JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The influence of body mass index, age and sex on inflammatory disease risk in semi-captive Chimpanzees.
PLoS ONE
PUBLISHED: 08-14-2014
Show Abstract
Hide Abstract
Obesity and ageing are emerging issues in the management of captive primates, including Chimpanzees, Pan troglodytes. Studies on humans show that obesity and old age can independently increase the risk of inflammatory-associated diseases indicated by elevated levels of pro-inflammatory cells and proteins in the blood of older or obese compared to levels in younger or non-obese individuals. In humans, sex can influence the outcomes of these risks. Health management of these problems in chimpanzee populations requires an understanding of similarities and differences of factors influencing inflammatory disease risks in humans and in chimpanzees. We examined the relationship between age, sex and Body Mass Index (BMI) with hematological biomarkers of inflammatory disease risk established for humans which include the neutrophil to lymphocyte ratio (NLR), and neutrophil, white blood cell (WBC), platelet microparticle and platelet counts. We found that higher values of NLR, neutrophil count and platelet microparticle count were associated with higher BMI values and older age indicating increased inflammation risk in these groups; a similar pattern to humans. There was a strong sex by age interaction on inflammation risk, with older males more at risk than older females. In contrast to human studies, total WBC count was not influenced by BMI, but like humans, WBC and platelet counts were lower in older individuals compared to younger individuals. Our findings are similar to those of humans and suggest that further insight on managing chimpanzees can be gained from extensive studies of ageing and obesity in humans. We suggest that managing BMI should be an integral part of health management in captive chimpanzee populations in order to partially reduce the risk of diseases associated with inflammation. These results also highlight parallels in inflammation risk between humans and chimpanzees and have implications for understanding the evolution of inflammation related diseases in apes.
Related JoVE Video
Mixed-host aggregations and helminth parasite sharing in an East African wildlife-livestock system.
Vet. Parasitol.
PUBLISHED: 05-20-2014
Show Abstract
Hide Abstract
Parasitic infections transmitted between livestock and wildlife pose a significant risk to wildlife conservation efforts and constrain livestock productivity in tropical regions of the world. Gastrointestinal helminths are among the most ubiquitous parasites, and many parasites within this taxon can readily infect a wide range of host species. Factors shaping bidirectional transmission of parasites in wildlife-livestock systems are understudied. In this study, we investigate the prevalence and diversity of helminth infections in an East African community of wild and domestic ungulates. We also identify pairs of host species between which transmission may be possible based on shared parasite taxa, and explore the role of multi-host aggregations in shaping patterns of parasite sharing. Helminth taxa detected included Trichostrongylus, Trichuris, Paramphistomum, Skrjabinema, Strongyloides, Strongylus spp., and other strongyle-type nematodes. We found that nearly 50% of individuals harbored at least one species of helminth, but certain species, such as zebra and impala, exhibited higher prevalence than others. High canopy feeders, like giraffe, had lower prevalence than hosts feeding at medium and low foraging heights. For helminths, patterns of parasite sharing likely emerge from shared space use, which is mediated in part by mixed-species aggregations. The frequency with which host species associated together in mixed-species aggregations was positively correlated with the number of parasite taxa shared. We suggest that variation among species in their tendency to form mixed-species aggregations creates heterogeneity in transmission opportunities, and consequently, parasite sharing across ungulate species. These results enhance our understanding of the role of spatiotemporal relationships among host species in shaping parasite communities in mixed wildlife-livestock grazing systems.
Related JoVE Video
Isolation of tick and mosquito-borne arboviruses from ticks sampled from livestock and wild animal hosts in Ijara District, Kenya.
Vector Borne Zoonotic Dis.
PUBLISHED: 06-27-2013
Show Abstract
Hide Abstract
Tick-borne viruses infect humans through the bite of infected ticks during opportunistic feeding or through crushing of ticks by hand and, in some instances, through contact with infected viremic animals. The Ijara District, an arid to semiarid region in northern Kenya, is home to a pastoralist community for whom livestock keeping is a way of life. Part of the Ijara District lies within the boundaries of a Kenya Wildlife Service-protected conservation area. Arbovirus activity among mosquitoes, animals, and humans is reported in the region, mainly because prevailing conditions necessitate that people continuously move their animals in search of pasture, bringing them in contact with ongoing arbovirus transmission cycles. To identify the tick-borne viruses circulating among these communities, we analyzed ticks sampled from diverse animal hosts. A total of 10,488 ticks were sampled from both wildlife and livestock hosts and processed in 1520 pools of up to eight ticks per pool. The sampled ticks were classified to species, processed for virus screening by cell culture using Vero cells and RT-PCR (in the case of Hyalomma species), followed by amplicon sequencing. The tick species sampled included Rhipicephalus pulchellus (76.12%), Hyalomma truncatum (8.68%), Amblyomma gemma (5.00%), Amblyomma lepidum (4.34%), and others (5.86%). We isolated and identified Bunyamwera (44), Dugbe (5), Ndumu (2), Semliki forest (25), Thogoto (3), and West Nile (3) virus strains. This observation constitutes a previously unreported detection of mosquito-borne Semliki forest and Bunyamwera viruses in ticks, and association of West Nile virus with A. gemma and Rh. pulchellus ticks. These findings provide additional evidence on the potential role of ticks and associated animals in the circulation of diverse arboviruses in northeastern Kenya, including viruses previously known to be essentially mosquito borne.
Related JoVE Video
Opportunistic infection of Aspergillus and bacteria in captive Cape vultures (Gyps coprotheres).
Asian Pac J Trop Biomed
PUBLISHED: 04-10-2013
Show Abstract
Hide Abstract
To describe clinical signs, pathology, diagnosis and treatment of Cape vultures in which Aspergillus fumigatus (A. fumigatus) and mixed species of bacteria were isolated.
Related JoVE Video
Traumatic myiasis in free-ranging eland, reported from Kenya.
Parasit Vectors
PUBLISHED: 01-30-2013
Show Abstract
Hide Abstract
For centuries, immature stages of Dipterans have infested humans and animals, resulting in a pathological condition referred to as myiasis. Myiases are globally distributed but they remain neglected diseases in spite of the great medical and veterinary importance. Moreover, there is a paucity of information on the clinical-pathology and/or epidemiology of the infestation, especially in African free ranging wildlife.
Related JoVE Video
Spatio-temporal distribution of injured elephants in Masai Mara and the putative negative and positive roles of the local community.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Very few studies have ever focused on the elephants that are wounded or killed as local communities attempt to scare these animals away from their settlements and farms, or on the cases in which local people take revenge after elephants have killed or injured humans. On the other hand, local communities live in close proximity to elephants and hence can play a positive role in elephant conservation by informing the authorities of the presence of injured elephants.
Related JoVE Video
Putative filariosis outbreak in white and black rhinoceros at Meru National Park in Kenya.
Parasit Vectors
Show Abstract
Hide Abstract
Habitat and food supply loss and disruption, together with mans pursuit of the animals unique horn pose significant threats to the charismatic rhinoceros. Filarial worms have been thought to cause cutaneous lesions in black rhinoceros (Diceros bicornis) in Kenya and South Africa, but never in white rhinoceros (Ceratotherium simum) in the wild, despite the fact that the two species live often in close proximity. Stephanofilaria dinniki has been implicated in the past as the causal agents for such lesions.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.