JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The discovery of potent ribosomal S6 kinase inhibitors by high-throughput screening and structure-guided drug design.
Oncotarget
PUBLISHED: 09-28-2013
Show Abstract
Hide Abstract
The ribosomal P70 S6 kinases play a crucial role in PI3K/mTOR regulated signalling pathways and are therefore potential targets for the treatment of a variety of diseases including diabetes and cancer. In this study we describe the identification of three series of chemically distinct S6K1 inhibitors. In addition, we report a novel PKA-S6K1 chimeric protein with five mutations in or near its ATP-binding site, which was used to determine the binding mode of two of the three inhibitor series, and provided a robust system to aid the optimisation of the oxadiazole-substituted benzimidazole inhibitor series. We show that the resulting oxadiazole-substituted aza-benzimidazole is a potent and ligand efficient S6 kinase inhibitor, which blocks the phosphorylation of RPS6 at Ser235/236 in TSC negative HCV29 human bladder cancer cells by inhibiting S6 kinase activity and thus provides a useful tool compound to investigate the function of S6 kinases.
Related JoVE Video
Fragment-based screening maps inhibitor interactions in the ATP-binding site of checkpoint kinase 2.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Checkpoint kinase 2 (CHK2) is an important serine/threonine kinase in the cellular response to DNA damage. A fragment-based screening campaign using a combination of a high-concentration AlphaScreen™ kinase assay and a biophysical thermal shift assay, followed by X-ray crystallography, identified a number of chemically different ligand-efficient CHK2 hinge-binding scaffolds that have not been exploited in known CHK2 inhibitors. In addition, it showed that the use of these orthogonal techniques allowed efficient discrimination between genuine hit matter and false positives from each individual assay technology. Furthermore, the CHK2 crystal structures with a quinoxaline-based fragment and its follow-up compound highlight a hydrophobic area above the hinge region not previously explored in rational CHK2 inhibitor design, but which might be exploited to enhance both potency and selectivity of CHK2 inhibitors.
Related JoVE Video
Structure-guided evolution of potent and selective CHK1 inhibitors through scaffold morphing.
J. Med. Chem.
PUBLISHED: 11-23-2011
Show Abstract
Hide Abstract
Pyrazolopyridine inhibitors with low micromolar potency for CHK1 and good selectivity against CHK2 were previously identified by fragment-based screening. The optimization of the pyrazolopyridines to a series of potent and CHK1-selective isoquinolines demonstrates how fragment-growing and scaffold morphing strategies arising from a structure-based understanding of CHK1 inhibitor binding can be combined to successfully progress fragment-derived hit matter to compounds with activity in vivo. The challenges of improving CHK1 potency and selectivity, addressing synthetic tractability, and achieving novelty in the crowded kinase inhibitor chemical space were tackled by multiple scaffold morphing steps, which progressed through tricyclic pyrimido[2,3-b]azaindoles to N-(pyrazin-2-yl)pyrimidin-4-amines and ultimately to imidazo[4,5-c]pyridines and isoquinolines. A potent and highly selective isoquinoline CHK1 inhibitor (SAR-020106) was identified, which potentiated the efficacies of irinotecan and gemcitabine in SW620 human colon carcinoma xenografts in nude mice.
Related JoVE Video
Targeting the Hsp90 molecular chaperone with novel macrolactams. Synthesis, structural, binding, and cellular studies.
ACS Chem. Biol.
PUBLISHED: 10-04-2011
Show Abstract
Hide Abstract
A series of resorcylic acid macrolactams, nitrogen analogues of the naturally occurring macrolactone radicicol, have been prepared by chemical synthesis and evaluated as inhibitors of heat shock protein 90 (Hsp90), an emerging attractive target for novel cancer therapeutic agents. The synthesis involves, as key steps, ring opening of an isocoumarin intermediate, followed by a ring-closing metathesis reaction to form the macrocycle. Subsequent manipulation of the ester group into a range of amides allows access to a range of new macrolactams following deprotection of the two phenolic groups. These new resorcylic acid lactams exhibit metabolic stability greater than that of related lactone counterparts, while co-crystallization of three macrolactams with the N-terminal domain ATP site of Hsp90 confirms that they bind in a similar way to the natural product radicicol and to our previous synthetic lactone analogues. Interestingly, however, in the case of the N-benzylamide, additional binding to a hydrophobic pocket of the protein was observed. In biological assays, the new macrocyclic lactams exhibit a biological profile equivalent or superior to that of the related lactones and show the established molecular signature of Hsp90 inhibitors in human colon cancer cells.
