JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Deletion of small ankyrin 1 (sAnk1) isoforms results in structural and functional alterations in aging skeletal muscles fibers.
Am. J. Physiol., Cell Physiol.
PUBLISHED: 10-31-2014
Show Abstract
Hide Abstract
Muscle-specific ankyrins 1 (sAnk1) are a group of small ankyrin 1 isoforms, of which sAnk1.5 is the most abundant. sAnk1 are localized in the sarcoplasmic reticulum (SR) membrane from where they interact with obscurin, a myofibrillar protein. This interaction appears to contribute to stabilize the SR close to the myofibrils. Here we report the structural and functional characterization of skeletal muscles from sAnk1 knockout mice (KO). Deletion of sAnk1 did not change the expression and localization of SR proteins in 4-6 month old sAnk1 KO mice. Structurally, the main modification observed in skeletal muscles of adult sAnk1 KO mice (4-6 months of age) was the reduction of SR volume at the sarcomere A band level. With increasing age (at 12-15 months) EDL skeletal muscles of sAnk1 KO mice develop prematurely large tubular aggregates, whereas diaphragm undergoes significant structural damage. Parallel functional studies revealed specific changes in the contractile performance of muscles from sAnk1 KO mice and a reduced exercise tolerance in an endurance test on treadmill compared to control mice. Moreover, reduced Q? charge and L-type Ca(2+)current, that are indexes of affected e-c coupling, were observed in diaphragm fibers from 12-15 month old mice, but not in other skeletal muscles from sAnk1 KO mice. Altogether, these findings show that the ablation of sAnk1, by altering the organization of the SR, renders skeletal muscles susceptible to undergo structural and functional alterations more evident with age, and point to an important contribution of sAnk1 to the maintenance of the longitudinal SR architecture.
Related JoVE Video
A mutation in the CASQ1 gene causes a vacuolar myopathy with accumulation of sarcoplasmic reticulum protein aggregates.
Hum. Mutat.
PUBLISHED: 09-10-2014
Show Abstract
Hide Abstract
A missense mutation in the calsequestrin-1 gene (CASQ1) was found in a group of patients with a myopathy characterized by weakness, fatigue, and the presence of large vacuoles containing characteristic inclusions resulting from the aggregation of sarcoplasmic reticulum (SR) proteins. The mutation affects a conserved aspartic acid in position 244 (p.Asp244Gly) located in one of the high-affinity Ca(2+) -binding sites of CASQ1 and alters the kinetics of Ca(2+) release in muscle fibers. Expression of the mutated CASQ1 protein in COS-7 cells showed a markedly reduced ability in forming elongated polymers, whereas both in cultured myotubes and in in vivo mouse fibers induced the formation of electron-dense SR vacuoles containing aggregates of the mutant CASQ1 protein that resemble those observed in muscle biopsies of patients. Altogether, these results support the view that a single missense mutation in the CASQ1 gene causes the formation of abnormal SR vacuoles containing aggregates of CASQ1, and other SR proteins, results in altered Ca(2+) release in skeletal muscle fibers, and, hence, is responsible for the clinical phenotype observed in these patients.
Related JoVE Video
Yip1B isoform is localized at ER-Golgi intermediate and cis-Golgi compartments and is not required for maintenance of the Golgi structure in skeletal muscle.
Histochem. Cell Biol.
PUBLISHED: 09-01-2014
Show Abstract
Hide Abstract
The mechanism of endoplasmic reticulum (ER)-Golgi complex (GC) traffic is conserved from yeast to higher animals, but the architectures and the dynamics of vesicles' traffic between ER and GC vary across cell types and species. Skeletal muscle is a unique tissue in which ER and GC undergo a structural reorganization during differentiation that completely remodels the secretory pathway. In mature skeletal muscle, the ER is turned into sarcoplasmic reticulum, which is composed of junctional and longitudinal regions specialized, respectively, in calcium release and uptake during contraction. During skeletal muscle differentiation, GC acquires a particular fragmented organization as it appears as spots both at the nuclear poles and along the fibers. The ubiquitary-expressed Yip1A isoform has been proposed to be involved in anterograde trafficking from the ER exit sites to the cis-side of the GC and in ER and GC architecture organization. We investigated the role of Yip1 in skeletal muscle. Here we report that, following skeletal muscle development, the expression of the Yip1A decreases and is replaced by the muscle-specific Yip1B isoform. Confocal microscope analysis revealed that in adult skeletal muscle the Yip1B isoform is localized in the ER-Golgi intermediate and cis-Golgi compartments. Finally, skeletal muscle knockdown experiments in vitro and in vivo suggested that Yip1B is not involved in GC structure maintenance.
Related JoVE Video
Bcl-2 binds to and inhibits ryanodine receptors.
