construct of the Zucchini yellow mosaic potyvirus (ZYMV) HC-Pro gene accumulated different levels of t-siRNA (6 to 44% of total siRNA) and exhibited resistance to systemic ZYMV infection. Resistance to Watermelon mosaic potyvirus and Papaya ring spot potyvirus-W was also observed in a cucumber line that accumulated high levels of t-siRNA (44% of total siRNA) and displayed significantly increased levels of RNA-dependent RNA (RDR)1 and Argonaute 1, as compared with the other transgenic and nontransformed plants. The majority of the t-siRNA sequences were 21 to 22 nucleotides in length and sense strand biased. The t-siRNA were not uniformly distributed throughout the transgene but concentrated in "hot spots" in a pattern resembling that of the viral siRNA peaks observed in ZYMV-infected cucumber and melon. Mutations in ZYMV at the loci associated with the siRNA peaks did not break this resistance, indicating that hot spot t-siRNA may not be essential for resistance. This study shows that resistance based on gene-silencing can be effective against related viruses and is probably correlated with t-siRNA accumulation and increased expression of RDR1.
Related JoVE Video
Characterization of nuclear localization signals in the type III effectors HsvG and HsvB of the gall-forming bacterium Pantoea agglomerans.
Microbiology (Reading, Engl.)
PUBLISHED: 03-03-2011
Show Abstract
Hide Abstract
HsvG and HsvB, two paralogous type III effectors of the gall-forming bacteria Pantoea agglomerans pv. gypsophilae and P. agglomerans pv. betae, determine host specificity on gypsophila and beet, respectively. They were previously shown to be DNA-binding proteins imported into host and non-host nuclei and might act as transcriptional activators. Sequence analysis of these effectors did not detect canonical nuclear localization signals (NLSs), but two basic amino acid clusters designated putative NLS1 and NLS2 were detected in their N-terminal and C-terminal regions, respectively. pNIA assay for nuclear import in yeast and bombardment of melon leaves with each of the NLSs fused to a 2xYFP reporter indicated that putative NLS1 and NLS2 were functional in transport of HsvG into the nucleus. A yeast two-hybrid assay showed that HsvB, HsvG, putative NLS1, putative NLS2, HsvG converted into HsvB, or HsvB converted into HsvG by exchanging the repeat domain, all interacted with AtKAP-? and importin-?3 of Arabidopsis thaliana. Deletion analysis of the NLS domains in HsvG suggested that putative NLS1 or NLS2 were required for pathogenicity on gypsophila cuttings and presumably for import of HsvG into the nucleus. This study demonstrates the presence of two functional NLSs in the type III effectors HsvG and HsvB.
Related JoVE Video
Effect of a single amino acid substitution in the NLS domain of Tomato yellow leaf curl virus-Israel (TYLCV-IL) capsid protein (CP) on its activity and on the virus life cycle.
Virus Res.
PUBLISHED: 02-14-2011
Show Abstract
Hide Abstract
The capsid protein (CP) of Tomato yellow leaf curl virus-Israel (TYLCV-IL), encoded by the v1 gene, is the only known component of the viral capsid. Three point mutations introduced into the conserved NLS region of the CP were investigated. One mutant, in which the Arg at position 19 was converted to Leu, had the most significant effect on the CP-CP homotypic interaction as well as on CPs interaction with its nuclear receptor karyopherin ?1 and with the protein GroEL. The latter has been suggested to protect the virions in the insect vector hemolymph. These effects were first observed by yeast two-hybrid assay and then confirmed in tobacco protoplasts by measuring fluorescence resonance energy transfer (FRET) between YFP- and CFP-tagged proteins. Most importantly, when the point mutation converting Arg 19 to Leu was introduced into the full-length TYLCV genome, it disrupted its ability to cause symptoms.
Related JoVE Video
HandyGun: An improved custom-designed, non-vacuum gene gun suitable for virus inoculation.
J. Virol. Methods
PUBLISHED: 02-13-2010
Show Abstract
Hide Abstract
Particle bombardment with a non-vacuum gene gun is an efficient method for transfection of plant cells with cloned viruses and initiation of virus infection. The HandyGun developed in this study is an improved version of a non-vacuum gene gun. Bombardment parameters were studied by inoculating an infectious, 35S promoter-driven cDNA of Potato virus A (PVA; Potyvirus) to the potato clone A6, Nicotiana benthamiana and N. tabacum as plasmid DNA coated on microprojectiles (gold particles). The large number of initial infection sites (necrotic local lesions) observed on inoculated A6 leaves and the high percentage of Nicotiana plants which were infected systemically with PVA following inoculation with HandyGun were not particularly sensitive to variation in the parameters tested (helium pressure and the amounts of plasmid DNA and gold particles). Data showed that HandyGun is a robust and reliable tool for obtaining high infection rates in plants reproducibly. It is easy and inexpensive to use and can be constructed from parts commonly available.