Related JoVE Video
Benzimidazole inhibitors induce a DFG-out conformation of never in mitosis gene A-related kinase 2 (Nek2) without binding to the back pocket and reveal a nonlinear structure-activity relationship.
J. Med. Chem.
PUBLISHED: 03-02-2011
Show Abstract
Hide Abstract
We describe herein the structure-activity relationship (SAR) and cocrystal structures of a series of Nek2 inhibitors derived from the published polo-like kinase 1 (Plk1) inhibitor (R)-1. Our studies reveal a nonlinear SAR for Nek2 and our cocrystal structures show that compounds in this series bind to a DFG-out conformation of Nek2 without extending into the enlarged back pocket commonly found in this conformation. These observations were further investigated, and structure-based design led to Nek2 inhibitors derived from (R)-1 with more than a hundred-fold selectivity against Plk1.
Related JoVE Video
A phase I study of the heat shock protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced solid tumors.
Clin. Cancer Res.
PUBLISHED: 01-28-2011
Show Abstract
Hide Abstract
A phase I study to define toxicity and recommend a phase II dose of the HSP90 inhibitor alvespimycin (17-DMAG; 17-dimethylaminoethylamino-17-demethoxygeldanamycin). Secondary endpoints included evaluation of pharmacokinetic profile, tumor response, and definition of a biologically effective dose (BED).
Related JoVE Video
CCT241533 is a potent and selective inhibitor of CHK2 that potentiates the cytotoxicity of PARP inhibitors.
Cancer Res.
PUBLISHED: 01-18-2011
Show Abstract
Hide Abstract
CHK2 is a checkpoint kinase involved in the ATM-mediated response to double-strand DNA breaks. Its potential as a drug target is still unclear, but inhibitors of CHK2 may increase the efficacy of genotoxic cancer therapies in a p53 mutant background by eliminating one of the checkpoints or DNA repair pathways contributing to cellular resistance. We report here the identification and characterization of a novel CHK2 kinase inhibitor, CCT241533. X-ray crystallography confirmed that CCT241533 bound to CHK2 in the ATP pocket. This compound inhibits CHK2 with an IC(50) of 3 nmol/L and shows minimal cross-reactivity against a panel of kinases at 1 ?mol/L. CCT241533 blocked CHK2 activity in human tumor cell lines in response to DNA damage, as shown by inhibition of CHK2 autophosphorylation at S516, band shift mobility changes, and HDMX degradation. CCT241533 did not potentiate the cytotoxicity of a selection of genotoxic agents in several cell lines. However, this compound significantly potentiates the cytotoxicity of two structurally distinct PARP inhibitors. Clear induction of the pS516 CHK2 signal was seen with a PARP inhibitor alone, and this activation was abolished by CCT241533, implying that the potentiation of PARP inhibitor cell killing by CCT241533 was due to inhibition of CHK2. Consequently, our findings imply that CHK2 inhibitors may exert therapeutic activity in combination with PARP inhibitors.
Related JoVE Video
Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response.
EMBO J.
