JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Ryanodine receptor-mediated calcium leak drives progressive development of an atrial fibrillation substrate in a transgenic mouse model.
Circulation
PUBLISHED: 01-07-2014
Show Abstract
Hide Abstract
The progression of atrial fibrillation (AF) from paroxysmal to persistent forms remains a major clinical challenge. Abnormal sarcoplasmic reticulum (SR) Ca(2+) leak via the ryanodine receptor type 2 (RyR2) has been observed as a source of ectopic activity in various AF models. However, its potential role in progression to long-lasting spontaneous AF (sAF) has never been tested. This study was designed to test the hypothesis that enhanced RyR2-mediated Ca(2+) release underlies the development of a substrate for sAF and to elucidate the underlying mechanisms.
Related JoVE Video
A novel intronic promoter of the Crem gene induces small ICER (smICER) isoforms.
FASEB J.
PUBLISHED: 09-10-2013
Show Abstract
Hide Abstract
The transcription factors cAMP-responsive element binding protein (CREB) and cAMP-responsive element modulator (CREM) regulate gene transcription in response to elevated cAMP levels. The Crem isoform inducible cAMP early repressor (Icer) is transcribed by the internal promoter P2 as a critical regulator of multiple cellular processes. Here, we describe a novel inducible Crem isoform, small Icer (smIcer), regulated by a newly identified promoter (P6). ChIP revealed binding of CREB to P6 in human and mouse myocardium. P6 activity was induced by constitutively active CREB or stimulation of adenylyl cyclase. In mice, smIcer mRNA was ubiquitously expressed and transiently induced by ?-adrenoceptor stimulation e.g., in heart and lung. SmICER repressed both basal and cAMP-induced activities of P6 and P2 promoters. Stimulation of adenylyl cyclase induced P2 and P6 in cell type-specific manner. Alternative translational start sites resulted in three different smICER proteins, linked to increased apoptosis sensitivity. In conclusion, the Crem gene provides two distinct and mutually controlled mechanisms of a cAMP-dependent induction of transcriptional repressors. Our results suggest not only that smICER is a novel regulator of cAMP-mediated gene regulation, but also emphasize that biological effects that have been ascribed solely to ICER, should be revised with regard to smICER.-Seidl, M. D., Nunes, F., Fels, B., Hildebrandt, I., Schmitz, W., Schulze-Osthoff, K., and Müller, F. U. A novel intronic promoter of the Crem gene induces small ICER (smICER) isoforms.
Related JoVE Video
Autonomic Dysfunction in Patients with Arrhythmogenic Right Ventricular Cardiomyopathy: Biochemical Evidence of Altered Signaling Pathways.
Pacing Clin Electrophysiol
PUBLISHED: 01-20-2013
Show Abstract
Hide Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an important cause of sudden cardiac death especially in times of increased sympathetic tone, for example, during sports, which have been confirmed by nuclear imaging studies. However, the underlying biochemical pathways remain to be delineated. Therefore, we investigated the expression levels of proteins of the signaling cascade in patients with ARVC.
Related JoVE Video
Overexpression of cAMP-response element modulator causes abnormal growth and development of the atrial myocardium resulting in a substrate for sustained atrial fibrillation in mice.
Int. J. Cardiol.
PUBLISHED: 09-21-2011
Show Abstract
Hide Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice. The substrate of AF is composed of a complex interplay between structural and functional changes of the atrial myocardium often preceding the occurrence of persistent AF. However, there are only few animal models reproducing the slow progression of the AF substrate to the spontaneous occurrence of the arrhythmia. Transgenic mice (TG) with cardiomyocyte-directed expression of CREM-Ib?C-X, an isoform of transcription factor CREM, develop atrial dilatation and spontaneous-onset AF. Here we tested the hypothesis that TG mice develop an arrhythmogenic substrate preceding AF using physiological and biochemical techniques.
Related JoVE Video
Protein phosphatase 2A affects myofilament contractility in non-failing but not in failing human myocardium.