Related JoVE Video
Inoculation of plants with begomoviruses by particle bombardment without cloning: Using rolling circle amplification of total DNA from infected plants and whiteflies.
J. Virol. Methods
PUBLISHED: 02-04-2010
Show Abstract
Hide Abstract
A new system for inoculation of plants with begomoviral DNA without cloning or the use insect vectors is described. Total DNA extracted from begomovirus-infected plants was amplified by rolling circle amplification (RCA) using the bacteriophage phi29 DNA polymerase, and inoculated to plants by particle bombardment. Infection rates of up to 100% were obtained using this technique. This technique successfully inoculated all the begomoviruses evaluated: five bipartite (Bean golden yellow mosaic virus, Cabbage leaf curl virus, Squash leaf curl virus, Tomato mottle virus, Watermelon chlorotic stunt virus) as well as one monopartite (Tomato yellow leaf curl virus). The success of the technique was not dependent upon plant species. Four species from three plant families [Phaseolus vulgaris (bean), Solanum lycopersicum (tomato), Cucurbita pepo (squash), and Citrullus lanatus (watermelon)], could all be inoculated by this technique. The success of the method was not dependent upon either the type or the age of the source of virus. Infectious DNA was obtained successfully from fresh, freeze-dried or desiccated plant material, from squashes of plant leaves on FTA cards, as well as from the insect vector. Plant material collected and dried as long as 25 years ago yielded infectious DNA by this method. In summary, this method can be used to obtain infectious DNA of single-stranded circular DNA viruses that can be activated for purposes of completing Kochs postulates, for preservation of pure virus cultures, and for many other applications where infectious DNA is required.
Related JoVE Video
Viruses of potato.
Adv. Virus Res.
Show Abstract
Hide Abstract
Potatoes are an important crop in Mediterranean countries both for local consumption and for export to other countries, mainly during the winter. Many Mediterranean countries import certified seed potato in addition to their own seed production. The local seeds are mainly used for planting in the autumn and winter, while the imported seed are used for early and late spring plantings. Potato virus Y is the most important virus in Mediterranean countries, present mainly in the autumn plantings. The second important virus is Potato leafroll virus, though in recent years its importance seems to be decreasing. Potato virus X, Potato virus A, Potato virus S, Potato virus M, and the viroid, Potato spindle tuber viroid, were also recorded in several Mediterranean countries. For each virus the main strains, transmission, characterization of the virus particle, its genome organization, detection, and control methods including transgenic approaches will be discussed.
Related JoVE Video
Polar auxin transport is essential for gall formation by Pantoea agglomerans on Gypsophila.
Mol. Plant Pathol.
Show Abstract
Hide Abstract
The virulence of the bacterium Pantoea agglomerans pv. gypsophilae (Pag) on Gypsophila paniculata depends on a type III secretion system (T3SS) and its effectors. The hypothesis that plant-derived indole-3-acetic acid (IAA) plays a major role in gall formation was examined by disrupting basipetal polar auxin transport with the specific inhibitors 2,3,5-triiodobenzoic acid (TIBA) and N-1-naphthylphthalamic acid (NPA). On inoculation with Pag, galls developed in gypsophila stems above but not below lanolin rings containing TIBA or NPA, whereas, in controls, galls developed above and below the rings. In contrast, TIBA and NPA could not inhibit tumour formation in tomato caused by Agrobacterium tumefaciens. The colonization of gypsophila stems by Pag was reduced below, but not above, the lanolin-TIBA ring. Following Pag inoculation and TIBA treatment, the expression of hrpL (a T3SS regulator) and pagR (a quorum-sensing transcriptional regulator) decreased four-fold and that of pthG (a T3SS effector) two-fold after 24?h. Expression of PIN2 (a putative auxin efflux carrier) increased 35-fold, 24?h after Pag inoculation. However, inoculation with a mutant in the T3SS effector pthG reduced the expression of PIN2 by two-fold compared with wild-type infection. The results suggest that pthG might govern the elevation of PIN2 expression during infection, and that polar auxin transport-derived IAA is essential for gall initiation.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.