PUBLISHED: 01-07-2011
Show Abstract
Hide Abstract
Ire1 (Ern1) is an unusual transmembrane protein kinase essential for the endoplasmic reticulum (ER) unfolded protein response (UPR). Activation of Ire1 by association of its N-terminal ER luminal domains promotes autophosphorylation by its cytoplasmic kinase domain, leading to activation of the C-terminal ribonuclease domain, which splices Xbp1 mRNA generating an active Xbp1s transcriptional activator. We have determined the crystal structure of the cytoplasmic portion of dephosphorylated human Ire1? bound to ADP, revealing the phosphoryl-transfer competent dimeric face-to-face complex, which precedes and is distinct from the back-to-back RNase active conformation described for yeast Ire1. We show that the Xbp1-specific ribonuclease activity depends on autophosphorylation, and that ATP-competitive inhibitors staurosporin and sunitinib, which inhibit autophosphorylation in vitro, also inhibit Xbp1 splicing in vivo. Furthermore, we demonstrate that activated Ire1? is a competent protein kinase, able to phosphorylate a heterologous peptide substrate. These studies identify human Ire1? as a target for development of ATP-competitive inhibitors that will modulate the UPR in human cells, which has particular relevance for myeloma and other secretory malignancies.
Related JoVE Video
Preclinical pharmacology, antitumor activity, and development of pharmacodynamic markers for the novel, potent AKT inhibitor CCT128930.
Mol. Cancer Ther.
PUBLISHED: 12-29-2010
Show Abstract
Hide Abstract
AKT is frequently deregulated in cancer, making it an attractive anticancer drug target. CCT128930 is a novel ATP-competitive AKT inhibitor discovered using fragment- and structure-based approaches. It is a potent, advanced lead pyrrolopyrimidine compound exhibiting selectivity for AKT over PKA, achieved by targeting a single amino acid difference. CCT128930 exhibited marked antiproliferative activity and inhibited the phosphorylation of a range of AKT substrates in multiple tumor cell lines in vitro, consistent with AKT inhibition. CCT128930 caused a G(1) arrest in PTEN-null U87MG human glioblastoma cells, consistent with AKT pathway blockade. Pharmacokinetic studies established that potentially active concentrations of CCT128930 could be achieved in human tumor xenografts. Furthermore, CCT128930 also blocked the phosphorylation of several downstream AKT biomarkers in U87MG tumor xenografts, indicating AKT inhibition in vivo. Antitumor activity was observed with CCT128930 in U87MG and HER2-positive, PIK3CA-mutant BT474 human breast cancer xenografts, consistent with its pharmacokinetic and pharmacodynamic properties. A quantitative immunofluorescence assay to measure the phosphorylation and total protein expression of the AKT substrate PRAS40 in hair follicles is presented. Significant decreases in pThr246 PRAS40 occurred in CCT128930-treated mouse whisker follicles in vivo and human hair follicles treated ex vivo, with minimal changes in total PRAS40. In conclusion, CCT128930 is a novel, selective, and potent AKT inhibitor that blocks AKT activity in vitro and in vivo and induces marked antitumor responses. We have also developed a novel biomarker assay for the inhibition of AKT in human hair follicles, which is currently being used in clinical trials.
Related JoVE Video
Structure-based design of potent and selective 2-(quinazolin-2-yl)phenol inhibitors of checkpoint kinase 2.
J. Med. Chem.
PUBLISHED: 12-27-2010
Show Abstract
Hide Abstract
Structure-based design was applied to the optimization of a series of 2-(quinazolin-2-yl)phenols to generate potent and selective ATP-competitive inhibitors of the DNA damage response signaling enzyme checkpoint kinase 2 (CHK2). Structure-activity relationships for multiple substituent positions were optimized separately and in combination leading to the 2-(quinazolin-2-yl)phenol 46 (IC(50) 3 nM) with good selectivity for CHK2 against CHK1 and a wider panel of kinases and with promising in vitro ADMET properties. Off-target activity at hERG ion channels shown by the core scaffold was successfully reduced by the addition of peripheral polar substitution. In addition to showing mechanistic inhibition of CHK2 in HT29 human colon cancer cells, a concentration dependent radioprotective effect in mouse thymocytes was demonstrated for the potent inhibitor 46 (CCT241533).
Related JoVE Video
Serum angiogenic profile of patients with glioblastoma identifies distinct tumor subtypes and shows that TIMP-1 is a prognostic factor.