J. Muscle Res. Cell. Motil.
PUBLISHED: 07-21-2011
Show Abstract
Hide Abstract
Protein phosphatase (PP) type 2A is a multifunctional serine/threonine phosphatase that is involved in cardiac excitation-contraction coupling. The PP2A core enzyme is a dimer, consisting of a catalytic C and a scaffolding A subunit, which is targeted to several cardiac proteins by a regulatory B subunit. At present, it is controversial whether PP2A and its subunits play a critical role in end-stage human heart failure. Here we report that the application of purified PP2AC significantly increased the Ca2+-sensitivity (?pCa50=0.05±0.01) of the contractile apparatus in isolated skinned myocytes of non-failing (NF) hearts. A higher phosphorylation of troponin I (cTnI) was found at protein kinase A sites (Ser23/24) in NF compared to failing myocardium. The basal Ca2+-responsiveness of myofilaments was enhanced in myocytes of ischemic (ICM, ?pCa50=0.10±0.03) and dilated (DCM, ?pCa50=0.06±0.04) cardiomyopathy compared to NF. However, in contrast to NF myocytes the treatment with PP2AC did not shift force-pCa relationships in failing myocytes. The higher basal Ca2+-sensitivity in failing myocytes coincided with a reduced protein expression of PP2AC in left ventricular tissue from patients suffering from ICM and DCM (by 50 and 56% compared to NF, respectively). However, PP2A activity was unchanged in failing hearts despite an increase of both total PP and PP1 activity. The expression of PP2AB56? was also decreased by 51 and 62% in ICM and DCM compared to NF, respectively. The phosphorylation of cTnI at Ser23/24 was reduced by 66 and 49% in ICM and DCM compared to NF hearts, respectively. Our results demonstrate that PP2A increases myofilament Ca2+-sensitivity in NF human hearts, most likely via cTnI dephosphorylation. This effect is not present in failing hearts, probably due to the lower baseline cTnI phosphorylation in failing compared to non-failing hearts.
Related JoVE Video
Sarcoplasmic reticulum Ca2+ release in neonatal rat cardiac myocytes.
J. Mol. Cell. Cardiol.
PUBLISHED: 07-19-2011
Show Abstract
Hide Abstract
In the neonatal mammalian heart, the role of ryanodine receptor (=Ca(2+) release channel)-mediated sarcoplasmic reticulum (SR) Ca(2+) release for excitation-contraction coupling is still a matter of debate. Using an adenoviral system, we overexpressed separately the junctional SR proteins triadin, junctin, and calsequestrin, which are probably involved in regulation of ryanodine receptor function. Infection of neonatal rat cardiac myocytes with triadin, junctin, or calsequestrin viruses, controlled by green fluorescent protein expression, resulted in an increased protein level of the corresponding transgenes. Measurement of Ca(2+) transients of infected cardiac myocytes revealed unchanged peak amplitudes under basal conditions but with overexpression of calsequestrin and triadin caffeine-releasable SR Ca(2+) content was increased. Our results demonstrate that an increased expression of triadin or calsequestrin is associated with an increased SR Ca(2+) storage but unchanged Ca(2+) signaling in neonatal rat cardiac myocytes. This is consistent with an ancillary role of the sarcoplasmic reticulum in excitation-contraction coupling in the developing mammalian heart.
Related JoVE Video
Autonomic dysfunction in patients with Brugada syndrome: further biochemical evidence of altered signaling pathways.
Pacing Clin Electrophysiol
PUBLISHED: 05-23-2011
Show Abstract
Hide Abstract
In patients with Brugada syndrome (BrS), life-threatening ventricular tachyarrhythmias predominantly occur during vagal stimulation at rest or during sleep. Previous imaging studies displayed an impaired autonomic function in BrS patients. However, it remains unclear whether these alterations primarily stem from a reduction of synaptic release of norepinephrine (NE) or an enhanced presynaptic reuptake. Both conditions could lead to reduced NE concentrations in the synaptic cleft. Therefore, we analyzed key components of the sympathoadrenergic signaling pathways in patients with BrS.
Related JoVE Video
Mutational spectrum in the Ca(2+)--activated cation channel gene TRPM4 in patients with cardiac conductance disturbances.
Hum. Mutat.