J. Cell. Sci.
PUBLISHED: 04-24-2014
Show Abstract
Hide Abstract
The anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein not only counteracts apoptosis at the mitochondria by scaffolding pro-apoptotic Bcl-2-family members, but also acts at the endoplasmic reticulum, thereby controlling intracellular Ca(2+) dynamics. Bcl-2 inhibits Ca(2+) release by targeting the inositol 1,4,5-trisphosphate receptor (IP3R). Sequence analysis has revealed that the Bcl-2-binding site on the IP3R displays strong similarity with a conserved sequence present in all three ryanodine receptor (RyR) isoforms. We now report that Bcl-2 co-immunoprecipitated with RyRs in ectopic expression systems and in native rat hippocampi, indicating that endogenous RyR-Bcl-2 complexes exist. Purified RyR domains containing the putative Bcl-2-binding site bound full-length Bcl-2 in pulldown experiments and interacted with the BH4 domain of Bcl-2 in surface plasmon resonance (SPR) experiments, suggesting a direct interaction. Exogenous expression of full-length Bcl-2 or electroporation loading of the BH4 domain of Bcl-2 dampened RyR-mediated Ca(2+) release in HEK293 cell models. Finally, introducing the BH4-domain peptide into hippocampal neurons through a patch pipette decreased RyR-mediated Ca(2+) release. In conclusion, this study identifies Bcl-2 as a new inhibitor of RyR-based intracellular Ca(2+)-release channels.
Related JoVE Video
Functional and genetic characterization of clinical malignant hyperthermia crises: a multi-centre study.
Orphanet J Rare Dis
PUBLISHED: 01-08-2014
Show Abstract
Hide Abstract
Malignant hyperthermia (MH) is a rare pharmacogenetic disorder which is characterized by life-threatening metabolic crises during general anesthesia. Classical triggering substances are volatile anesthetics and succinylcholine (SCh). The molecular basis of MH is excessive release of Ca2+ in skeletal muscle principally by a mutated ryanodine receptor type 1 (RyR1). To identify factors explaining the variable phenotypic presentation and complex pathomechanism, we analyzed proven MH events in terms of clinical course, muscle contracture, genetic factors and pharmocological triggers.
Related JoVE Video
The LXR-IDOL axis defines a clathrin-, caveolae-, and dynamin-independent endocytic route for LDLR internalization and lysosomal degradation.
J. Lipid Res.
PUBLISHED: 06-03-2013
Show Abstract
Hide Abstract
Low density lipoprotein (LDL) cholesterol is taken up into cells via clathrin-mediated endocytosis of the LDL receptor (LDLR). Following dissociation of the LDLR-LDL complex, LDL is directed to lysosomes whereas the LDLR recycles to the plasma membrane. Activation of the sterol-sensing nuclear receptors liver X receptors (LXRs) enhances degradation of the LDLR. This depends on the LXR target gene inducible degrader of the LDLR (IDOL), an E3-ubiquitin ligase that promotes ubiquitylation and lysosomal degradation of the LDLR. How ubiquitylation of the LDLR by IDOL controls its endocytic trafficking is currently unknown. Using genetic- and pharmacological-based approaches coupled to functional assessment of LDL uptake, we show that the LXR-IDOL axis targets a LDLR pool present in lipid rafts. IDOL-dependent internalization of the LDLR is independent of clathrin, caveolin, macroautophagy, and dynamin. Rather, it depends on the endocytic protein epsin. Consistent with LDLR ubiquitylation acting as a sorting signal, degradation of the receptor can be blocked by perturbing the endosomal sorting complex required for transport (ESCRT) or by USP8, a deubiquitylase implicated in sorting ubiquitylated cargo to multivesicular bodies. In summary, we provide evidence for the existence of an LXR-IDOL-mediated internalization pathway for the LDLR that is distinct from that used for lipoprotein uptake.
Related JoVE Video
Obscurin is required for ankyrinB-dependent dystrophin localization and sarcolemma integrity.
J. Cell Biol.
PUBLISHED: 02-20-2013
Show Abstract
Hide Abstract
Obscurin is a large myofibrillar protein that contains several interacting modules, one of which mediates binding to muscle-specific ankyrins. Interaction between obscurin and the muscle-specific ankyrin sAnk1.5 regulates the organization of the sarcoplasmic reticulum in striated muscles. Additional muscle-specific ankyrin isoforms, ankB and ankG, are localized at the subsarcolemma level, at which they contribute to the organization of dystrophin and ?-dystroglycan at costameres. In this paper, we report that in mice deficient for obscurin, ankB was displaced from its localization at the M band, whereas localization of ankG at the Z disk was not affected. In obscurin KO mice, localization at costameres of dystrophin, but not of ?-dystroglycan, was altered, and the subsarcolemma microtubule cytoskeleton was disrupted. In addition, these mutant mice displayed marked sarcolemmal fragility and reduced muscle exercise tolerance. Altogether, the results support a model in which obscurin, by targeting ankB at the M band, contributes to the organization of subsarcolemma microtubules, localization of dystrophin at costameres, and maintenance of sarcolemmal integrity.
Related JoVE Video
Identification of a loss-of-function inducible degrader of the low-density lipoprotein receptor variant in individuals with low circulating low-density lipoprotein.