Neuro-oncology
PUBLISHED: 12-16-2010
Show Abstract
Hide Abstract
Angiogenesis plays a key role in glioblastoma biology and antiangiogenic agents are under clinical investigation with promising results. However, the angiogenic profiles of patients with glioblastoma and their clinical significance are not well understood. Here we characterize the serum angiogenic profile of patients with glioblastoma, and examine the prognostic significance of individual angiogenic factors. Serum samples from 36 patients with glioblastoma were collected on admission and simultaneously assayed for 48 angiogenic factors using protein microarrays. The data were analyzed using hierarchical cluster analysis. Vessel morphology was assessed histologically after immunostaining for the pan-endothelial marker CD31. Tumor samples were also immunostained for tissue inhibitor of metalloproteinase-1 (TIMP-1). Cluster analysis of the serum angiogenic profiles revealed 2 distinct subtypes of glioblastoma. The 2 subtypes had markedly different tumor microvessel densities. A low serum level of TIMP-1 was associated with significantly longer survival independent of patient age, performance status, or treatment. The serum angiogenic profile in patients with glioblastoma mirrors tumor biology and has prognostic value. Our data suggest the serum TIMP-1 level as an independent predictor of survival.
Related JoVE Video
Discovery of 2-(6-{[(6-fluoroquinolin-2-yl)methyl]amino}bicyclo[3.1.0]hex-3-yl)-N-hydroxypyrimidine-5-carboxamide (CHR-3996), a class I selective orally active histone deacetylase inhibitor.
J. Med. Chem.
PUBLISHED: 11-16-2010
Show Abstract
Hide Abstract
A novel series of HDAC inhibitors demonstrating class I subtype selectivity and good oral bioavailability is described. The compounds are potent enzyme inhibitors (IC?? values less than 100 nM), and improved activity in cell proliferation assays was achieved by modulation of polar surface area (PSA) through the introduction of novel linking groups. Employing oral pharmacokinetic studies in mice, comparing drug levels in spleen to plasma, we selected compounds that were tested for efficacy in human tumor xenograft studies based on their potential to distribute into tumor. One compound, 21r (CHR-3996), showed good oral activity in these models, including dose-related activity in a LoVo xenograft. In addition 21r showed good activity in combination with other anticancer agents in in vitro studies. On the basis of these results, 21r was nominated for clinical development.
Related JoVE Video
Aminopyrazine inhibitors binding to an unusual inactive conformation of the mitotic kinase Nek2: SAR and structural characterization.
J. Med. Chem.
PUBLISHED: 10-13-2010
Show Abstract
Hide Abstract
We report herein the first systematic exploration of inhibitors of the mitotic kinase Nek2. Starting from HTS hit aminopyrazine 2, compounds with improved activity were identified using structure-based design. Our structural biology investigations reveal two notable observations. First, 2 and related compounds bind to an unusual, inactive conformation of the kinase which to the best of our knowledge has not been reported for other types of kinase inhibitors. Second, a phenylalanine residue at the center of the ATP pocket strongly affects the ability of the inhibitor to bind to the protein. The implications of these observations are discussed, and the work described here defines key features for potent and selective Nek2 inhibition, which will aid the identification of more advanced inhibitors of Nek2.
Related JoVE Video
Design and synthesis of novel pyrimidine hydroxamic acid inhibitors of histone deacetylases.
Bioorg. Med. Chem. Lett.
PUBLISHED: 08-13-2010
Show Abstract
Hide Abstract
Inhibition of histone deacetylase activity represents a promising new modality in the treatment of a number of cancers. A novel HDAC series demonstrating inhibitory activity in cell proliferation assays is described. Optimisation based on the introduction of basic amine linkers to effect good drug distribution to tumour led to the identification of a compound with oral activity in a human colon cancer xenograft study associated with increased histone H3 acetylation in tumour tissue.
Related JoVE Video
Inhibition of Hsp90 with resorcylic acid macrolactones: synthesis and binding studies.