PUBLISHED: 04-15-2011
Show Abstract
Hide Abstract
Very recently, mutations in the TRPM4 gene have been identified in four pedigrees as the cause of an autosomal dominant form of cardiac conduction disease. To determine the role of TRPM4 gene variations, the relative frequency of TRPM4 mutations and associated phenotypes was assessed in a cohort of 160 unrelated patients with various types of inherited cardiac arrhythmic syndromes. In eight probands with atrioventricular block or right bundle branch block--five familial cases and three sporadic cases--a total of six novel and two published TRPM4 mutations were identified. In patients with sinus node dysfunction, Brugada syndrome, or long-QT syndrome, no mutations were found. The novel mutations include six amino acid substitutions and appeared randomly distributed through predicted TRPM4 protein. In addition, eight polymorphic sites including two in-frame deletions were found. Mutations separated from polymorphisms by absence in control individuals and familial cosegregation in some families. In summary, TRPM4 gene mutations appear to play a major role in cardiac conduction disease but not for other related syndromes so far. The phenotypes are variable and clearly suggestive of additional factors modulating the disease phenotype in some patients.
Related JoVE Video
Cardiac overexpression of the human 5-HT4 receptor in mice.
Am. J. Physiol. Heart Circ. Physiol.
PUBLISHED: 07-16-2010
Show Abstract
Hide Abstract
Serotonin (5-HT) exerts pleiotropic effects in the human cardiovascular system. Some of the effects are thought to be mediated via 5-HT(4) receptors, which are expressed in the human atrium and in ventricular tissue. However, a true animal model to study these receptors in more detail has been hitherto lacking. Therefore, we generated, for the first time, a transgenic (TG) mouse with cardiac myocyte-specific expression of the human 5-HT(4) receptor. RT-PCR and immunohistochemistry revealed expression of the receptor at the mRNA and protein levels. Stimulation of isolated cardiac preparations by isoproterenol increased phospholamban phosphorylation at Ser(16) and Thr(17) sites. 5-HT increased phosphorylation only in TG mice but not in wild-type (WT) mice. Furthermore, 5-HT increased contractility in isolated perfused hearts from TG mice but not WT mice. These effects of 5-HT could be blocked by the 5-HT(4) receptor-selective antagonist GR-125487. An intravenous infusion of 5-HT increased left ventricular contractility in TG mice but not in WT mice. Similarly, the increase in contractility by 5-HT in isolated cardiomyocytes from TG mice was accompanied by and probably mediated through an increase in L-type Ca(2+) channel current and in Ca(2+) transients. In intact animals, echocardiography revealed an inotropic and chronotropic effect of subcutaneously injected 5-HT in TG mice but not in WT mice. In isolated hearts from TG mice, spontaneous polymorphic atrial arrhythmias were noted. These findings demonstrate the functional expression of 5-HT(4) receptors in the heart of TG mice, and a potential proarrhythmic effect in the atrium. Therefore, 5-HT(4) receptor-expressing mice might be a useful model to mimic the human heart, where 5-HT(4) receptors are present and functional in the atrium and ventricle of the healthy and failing heart, and to investigate the influence of 5-HT in the development of cardiac arrhythmias and heart failure.
Related JoVE Video
Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia.
Blood
PUBLISHED: 05-24-2010
Show Abstract
Hide Abstract
Acute myeloid leukemia (AML) is commonly associated with alterations in transcription factors because of altered expression or gene mutations. These changes might induce leukemia-specific patterns of histone modifications. We used chromatin-immunoprecipitation on microarray to analyze histone 3 lysine 9 trimethylation (H3K9me3) patterns in primary AML (n = 108), acute lymphoid leukemia (n = 28), CD34(+) cells (n = 21) and white blood cells (n = 15) specimens. Hundreds of promoter regions in AML showed significant alterations in H3K9me3 levels. H3K9me3 deregulation in AML occurred preferentially as a decrease in H3K9me3 levels at core promoter regions. The altered genomic regions showed an overrepresentation of cis-binding sites for ETS and cyclic adenosine monophosphate response elements (CREs) for transcription factors of the CREB/CREM/ATF1 family. The decrease in H3K9me3 levels at CREs was associated with increased CRE-driven promoter activity in AML blasts in vivo. AML-specific H3K9me3 patterns were not associated with known cytogenetic abnormalities. But a signature derived from H3K9me3 patterns predicted event-free survival in AML patients. When the H3K9me3 signature was combined with established clinical prognostic markers, it outperformed prognosis prediction based on clinical parameters alone. These findings demonstrate widespread changes of H3K9me3 levels at gene promoters in AML. Signatures of histone modification patterns are associated with patient prognosis in AML.
Related JoVE Video
The human CASQ2 mutation K206N is associated with hyperglycosylation and altered cellular calcium handling.