Eur. Heart J.
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
Recent genome-wide association studies suggest that IDOL (also known as MYLIP) contributes to variation in circulating levels of low-density lipoprotein cholesterol (LDL-C). IDOL, an E3-ubiquitin ligase, is a recently identified post-transcriptional regulator of LDLR abundance. Briefly, IDOL promotes degradation of the LDLR thereby limiting LDL uptake. Yet the exact role of IDOL in human lipoprotein metabolism is unclear. Therefore, this study aimed at identifying and functionally characterizing IDOL variants in the Dutch population and to assess their contribution to circulating levels of LDL-C.
Related JoVE Video
Junctophilin 1 and 2 proteins interact with the L-type Ca2+ channel dihydropyridine receptors (DHPRs) in skeletal muscle.
J. Biol. Chem.
PUBLISHED: 10-21-2011
Show Abstract
Hide Abstract
Junctophilins (JPs) anchor the endo/sarcoplasmic reticulum to the plasma membrane, thus contributing to the assembly of junctional membrane complexes in striated muscles and neurons. Recent studies have shown that JPs may be also involved in regulating Ca2+ homeostasis. Here, we report that in skeletal muscle, JP1 and JP2 are part of a complex that, in addition to ryanodine receptor 1 (RyR1), includes caveolin 3 and the dihydropyridine receptor (DHPR). The interaction between JPs and DHPR was mediated by a region encompassing amino acids 230-369 and amino acids 216-399 in JP1 and JP2, respectively. Immunofluorescence studies revealed that the pattern of DHPR and RyR signals in C2C12 cells knocked down for JP1 and JP2 was rather diffused and characterized by smaller puncta in contrast to that observed in control cells. Functional experiments revealed that down-regulation of JPs in differentiated C2C12 cells resulted in a reduction of intramembrane charge movement and the L-type Ca2+ current accompanied by a reduced number of DHPRs at the plasma membrane, whereas there was no substantial alteration in Ca2+ release from the sterol regulatory element-binding protein. Altogether, these results suggest that JP1 and JP2 can facilitate the assembly of DHPR with other proteins of the excitation-contraction coupling machinery.
Related JoVE Video
A frameshift mutation in LRSAM1 is responsible for a dominant hereditary polyneuropathy.
Hum. Mol. Genet.
PUBLISHED: 10-19-2011
Show Abstract
Hide Abstract
Despite the high number of genes identified in hereditary polyneuropathies/Charcot-Marie-Tooth (CMT) disease, the genetic defect in many families is still unknown. Here we report the identification of a new gene for autosomal dominant axonal neuropathy in a large three-generation family. Linkage analysis identified a 5 Mb region on 9q33-34 with a LOD score of 5.12. Sequence capture and next-generation sequencing of the region of interest identified five previously unreported non-synonymous heterozygous single nucleotide changes or indels, four of which were confirmed by Sanger sequencing. Two sequence variants co-segregated with the disease, and one, a 2 bp insertion in the last exon of LRSAM1, was also absent in 676 ethnicity-matched control chromosomes. This frameshift mutation (p.Leu708Argfx28) is located in the C-terminal RING finger motif of the encoded protein. Ubiquitin ligase activity in transfected cells with constructs carrying the patient mutation was affected as measured by a higher level of abundance of TSG101, the only reported target of LRSAM1. Injections of morpholino oligonucleotides in zebrafish embryos directed against the ATG or last splice site of zebrafish Lrsam1 disturbed neurodevelopment, showing a less organized neural structure and, in addition, affected tail formation and movement. LRSAM1 is highly expressed in adult spinal cord motoneurons as well as in fetal spinal cord and muscle tissue. Recently, a homozygous mutation in LRSAM1 was proposed as a strong candidate for the disease in a family with recessive axonal polyneuropathy. Our data strongly support the hypothesis that LRSAM1 mutations can cause both dominant and recessive forms of CMT.
Related JoVE Video
Spatial organization of RYRs and BK channels underlying the activation of STOCs by Ca(2+) sparks in airway myocytes.
J. Gen. Physiol.
PUBLISHED: 07-11-2011
Show Abstract
Hide Abstract
Short-lived, localized Ca(2+) events mediate Ca(2+) signaling with high efficiency and great fidelity largely as a result of the close proximity between Ca(2+)-permeable ion channels and their molecular targets. However, in most cases, direct evidence of the spatial relationship between these two types of molecules is lacking, and, thus, mechanistic understanding of local Ca(2+) signaling is incomplete. In this study, we use an integrated approach to tackling this issue on a prototypical local Ca(2+) signaling system composed of Ca(2+) sparks resulting from the opening of ryanodine receptors (RYRs) and spontaneous transient outward currents (STOCs) caused by the opening of Ca(2+)-activated K(+) (BK) channels in airway smooth muscle. Biophysical analyses of STOCs and Ca(2+) sparks acquired at 333 Hz demonstrate that these two events are associated closely in time, and approximately eight RYRs open to give rise to a Ca(2+) spark, which activates ?15 BK channels to generate a STOC at 0 mV. Dual immunocytochemistry and 3-D deconvolution at high spatial resolution reveal that both RYRs and BK channels form clusters and RYR1 and RYR2 (but not RYR3) localize near the membrane. Using the spatial relationship between RYRs and BK channels, the spatial-temporal profile of [Ca(2+)] resulting from Ca(2+) sparks, and the kinetic model of BK channels, we estimate that an average Ca(2+) spark caused by the opening of a cluster of RYR1 or RYR2 acts on BK channels from two to three clusters that are randomly distributed within an ?600-nm radius of RYRs. With this spatial organization of RYRs and BK channels, we are able to model BK channel currents with the same salient features as those observed in STOCs across a range of physiological membrane potentials. Thus, this study provides a mechanistic understanding of the activation of STOCs by Ca(2+) sparks using explicit knowledge of the spatial relationship between RYRs (the Ca(2+) source) and BK channels (the Ca(2+) target).