Chemistry
PUBLISHED: 07-28-2010
Show Abstract
Hide Abstract
A series of resorcylic acid macrolactones, analogues of the natural product radicicol has been prepared by chemical synthesis, and evaluated as inhibitors of heat shock protein 90 (Hsp90), an emerging attractive target for novel cancer therapeutic agents. The synthesis involves acylation of an ortho-toluic acid dianion, esterification, followed by a ring-closing metathesis to form the macrocycle. Subsequent manipulation of the protected hydroxymethyl side chain allows access to a range of new analogues following deprotection of the two phenolic groups. Co-crystallization of one of the new macrolactones with the N-terminal domain of yeast Hsp90 confirms that it binds in a similar way to the natural product radicicol and to our previous synthetic analogues, but that the introduction of the additional hydroxymethyl substituent appears to result in an unexpected change in conformation of the macrocyclic ring. As a result of this conformational change, the compounds bound less favorably to Hsp90.
Related JoVE Video
Identification by high-throughput screening of viridin analogs as biochemical and cell-based inhibitors of the cell cycle-regulated nek2 kinase.
J Biomol Screen
PUBLISHED: 07-27-2010
Show Abstract
Hide Abstract
Nek2 is a serine/threonine protein kinase that localizes to the centrosome and is implicated in mitotic regulation. Overexpression of Nek2 induces premature centrosome separation and nuclear defects indicative of mitotic errors, whereas depletion of Nek2 interferes with cell growth. As Nek2 expression is upregulated in a range of cancer cell lines and primary human tumors, inhibitors of Nek2 may have therapeutic value in cancer treatment. The authors used a radiometric proximity assay in a high-throughput screen to identify small-molecule inhibitors of Nek2 kinase activity. The assay was based on the measurement of the radiolabeled phosphorylated product of the kinase reaction brought into contact with the surface of wells of solid scintillant-coated microplates. Seventy nonaggregating hits were identified from approximately 73,000 compounds screened and included a number of toxoflavins and a series of viridin/wortmannin-like compounds. The viridin-like compounds were >70-fold selective for Nek2 over Nek6 and Nek7 and inhibited the growth of human tumor cell lines at concentrations consistent with their biochemical potencies. An automated mechanism-based microscopy assay in which centrosomes were visualized using pericentrin antibodies confirmed that 2 of the viridin inhibitors reduced centrosome separation in a human tumor cell line. The data presented show that pharmacological inhibition of Nek2 kinase results in the expected phenotype of disruption to centrosome function associated with growth inhibition and further supports Nek2 as a target for cancer drug discovery.
Related JoVE Video
A useful approach to identify novel small-molecule inhibitors of Wnt-dependent transcription.
Cancer Res.
PUBLISHED: 07-07-2010
Show Abstract
Hide Abstract
The Wnt signaling pathway is frequently deregulated in cancer due to mutations in genes encoding APC, beta-catenin, and axin. To identify small-molecule inhibitors of Wnt signaling as potential therapeutics, a diverse chemical library was screened using a transcription factor reporter cell line in which the activity of the pathway was induced at the level of Disheveled protein. A series of deconvolution studies was used to focus on three compound series that selectively killed cancer cell lines with constitutive Wnt signaling. Activities of the compounds included the ability to induce degradation of beta-catenin that had been stabilized by a glycogen synthase kinase-3 (GSK-3) inhibitor. This screen illustrates a practical approach to identify small-molecule inhibitors of Wnt signaling that can seed the development of agents suitable to treat patients with Wnt-dependent tumors.
Related JoVE Video
Design and evaluation of 3,6-di(hetero)aryl imidazo[1,2-a]pyrazines as inhibitors of checkpoint and other kinases.
Bioorg. Med. Chem. Lett.
PUBLISHED: 04-06-2010
Show Abstract
Hide Abstract
A range of 3,6-di(hetero)arylimidazo[1,2-a]pyrazine ATP-competitive inhibitors of CHK1 were developed by scaffold hopping from a weakly active screening hit. Efficient synthetic routes for parallel synthesis were developed to prepare analogues with improved potency and ligand efficiency against CHK1. Kinase profiling showed that the imidazo[1,2-a]pyrazines could inhibit other kinases, including CHK2 and ABL, with equivalent or better potency depending on the pendant substitution. These 3,6-di(hetero)aryl imidazo[1,2-a]pyrazines appear to represent a general kinase inhibitor scaffold.