J. Mol. Cell. Cardiol.
PUBLISHED: 03-04-2010
Show Abstract
Hide Abstract
Mutations in the human cardiac calsequestrin gene (CASQ2) are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT-2). This inherited disorder is characterized by life-threatening arrhythmias induced by physical and emotional stress in young patients. Here we identified a novel heterozygous missense mutation (K206N) in the CASQ2 gene in a symptomatic family in which one member died of cardiac arrest. The functional properties of CSQ(K206N) were investigated in comparison to the wild-type form of CASQ2 (CSQ(WT)) by expression in eukaryotic cell lines and neonatal mouse myocytes. The mutation created an additional N-glycosylation site resulting in a higher molecular weight form of the recombinant protein on immunoblots. The mutation reduced the Ca(2+) binding capacity of the protein and exhibited an altered aggregation state. Consistently, CSQ(K206N)-expressing myocytes exhibited an impaired response to caffeine administration, suggesting a lower Ca(2+) load of the sarcoplasmic reticulum (SR). The interaction of the mutated CSQ with triadin and the protein levels of the ryanodine receptor were unchanged but the maximal specific [(3)H]ryanodine binding was increased in CSQ(K206N)-expressing myocytes, suggesting a higher opening state of the SR Ca(2+) release channel. Myocytes with expression of CSQ(K206N) showed a higher rate of spontaneous SR Ca(2+) releases under basal conditions and after beta-adrenergic stimulation. We conclude that CSQ(K206N) caused a reduced Ca(2+) binding leading to an abnormal regulation of intracellular Ca(2+) in myocytes. This may then contribute to the increased propensity to trigger spontaneous Ca(2+) transients in CSQ(K206N)-expressing myocytes.
Related JoVE Video
Modulation of cardiac contractility by serine/threonine protein phosphatase type 5.
Int. J. Cardiol.
PUBLISHED: 03-03-2010
Show Abstract
Hide Abstract
Protein phosphatase 5 (PP5) a serine/threonine phosphatase is ubiquitously expressed in mammalian tissues including the heart, but its physiological role in the heart is still unknown. Therefore, we used a transgenic mouse model to get a first insight into the cardiac role of PP5.
Related JoVE Video
Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice.
J. Clin. Invest.
PUBLISHED: 07-16-2009
Show Abstract
Hide Abstract
A trial fibrillation (AF), the most common human cardiac arrhythmia, is associated with abnormal intracellular Ca2+ handling. Diastolic Ca2+ release from the sarcoplasmic reticulum via "leaky" ryanodine receptors (RyR2s) is hypothesized to contribute to arrhythmogenesis in AF, but the molecular mechanisms are incompletely understood. Here, we have shown that mice with a genetic gain-of-function defect in Ryr2 (which we termed Ryr2R176Q/+ mice) did not exhibit spontaneous AF but that rapid atrial pacing unmasked an increased vulnerability to AF in these mice compared with wild-type mice. Rapid atrial pacing resulted in increased Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation of RyR2, while both pharmacologic and genetic inhibition of CaMKII prevented AF inducibility in Ryr2R176Q/+ mice. This result suggests that AF requires both an arrhythmogenic substrate (e.g., RyR2 mutation) and enhanced CaMKII activity. Increased CaMKII phosphorylation of RyR2 was observed in atrial biopsies from mice with atrial enlargement and spontaneous AF, goats with lone AF, and patients with chronic AF. Genetic inhibition of CaMKII phosphorylation of RyR2 in Ryr2S2814A knockin mice reduced AF inducibility in a vagotonic AF model. Together, these findings suggest that increased RyR2-dependent Ca2+ leakage due to enhanced CaMKII activity is an important downstream effect of CaMKII in individuals susceptible to AF induction.
Related JoVE Video
Distinct contractile and molecular differences between two goat models of atrial dysfunction: AV block-induced atrial dilatation and atrial fibrillation.