Related JoVE Video
Distinct functional domains contribute to degradation of the low density lipoprotein receptor (LDLR) by the E3 ubiquitin ligase inducible Degrader of the LDLR (IDOL).
J. Biol. Chem.
PUBLISHED: 07-06-2011
Show Abstract
Hide Abstract
We recently identified the liver X receptor-regulated E3 ubiquitin ligase inducible degrader of the LDL receptor (IDOL) as a modulator of lipoprotein metabolism. Acting as an E3 ubiquitin ligase, IDOL triggers ubiquitination and subsequent degradation of the low density lipoprotein receptor (LDLR). We demonstrate here that this outcome requires the conserved FERM and RING domains present in IDOL. The RING domain promotes ubiquitination in vitro and Lys-63-specific ubiquitination of the LDLR in vivo in response to IDOL or liver X receptor activation. We further identify RING residues that differentially influence ubiquitination of the LDLR or stability of IDOL. The FERM domain interacts with the LDLR and in living cells co-localizes with the receptor at the plasma membrane. Homology modeling revealed a phosphotyrosine-binding element embedded in the FERM domain. Mutating residues within this region or residues in the LDLR preceding the NPVY endocytosis motif abrogate LDLR degradation by IDOL. Collectively, our results indicate that both the FERM and RING domains are required for promoting lysosomal degradation of the LDLR by IDOL. Our findings may facilitate development of structure-based IDOL inhibitors aimed at increasing LDLR abundance in therapeutic strategies to treat cardiovascular disease.
Related JoVE Video
Sarcoplasmic reticulum: structural determinants and protein dynamics.
Int. J. Biochem. Cell Biol.
PUBLISHED: 03-21-2011
Show Abstract
Hide Abstract
The sarcoplasmic reticulum is a unique organelle found in muscle cells that is dedicated to the regulation of Ca(2+) homeostasis and activation of myofilament contraction. The functional requirement for an efficient and synchronous activation of Ca(2+) release from the SR, following the depolarization of the plasma membrane, accounts for the complex three-dimensional organization of internal membranes observed in muscle cells and for the localization of proteins at specific sites of the SR. Recent advancements in understanding the molecular basis of SR structure and function have greatly increased our understanding of muscle cellular physiology and biology. Parallel work has revealed that several human diseases affecting skeletal and cardiac tissues are linked to either mutations or altered post-translational modifications of SR proteins.
Related JoVE Video
Multi-potent progenitors in freshly isolated and cultured human mesenchymal stem cells: a comparison between adipose and dermal tissue.
Cell Tissue Res.
PUBLISHED: 01-26-2011
Show Abstract
Hide Abstract
Mesenchymal stem cells (MSCs) from human adult adipose tissue (A-MSCs) have a better differentiative ability than MSCs derived from the derma (D-MSCs). To test whether this difference is associated with differences in the content of multi-potent progenitors in A-MSCs, the number and the differentiative properties of multi-potent progenitors have been analyzed in various preparations of A-MSCs and D-MSCs. Adipogenic and osteogenic differentiation performed on colony-forming units have revealed that adipogenic and osteogenic progenitors are similar in the two populations, with only a slighty better performance of A-MSCs over D-MSCs from passages p0 to p15. An analysis of the presence of tri-, bi-, uni- and nulli-potent progenitors isolated immediately after isolation from tissues (p0) has shown comparable numbers of tri-potent and bi-potent progenitors in MSCs from the two tissues, whereas a higher content in uni-potent cells committed to adipocytes and a lower content in nulli-potent cells has been observed in A-MSCs. Furthermore, we have characterized the progenitors present in A-MSCs after six passages in vitro to verify the way in which in vitro culture can affect content in progenitor cells. We have observed that the percentage of tri-potent cells in A-MSCs at p6 remains similar to that observed at p0, although bi-potent and uni-potent progenitors committed to osteogenic differentiation increase at p6, whereas nulli-potent cells decrease at p6. These data indicate that the greater differentiative ability of A-MSC populations does not correlate directly with the number of multi-potent progenitors, suggesting that other factors influence the differentiation of bulk populations of A-MSCs.