Related JoVE Video
Discovery of 4-amino-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamides as selective, orally active inhibitors of protein kinase B (Akt).
J. Med. Chem.
PUBLISHED: 02-16-2010
Show Abstract
Hide Abstract
Protein kinase B (PKB or Akt) is an important component of intracellular signaling pathways regulating growth and survival. Signaling through PKB is frequently deregulated in cancer, and inhibitors of PKB therefore have potential as antitumor agents. The optimization of lipophilic substitution within a series of 4-benzyl-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amines provided ATP-competitive, nanomolar inhibitors with up to 150-fold selectivity for inhibition of PKB over the closely related kinase PKA. Although active in cellular assays, compounds containing 4-amino-4-benzylpiperidines underwent metabolism in vivo, leading to rapid clearance and low oral bioavailability. Variation of the linker group between the piperidine and the lipophilic substituent identified 4-amino-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamides as potent and orally bioavailable inhibitors of PKB. Representative compounds modulated biomarkers of signaling through PKB in vivo and strongly inhibited the growth of human tumor xenografts in nude mice at well-tolerated doses.
Related JoVE Video
Detection of the ATPase activity of the molecular chaperones Hsp90 and Hsp72 using the TranscreenerTM ADP assay kit.
J Biomol Screen
PUBLISHED: 02-10-2010
Show Abstract
Hide Abstract
The molecular chaperone heat shock protein 90 (Hsp90) is required for the correct folding and stability of a number of client proteins that are important for the growth and maintenance of cancer cells. Heat shock protein 72 (Hsp72), a co-chaperone of Hsp90, is also emerging as an attractive cancer drug target. Both proteins bind and hydrolyze adenosine triphosphate (ATP), and ATPase activity is essential for their function. Inhibition of Hsp90 ATPase activity leads to the degradation of client proteins, resulting in cell growth inhibition and apoptosis. Several small-molecule inhibitors of the ATPase activity of Hsp90 have been described and are currently being evaluated clinically for the treatment of cancer. A number of methods for the measurement of ATPase activity have been previously used, but not all of these are ideally suited to screening cascades in drug discovery projects. The authors have evaluated the use of commercial reagents (Transcreener ADP) for the measurement of ATPase activity of both yeast and human Hsp90 (ATP K(m) approximately 500 microM) and human Hsp72 (ATP K(m) ~1 microM). The low ATPase activity of human Hsp90 and its stimulation by the co-chaperone Aha1 was measured with ease using reduced incubation times, generating robust data (Z = 0.75). The potency of several small-molecule inhibitors of both Hsp90 and Hsp72 was determined using the Transcreener reagents and compared well to that determined using other assay formats.
Related JoVE Video
Targeting the Hsp90 chaperone: synthesis of novel resorcylic acid macrolactone inhibitors of Hsp90.
Chemistry
PUBLISHED: 01-21-2010
Show Abstract
Hide Abstract
A series of benzo-macrolactones has been prepared by chemical synthesis, and evaluated as inhibitors of heat shock protein 90 (Hsp90), an emerging attractive target for novel cancer therapeutic agents. A new synthesis of these resorcylic acid macrolactone analogues of the natural product radicicol is described in which the key steps are the acylation and ring opening of a homophthalic anhydride to give an isocoumarin, followed by a ring-closing metathesis to form the macrocycle. The methodology has been extended to a novel series of macrolactones incorporating a 1,2,3-triazole ring.
Related JoVE Video
The preclinical pharmacology and therapeutic activity of the novel CHK1 inhibitor SAR-020106.
Mol. Cancer Ther.