J. Mol. Cell. Cardiol.
PUBLISHED: 06-09-2009
Show Abstract
Hide Abstract
Atrial dilatation is an independent risk factor for thromboembolism in patients with and without atrial fibrillation (AF). In many patients, atrial dilatation goes along with depressed contractile function of the dilated atria. While some mechanisms causing atrial contractile dysfunction in fibrillating atria have been addressed previously, the cellular and molecular mechanisms of atrial contractile remodeling in dilated atria are unknown. This study characterized in vivo atrial contractile function in a goat model of atrial dilatation and compared it to a goat model of AF. Differences in the underlying mechanisms were elucidated by studying contractile function, electrophysiology and sarcoplasmic reticulum (SR) Ca2+ load in atrial muscle bundles and by analyzing expression and phosphorylation levels of key Ca2+-handling proteins, myofilaments and the expression and activity of their upstream regulators. In 7 chronically instrumented, awake goats atrial contractile dysfunction was monitored during 3 weeks of progressive atrial dilatation after AV-node ablation (AV block goats (AVB)). In open chest experiments atrial work index (AWI) and refractoriness were measured (10 goats with AVB, 5 goats with ten days of AF induced by repetitive atrial burst pacing (AF), 10 controls). Isometric force of contraction (FC), transmembrane action potentials (APs) and rapid cooling contractures (RCC, a measure of SR Ca2+ load) were studied in right atrial muscle bundles. Total and phosphorylated Ca2+-handling and myofilament protein levels were quantified by Western blot. In AVB goats, atrial size increased by 18% (from 26.6+/-4.4 to 31.6+/-5.5 mm, n=7 p<0.01) while atrial fractional shortening (AFS) decreased (from 18.4+/-1.7 to 12.8+/-4.0% at 400 ms, n=7, p<0.01). In open chest experiments, AWI was reduced in AVB and in AF goats compared to controls (at 400 ms: 8.4+/-0.9, n=7, and 3.2+/-1.8, n=5, vs 18.9+/-5.3 mmxmmHg, n=7, respectively, p<0.05 vs control). FC of isolated right atrial muscle bundles was reduced in AVB (n=8) and in AF (n=5) goats compared to controls (n=9) (at 2 Hz: 2.3+/-0.5 and 0.7+/-0.2 vs 5.5+/-1.0 mN/mm2, respectively, p<0.05). APs were shorter in AF, but unchanged in AVB goats. RCCs were reduced in AVB and AF versus control (AVB, 3.4+/-0.5 and AF, 4.1+/-1.4 vs 12.2+/-3.2 mN/mm2, p<0.05). Protein levels of protein kinase A (PKA) phosphorylated phospholamban (PLB) were reduced in AVB (n=8) and AF (n=8) vs control (n=7) by 37.9+/-12.4% and 29.7+/-10.1%, respectively (p<0.01), whereas calmodulin-dependent protein kinase II (CaMKII) phosphorylated ryanodine channels (RyR2) were increased by 166+/-55% in AVB (n=8) and by 146+/-56% in AF (n=8) goats (p<0.01). PKA-phosphorylated myosin-binding protein-C and troponin-I were reduced exclusively in AVB goat atria (by 75+/-10% and 55+/-15%, respectively, n=8, p<0.05). Atrial dilatation developing during slow ventricular rhythm after complete AV block as well as AF-induced remodeling are associated with atrial contractile dysfunction. Both AVB and AF goat atria show decreased SR Ca2+ load, likely caused by PLB dephosphorylation and RYR2 hyperphosphorylation. While shorter APs further compromise contractility in AF goat atria, reduced myofilament phosphorylation may impair contractility in AVB goat atria. Thus, atrial hypocontractility appears to have distinct molecular contributors in different types of atrial remodeling.
Related JoVE Video
Critical role of transcription factor cyclic AMP response element modulator in beta1-adrenoceptor-mediated cardiac dysfunction.
Circulation
PUBLISHED: 02-07-2009
Show Abstract
Hide Abstract
Chronic stimulation of the beta(1)-adrenoceptor (beta(1)AR) plays a crucial role in the pathogenesis of heart failure; however, underlying mechanisms remain to be elucidated. The regulation by transcription factors cAMP response element-binding protein (CREB) and cyclic AMP response element modulator (CREM) represents a fundamental mechanism of cyclic AMP-dependent gene control possibly implicated in beta(1)AR-mediated cardiac deterioration.
Related JoVE Video
Modulation of SR Ca2+ release by the triadin-to-calsequestrin ratio in ventricular myocytes.
Am. J. Physiol. Heart Circ. Physiol.