Related JoVE Video
Cyclic adenosine diphosphate ribose activates ryanodine receptors, whereas NAADP activates two-pore domain channels.
J. Biol. Chem.
PUBLISHED: 01-07-2011
Show Abstract
Hide Abstract
The mechanism by which cyclic adenosine diphosphate ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) mobilize intracellular Ca(2+) stores remains controversial. It is open to question whether cADPR regulates ryanodine receptors (RyRs) directly, as originally proposed, or indirectly by promoting Ca(2+) uptake into the sarco/endoplasmic reticulum by sarco/endoplasmic reticulum Ca(2+)-ATPases. Conversely, although we have proposed that NAADP mobilizes endolysosomal Ca(2+) stores by activating two-pore domain channels (TPCs), others suggest that NAADP directly activates RyRs. We therefore assessed Ca(2+) signals evoked by intracellular dialysis from a patch pipette of cADPR and NAADP into HEK293 cells that stably overexpress either TPC1, TPC2, RyR1, or RyR3. No change in intracellular Ca(2+) concentration was triggered by cADPR in either wild-type HEK293 cells (which are devoid of RyRs) or in cells that stably overexpress TPC1 and TPC2, respectively. By contrast, a marked Ca(2+) transient was triggered by cADPR in HEK293 cells that stably expressed RyR1 and RyR3. The Ca(2+) transient was abolished following depletion of endoplasmic reticulum stores by thapsigargin and block of RyRs by dantrolene but not following depletion of acidic Ca(2+) stores by bafilomycin. By contrast, NAADP failed to evoke a Ca(2+) transient in HEK293 cells that expressed RyR1 or RyR3, but it induced robust Ca(2+) transients in cells that stably overexpressed TPC1 or TPC2 and in a manner that was blocked following depletion of acidic stores by bafilomycin. We conclude that cADPR triggers Ca(2+) release by activating RyRs but not TPCs, whereas NAADP activates TPCs but not RyRs.
Related JoVE Video
The multiple alternatives of intracellular calcium signaling: a functionally distinct RyR splicing variant in pancreatic islets.
Islets
PUBLISHED: 11-01-2010
Show Abstract
Hide Abstract
The sophistication of intracellular Ca ( 2+) signalling reflects the necessity for the many different types of cells to fine tuning their specific activities. This can, at least in part, be explained by the molecular complexity of the Ca ( 2+) signalling machinery, consisting of different intracellular Ca ( 2+) release channel types, each including multiple isoforms and alternative splicing variants. This commentary will go over the main points concerning expression and functional characterization of alternative splicing variants of inositol 1,4,5-trisphosphate and ryanodine receptor isoforms. Many of these variants display specific activation or regulatory features. In addition, dominant negative effects of non-functional alternative splicing variants have been also described for both InsP3Rs and RyRs channels. Recently, a novel RyR2 transcript has been identified by Takasawa and co-workers in pancreatic islets. This novel RyR2 transcript has been proposed to act as an intracellular target for cADPR signalling, which has been demonstrated to be important for insulin secretion. Future characterization of this RyR2 transcript may represent a significant advancement in understanding the mechanisms underlying regulation of Ca ( 2+) release by cADPR.
Related JoVE Video
Pluripotency regulators in human mesenchymal stem cells: expression of NANOG but not of OCT-4 and SOX-2.
Stem Cells Dev.
PUBLISHED: 10-29-2010
Show Abstract
Hide Abstract
Mesenchymal stem cells (MSCs) are adult multipotent cells able to differentiate toward mature mesodermal lineages. In spite of more than a decade of investigation, little is known about the molecular mechanisms regulating the undifferentiated state and the identity of distinct functional subpopulations in these cells. Transcription factors that regulate the maintenance of the pluripotent state in embryonic stem cells, including NANOG, SOX2, and OCT4, have been proposed to play a similar role also in adult stem cells, although with conflicting results. We performed a critical evaluation of expression of these 3 transcription factors and found that NANOG, but not OCT-4 and SOX-2, is expressed in cultured human adult MSCs. Actually, NANOG was not expressed in freshly isolated MSCs, but was detected only after in vitro culture. NANOG was detected only in proliferating cells, but not in MSCs induced to differentiate. The percentage of cells expressing NANOG was maintained throughout early passages of MSCs, but then started to decrease in late passages in MSCs from adipose tissue and heart but not from bone marrow. However, the number of NANOG-expressing cells did not associate with the proliferative and differentiative capabilities of MSC populations, neither its expression appeared to identify cells having stem or progenitor cell properties. Accordingly, we propose that activation of NANOG expression in MSCs is associated with, although cannot directly regulate, the transition from in vivo quiescence to adaptation to in vitro growth conditions.
Related JoVE Video
The E3 ubiquitin ligase IDOL induces the degradation of the low density lipoprotein receptor family members VLDLR and ApoER2.