PUBLISHED: 01-06-2010
Show Abstract
Hide Abstract
Genotoxic antitumor agents continue to be the mainstay of current cancer chemotherapy. These drugs cause DNA damage and activate numerous cell cycle checkpoints facilitating DNA repair and the maintenance of genomic integrity. Most human tumors lack functional p53 and consequently have compromised G(1)-S checkpoint control. This has led to the hypothesis that S and G(2)-M checkpoint abrogation may selectively enhance genotoxic cell killing in a p53-deficient background, as normal cells would be rescued at the G(1)-S checkpoint. CHK1 is a serine/threonine kinase associated with DNA damage-linked S and G(2)-M checkpoint control. SAR-020106 is an ATP-competitive, potent, and selective CHK1 inhibitor with an IC(50) of 13.3 nmol/L on the isolated human enzyme. This compound abrogates an etoposide-induced G(2) arrest with an IC(50) of 55 nmol/L in HT29 cells, and significantly enhances the cell killing of gemcitabine and SN38 by 3.0- to 29-fold in several colon tumor lines in vitro and in a p53-dependent fashion. Biomarker studies have shown that SAR-020106 inhibits cytotoxic drug-induced autophosphorylation of CHK1 at S296 and blocks the phosphorylation of CDK1 at Y15 in a dose-dependent fashion both in vitro and in vivo. Cytotoxic drug combinations were associated with increased gammaH2AX and poly ADP ribose polymerase cleavage consistent with the SAR-020106-enhanced DNA damage and tumor cell death. Irinotecan and gemcitabine antitumor activity was enhanced by SAR-020106 in vivo with minimal toxicity. SAR-020106 represents a novel class of CHK1 inhibitors that can enhance antitumor activity with selected anticancer drugs in vivo and may therefore have clinical utility.
Related JoVE Video
Identification and characterisation of 2-aminopyridine inhibitors of checkpoint kinase 2.
Bioorg. Med. Chem.
PUBLISHED: 09-14-2009
Show Abstract
Hide Abstract
5-(Hetero)aryl-3-(4-carboxamidophenyl)-2-aminopyridine inhibitors of CHK2 were identified from high throughput screening of a kinase-focussed compound library. Rapid exploration of the hits through straightforward chemistry established structure-activity relationships and a proposed ATP-competitive binding mode which was verified by X-ray crystallography of several analogues bound to CHK2. Variation of the 5-(hetero)aryl substituent identified bicyclic dioxolane and dioxane groups which improved the affinity and the selectivity of the compounds for CHK2 versus CHK1. The 3-(4-carboxamidophenyl) substituent could be successfully replaced by acyclic omega-aminoalkylamides, which made additional polar interactions within the binding site and led to more potent inhibitors of CHK2. Compounds from this series showed activity in cell-based mechanistic assays for inhibition of CHK2.
Related JoVE Video
Identification of inhibitors of checkpoint kinase 1 through template screening.
J. Med. Chem.
PUBLISHED: 07-04-2009
Show Abstract
Hide Abstract
Checkpoint kinase 1 (CHK1) is an oncology target of significant current interest. Inhibition of CHK1 abrogates DNA damage-induced cell cycle checkpoints and sensitizes p53 deficient cancer cells to genotoxic therapies. Using template screening, a fragment-based approach to small molecule hit generation, we have identified multiple CHK1 inhibitor scaffolds suitable for further optimization. The sequential combination of in silico low molecular weight template selection, a high concentration biochemical assay and hit validation through protein-ligand X-ray crystallography provided 13 template hits from an initial in silico screening library of ca. 15000 compounds. The use of appropriate counter-screening to rule out nonspecific aggregation by test compounds was essential for optimum performance of the high concentration bioassay. One low molecular weight, weakly active purine template hit was progressed by iterative structure-based design to give submicromolar pyrazolopyridines with good ligand efficiency and appropriate CHK1-mediated cellular activity in HT29 colon cancer cells.
Related JoVE Video
Synthesis of isothiazol-3-one derivatives as inhibitors of histone acetyltransferases (HATs).
Bioorg. Med. Chem.