Show Abstract
Hide Abstract
Calsequestrin (CSQ) is a Ca(2+) storage protein that interacts with triadin (TRN), the ryanodine receptor (RyR), and junctin (JUN) to form a macromolecular tetrameric Ca(2+) signaling complex in the cardiac junctional sarcoplasmic reticulum (SR). Heart-specific overexpression of CSQ in transgenic mice (TG(CSQ)) was associated with heart failure, attenuation of SR Ca(2+) release, and downregulation of associated junctional SR proteins, e.g., TRN. Hence, we tested whether co-overexpression of CSQ and TRN in mouse hearts (TG(CxT)) could be beneficial for impaired intracellular Ca(2+) signaling and contractile function. Indeed, the depressed intracellular Ca(2+) concentration ([Ca](i)) peak amplitude in TG(CSQ) was normalized by co-overexpression in TG(CxT) myocytes. This effect was associated with changes in the expression of cardiac Ca(2+) regulatory proteins. For example, the protein level of the L-type Ca(2+) channel Ca(v)1.2 was higher in TG(CxT) compared with TG(CSQ). Sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) expression was reduced in TG(CxT) compared with TG(CSQ), whereas JUN expression and [(3)H]ryanodine binding were lower in both TG(CxT) and TG(CSQ) compared with wild-type hearts. As a result of these expressional changes, the SR Ca(2+) load was higher in both TG(CxT) and TG(CSQ) myocytes. In contrast to the improved cellular Ca(2+), transient co-overexpression of CSQ and TRN resulted in a reduced survival rate, an increased cardiac fibrosis, and a decreased basal contractility in catheterized mice, working heart preparations, and isolated myocytes. Echocardiographic and hemodynamic measurements revealed a depressed cardiac performance after isoproterenol application in TG(CxT) compared with TG(CSQ). Our results suggest that co-overexpression of CSQ and TRN led to a normalization of the SR Ca(2+) release compared with TG(CSQ) mice but a depressed contractile function and survival rate probably due to cardiac fibrosis, a lower SERCA2a expression, and a blunted response to ?-adrenergic stimulation. Thus the TRN-to-CSQ ratio is a critical modulator of the SR Ca(2+) signaling.
Related JoVE Video
Proarrhythmia in a non-failing murine model of cardiac-specific Na+/Ca 2+ exchanger overexpression: whole heart and cellular mechanisms.
Basic Res. Cardiol.
Show Abstract
Hide Abstract
The cardiac Na(+)/Ca(2+) exchanger (NCX) generates an inward electrical current during SR-Ca(2+) release, thus possibly promoting afterdepolarizations of the action potential (AP). We used transgenic mice 12.5 weeks or younger with cardiomyocyte-directed overexpression of NCX (NCX-Tg) to study the proarrhythmic potential and mechanisms of enhanced NCX activity. NCX-Tg exhibited normal echocardiographic left ventricular function and heart/body weight ratio, while the QT interval was prolonged in surface ECG recordings. Langendorff-perfused NCX-Tg, but not wild-type (WT) hearts, developed ventricular tachycardia. APs and ionic currents were measured in isolated cardiomyocytes. Cell capacitance was unaltered between groups. APs were prolonged in NCX-Tg versus WT myocytes along with voltage-activated K(+) currents (K(v)) not being reduced but even increased in amplitude. During abrupt changes in pacing cycle length, early afterdepolarizations (EADs) were frequently recorded in NCX-Tg but not in WT myocytes. Next to EADs, delayed afterdepolarizations (DAD) triggering spontaneous APs (sAPs) occurred in NCX-Tg but not in WT myocytes. To test whether sAPs were associated with spontaneous Ca(2+) release (sCR), Ca(2+) transients were recorded. Despite the absence of sAPs in WT, sCR was observed in myocytes of both genotypes suggesting a facilitated translation of sCR into DADs in NCX-Tg. Moreover, sCR was more frequent in NCX-Tg as compared to WT. Myocardial protein levels of Ca(2+)-handling proteins were not different between groups except the ryanodine receptor (RyR), which was increased in NCX-Tg versus WT. We conclude that NCX overexpression is proarrhythmic in a non-failing environment even in the absence of reduced K(V). The underlying mechanisms are: (1) occurrence of EADs due to delayed repolarization; (2) facilitated translation from sCR into DADs; (3) proneness to sCR possibly caused by altered Ca(2+) handling and/or increased RyR expression.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.