J. Biol. Chem.
PUBLISHED: 04-28-2010
Show Abstract
Hide Abstract
We have previously identified the E3 ubiquitin ligase-inducible degrader of the low density lipoprotein receptor (LDLR) (Idol) as a post-translational modulator of LDLR levels. Idol is a direct target for regulation by liver X receptors (LXRs), and its expression is responsive to cellular sterol status independent of the sterol-response element-binding proteins. Here we demonstrate that Idol also targets two closely related LDLR family members, VLDLR and ApoE receptor 2 (ApoER2), proteins implicated in both neuronal development and lipid metabolism. Idol triggers ubiquitination of the VLDLR and ApoER2 on their cytoplasmic tails, leading to their degradation. We further show that the level of endogenous VLDLR is sensitive to cellular sterol content, Idol expression, and activation of the LXR pathway. Pharmacological activation of the LXR pathway in mice leads to increased Idol expression and to decreased Vldlr levels in vivo. Finally, we establish an unexpected functional link between LXR and Reelin signaling. We demonstrate that LXR activation results in decreased Reelin binding to VLDLR and reduced Dab1 phosphorylation. The identification of VLDLR and ApoER2 as Idol targets suggests potential roles for this LXR-inducible E3 ligase in the central nervous system in addition to lipid metabolism.
Related JoVE Video
Levels of circulating CXCR4-positive cells are decreased and negatively correlated with risk factors in cardiac transplant recipients.
Heart Vessels
PUBLISHED: 04-16-2010
Show Abstract
Hide Abstract
The association between levels of circulating endothelial progenitor cells (EPCs) and heart transplant recipients (HTX) with cardiac allograft vasculopathy (CAV) is under debate. The chemokine receptor CXCR4 plays an important role in the mobilization of progenitor cells and is implicated in pathological conditions, including cardiovascular disease. This study aims to evaluate the association between EPCs and CXCR4-positive cells in HTX patients. Peripheral blood mononuclear cells (PBMCs) from 34 HTX patients and 25 control participants were analyzed by flow cytometry for CXCR4-positive cells and EPCs. Endothelial progenitor cells were defined by the expression of a range of hematopoietic and endothelial lineage markers in different combinations. The ability to form endothelial cell colonies in vitro was also assessed by colony-forming unit (CFU) assay. Phenotypic analysis of EPCs by flow cytometry revealed similar levels in HTX patients compared to controls. In addition, no difference was observed between levels of EPCs or CFU number in patients with and without CAV. By contrast, CFU assay revealed a reduced number of CFUs in HTX patients compared to controls (3.3% ± 0.95 and 13.3% ± 4.5%, respectively, P = 0.014). Likewise, levels of CXCR4-positive cells were significantly reduced (15.9 ± 1.4 in patients vs 24.8 ± 3.3% in controls, P < 0.01), negatively correlated with Framingham risk score (rho = -0.4, P = 0.02) and the number of risk factors (rho = -0.3, P = 0.049). Levels of CXCR4-positive cells were also correlated with CFU number (r = 0.65, P = 0.0005). These findings further develop our understanding of the role of EPCs and endothelial CFUs in cardiovascular disease, in addition to highlighting the potential importance of CXCR4 in heart transplantation.
Related JoVE Video
Reduced levels of putative endothelial progenitor and CXCR4+ cells in coronary artery disease: kinetics following percutaneous coronary intervention and association with clinical characteristics.
Thromb. Haemost.
PUBLISHED: 06-04-2009
Show Abstract
Hide Abstract
Levels of circulating endothelial progenitor cells (EPCs) and CXCR4-positive cells are decreased in patients with coronary artery disease (CAD); however, their ability to change in response to acute vascular injury remains to be elucidated. Progenitor and CXCR4-positive cells were analysed by flow cytometry from the peripheral blood of 23 healthy controls and 23 patients with CAD, of which 13 patients underwent angiogram and 10 patients received percutaneous coronary intervention (PCI) with stent implantation. Baseline levels of progenitor and CXCR4-positive cells were substantially reduced in CAD patients compared to controls, although they were still capable of increasing in response to vascular injury. Levels of progenitor and CXCR4-positive cells were increased to a greater extent in the PCI group compared to angiogram patients. At presentation, levels of putative endothelial progenitor and CXCR4-positive cells were found to be negatively correlated with disease severity. A one-year follow-up revealed that out of the cell populations examined, only levels of CXCR4-positive cells were positively correlated with angina frequency in the PCI group, but not in patients receiving angiogram. Baseline levels of progenitor cells are differentially increased depending upon the severity of vascular injury incurred, regardless of a significant deficit in baseline levels in CAD patients. Levels of putative EPCs and CXCR4-positive cells were negatively correlated with disease severity at presentation, however, only CXCR4-positive cells were associated with patient condition in a one-year follow-up.
Related JoVE Video
Localization of ank1.5 in the sarcoplasmic reticulum precedes that of SERCA and RyR: relationship with the organization of obscurin in developing sarcomeres.
Histochem. Cell Biol.
PUBLISHED: 04-29-2009
Show Abstract
Hide Abstract
Ank1.5 is a muscle-specific isoform of ankyrin1 localized on the sarcoplasmic reticulum (SR) membrane that has been shown to interact with obscurin, a sarcomeric protein. We report here studies on the localization of obscurin and ank1.5 in embryonic and postnatal rodent skeletal muscles. Using two antibodies against epitopes in the N- and C-terminus of obscurin, two distinct patterns of localization were observed. Before birth, the antibodies against the N- and the C-terminus of obscurin stained the Z-disk and M-band, respectively. At the same time, ank1.5 was detected at the Z-disk, rising the possibility that obscurin molecules at M-band may not be able to interact with ank1.5. Localization of ank1.5 at Z-disks in E14 muscle fibers revealed that ank1.5 is among the earliest SR proteins to assemble, since its organization preceded that of other SR proteins, like SERCA and RyR. After birth, the antibody against the N-terminus of obscurin stained the M-band while that against the C-terminus stained both M-bands and the Z-disks. Starting from postnatal day 1, ank1.5 was found at the level of both M-bands and Z-disks. Altogether, from these results we infer that exposure of some obscurin epitopes changes during skeletal muscle development, resulting in distinct, antibody-specific, localization pattern. Why this occurs is not clear, yet these data indicate that the organization of obscurin at different locations in the sarcomere changes during muscle development and that this might affect the interaction with ank1.5.
Related JoVE Video
Late-onset Lennox-Gastaut syndrome in a patient with 15q11.2-q13.1 duplication.
Am. J. Med. Genet. A
PUBLISHED: 04-28-2009
Show Abstract
Hide Abstract
The 4 Mb 15q11-q13 region is prone to structural rearrangements. Deletions have been identified among the leading causes for genetic diseases such as the Prader-Willi and Angelman syndromes, while duplications, occurring preferentially on the maternal chromosome, produce a typical phenotype that includes mental retardation, language delay, seizures and autism. Although a number of such patients have been reported, however, there is a paucity of information about their clinical outcomes in adult age. We report on a 33-year-old female with a microduplication of 15q11-q13 detected by array-CGH analysis, with particular reference to the epilepsy phenotype, characterized as a late-onset Lennox-Gastaut syndrome.
Related JoVE Video
Assembly and dynamics of proteins of the longitudinal and junctional sarcoplasmic reticulum in skeletal muscle cells.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 03-04-2009
Show Abstract
Hide Abstract
The sarcoplasmic reticulum (SR) of skeletal muscle cells is a complex network of tubules and cisternae that share a common lumen delimited by a single continuous membrane. The SR contains longitudinal and junctional domains characterized by distinctive patterns of protein localization, but how SR proteins reach and/or are retained at these sites is not known. Here, we report that the organization of longitudinal SR proteins is a slow process characterized by temporally distinct patterns of protein localization. In contrast, junctional SR proteins rapidly and synchronously assembled into clusters which, however, merged into mature triadic junctions only after completion of longitudinal SR protein organization. Fluorescence recovery after photobleaching experiments indicated that SR organization was accompanied by significant changes in the dynamic properties of longitudinal and junctional proteins. The decrease in mobility that accompanied organization of the longitudinal SR proteins ank1.5-GFP and GFP-InsP3R1 was abrogated by deletion of specific binding sites for myofibrillar or cytoskeletal proteins, respectively. Assembly of junctional SR domains was accompanied by a strong decrease in mobility of junctional proteins that in triadin appeared to be mediated by its intraluminal region. Together, the data suggest that the organization of specific SR domains results from a process of membrane reorganization accompanied by the establishment of multiple protein-protein interactions with intrinsic and extrinsic cues.
Related JoVE Video
Muscle Research and Gene Ontology: New standards for improved data integration.
BMC Med Genomics
PUBLISHED: 01-29-2009
Show Abstract
Hide Abstract
The Gene Ontology Project provides structured controlled vocabularies for molecular biology that can be used for the functional annotation of genes and gene products. In a collaboration between the Gene Ontology (GO) Consortium and the muscle biology community, we have made large-scale additions to the GO biological process and cellular component ontologies. The main focus of this ontology development work concerns skeletal muscle, with specific consideration given to the processes of muscle contraction, plasticity, development, and regeneration, and to the sarcomere and membrane-delimited compartments. Our aims were to update the existing structure to reflect current knowledge, and to resolve, in an accommodating manner, the ambiguity in the language used by the community.
Related JoVE Video
FGD1 as a central regulator of extracellular matrix remodelling--lessons from faciogenital dysplasia.
J. Cell. Sci.
Show Abstract
Hide Abstract
Disabling mutations in the FGD1 gene cause faciogenital dysplasia (also known as Aarskog-Scott syndrome), a human X-linked developmental disorder that results in disproportionately short stature, facial, skeletal and urogenital anomalies, and in a number of cases, mild mental retardation. FGD1 encodes the guanine nucleotide exchange factor FGD1, which is specific for the Rho GTPase cell division cycle 42 (CDC42). CDC42 controls cytoskeleton-dependent membrane rearrangements, transcriptional activation, secretory membrane trafficking, G1 transition during the cell cycle and tumorigenic transformation. The cellular mechanisms by which FGD1 mutations lead to the hallmark skeletal deformations of faciogenital dysplasia remain unclear, but the pathology of the disease, as well as some recent discoveries, clearly show that the protein is involved in the regulation of bone development. Two recent studies unveiled new potential functions of FGD1, in particular, its involvement in the regulation of the formation and function of invadopodia and podosomes, which are cellular structures devoted to degradation of the extracellular matrix in tumour and endothelial cells. Here, we discuss the hypothesis that FGD1 might be an important regulator of events controlling extracellular matrix remodelling and possibly cell invasion in physiological and pathological settings. Additionally, we focus on how studying the cell biology of FGD1 might help us to connect the dots that link CDC42 signalling with remodelling of the extracellular matrix (ECM) in physiology and complex diseases, while, at the same time, furthering our understanding of the pathogenesis of faciogenital dysplasia.
Related JoVE Video
The surgical treatment of benign breast lesions in young adolescents.
Ann Ital Chir
Show Abstract
Hide Abstract
There is much controversy surrounding the treatment of benign breast lesions in young adolescents: on one side the need for surgical treatment and on the other doubts in regard to operating on young patients with a benign disease. Another element sparking the debate is the correlation between the appearance of fibroadenomas and the presence of elevated prolactin levels in the blood.
Related JoVE Video
Post-transcriptional regulation of lipoprotein receptors by the E3-ubiquitin ligase inducible degrader of the low-density lipoprotein receptor.
Curr. Opin. Lipidol.
Show Abstract
Hide Abstract
The hepatic low-density lipoprotein receptor (LDLR) pathway is essential for clearing circulating LDL and is an important therapeutic target for treating cardiovascular disease. Abundance of the LDLR is subject to both transcriptional and nontranscriptional control. Here, we highlight a new post-transcriptional mechanism for controlling LDLR function via ubiquitination of the receptor by the E3-ubiquitin ligase inducible degrader of the LDLR (IDOL).
Related JoVE Video
Role of triadin in the organization of reticulum membrane at the muscle triad.
J. Cell. Sci.
Show Abstract
Hide Abstract
The terminal cisternae represent one of the functional domains of the skeletal muscle sarcoplasmic reticulum (SR). They are closely apposed to plasma membrane invaginations, the T-tubules, with which they form structures called triads. In triads, the physical interaction between the T-tubule-anchored voltage-sensing channel DHPR and the SR calcium channel RyR1 is essential because it allows the depolarization-induced calcium release that triggers muscle contraction. This interaction between DHPR and RyR1 is based on the peculiar membrane structures of both T-tubules and SR terminal cisternae. However, little is known about the molecular mechanisms governing the formation of SR terminal cisternae. We have previously shown that ablation of triadins, a family of SR transmembrane proteins that interact with RyR1, induced skeletal muscle weakness in knockout mice as well as a modification of the shape of triads. Here we explore the intrinsic molecular properties of the longest triadin isoform Trisk 95. We show that when ectopically expressed, Trisk 95 can modulate reticulum membrane morphology. The membrane deformations induced by Trisk 95 are accompanied by modifications of the microtubule network organization. We show that multimerization of Trisk 95 by disulfide bridges, together with interaction with microtubules, are responsible for the ability of Trisk 95 to structure reticulum membrane. When domains responsible for these molecular properties are deleted, anchoring of Trisk 95 to the triads in muscle cells is strongly decreased, suggesting that oligomers of Trisk 95 and microtubules contribute to the organization of the SR terminal cisternae in a triad.
Related JoVE Video
Distinct regions of triadin are required for targeting and retention at the junctional domain of the sarcoplasmic reticulum.
Biochem. J.
Show Abstract
Hide Abstract
Ca2+ release necessary for muscle contraction occurs at the junctional domain of the sarcoplasmic reticulum (j-SR). It requires the assembly of a large multi-protein complex containing the ryanodine receptor (RyR) and additional proteins, including triadin and calsequestrin. The signals which drive these proteins to the j-SR and how they assemble to form this multi-protein complex are poorly understood. To address aspects of these questions we studied the localization, dynamic properties and molecular interactions of triadin. We identified three regions, named TR1, TR2 and TR3, that contribute to the localization of triadin at the j-SR. Fluorescence recovery after photobleaching (FRAP) experiments showed that triadin is stably associated with the j-SR and that this association is mediated by TR3. Protein pull-down experiments indicated that TR3 contains binding sites for calsequestrin-1 and that triadin clustering can be enhanced by binding to calsequestrin-1. These findings were confirmed by FRET experiments. Interestingly, the stable association of triadin to the j-SR was significantly decreased in myotubes from calsequestrin-1 knockout mice. Altogether, these results identify three regions in triadin that mediate targeting to the j-SR and reveal a role for calsequestrin-1 in promoting the stable association of triadin to the multi-protein complex associated with RyR.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.