PUBLISHED: 03-28-2009
Show Abstract
Hide Abstract
High-throughput screening led to the identification of isothiazolones 1 and 2 as inhibitors of histone acetyltransferase (HAT) with IC50s of 3 microM and 5 microM, respectively. Analogues of these hit compounds with variations of the N-phenyl group, and with variety of substituents at C-4, C-5 of the thiazolone ring, were prepared and assayed for inhibition of the HAT enzyme PCAF. Potency is modestly favoured when the N-aryl group is electron deficient (4-pyridyl derivative 10 has IC(50)=1.5 microM); alkyl substitution at C-4 has little effect, whilst similar substitution at C-5 causes a significant drop in potency. The ring-fused compound 38 has activity (IC(50)=6.1 microM) to encourage further exploration of this bicyclic structure. The foregoing SAR is consistent with an inhibitory mechanism involving cleavage of the S-N bond of the isothiazolone ring by a catalytically important thiol residue.
Related JoVE Video
Discovery of 3-alkoxyamino-5-(pyridin-2-ylamino)pyrazine-2-carbonitriles as selective, orally bioavailable CHK1 inhibitors.
J. Med. Chem.
Show Abstract
Hide Abstract
Inhibitors of checkpoint kinase 1 (CHK1) are of current interest as potential antitumor agents, but the most advanced inhibitor series reported to date are not orally bioavailable. A novel series of potent and orally bioavailable 3-alkoxyamino-5-(pyridin-2-ylamino)pyrazine-2-carbonitrile CHK1 inhibitors was generated by hybridization of two lead scaffolds derived from fragment-based drug design and optimized for CHK1 potency and high selectivity using a cell-based assay cascade. Efficient in vivo pharmacokinetic assessment was used to identify compounds with prolonged exposure following oral dosing. The optimized compound (CCT244747) was a potent and highly selective CHK1 inhibitor, which modulated the DNA damage response pathway in human tumor xenografts and showed antitumor activity in combination with genotoxic chemotherapies and as a single agent.
Related JoVE Video
CCT244747 is a novel potent and selective CHK1 inhibitor with oral efficacy alone and in combination with genotoxic anticancer drugs.
Clin. Cancer Res.
Show Abstract
Hide Abstract
Many tumors exhibit defective cell-cycle checkpoint control and increased replicative stress. CHK1 is critically involved in the DNA damage response and maintenance of replication fork stability. We have therefore discovered a novel potent, highly selective, orally active ATP-competitive CHK1 inhibitor, CCT244747, and present its preclinical pharmacology and therapeutic activity.
Related JoVE Video
Small-molecule inhibitors of the protein methyltransferase SET7/9 identified in a high-throughput screen.
J Biomol Screen
Show Abstract
Hide Abstract
Aberrant expression of chromatin-modifying enzymes (CMEs) is associated with a range of human diseases, including cancer. CMEs are now an important target area in drug discovery. Although the role that histone and protein (lysine) methyltransferases (PMTs) play in the regulation of transcription and cell growth is increasingly recognized, few small-molecule inhibitors of this class of enzyme have been reported. Here we describe an assay suitable for primary compound screening for the identification of PMT inhibitors. The assay followed the methylation of histones in the presence of the PMT SET7/9 and the radioactive cofactor S-adenosyl-methionine using scintillating microplates (FlashPlate) and was used to screen approximately 65 000 compounds (% coefficient of variation = 10%; Z = 0.6). The hits identified from a library of more than 63 000 diverse small molecules included a series of rhodanine compounds with micromolar activity. A screen of the National Cancer Institute Diversity Set (2000 compounds) identified an orsein derivative that inhibited SET7/9 (~20 µM) and showed modest growth inhibition associated with the expected cellular phenotype of reduced histone methylation in a human tumor cell line. The assay represents a useful tool for the identification of inhibitors of PMT activity.
Related JoVE Video
Design of potent and selective hybrid inhibitors of the mitotic kinase Nek2: structure-activity relationship, structural biology, and cellular activity.
J. Med. Chem.
Show Abstract
Hide Abstract
We report herein a series of Nek2 inhibitors based on an aminopyridine scaffold. These compounds have been designed by combining key elements of two previously discovered chemical series. Structure based design led to aminopyridine (R)-21, a potent and selective inhibitor able to modulate Nek2 activity in cells.
Related JoVE Video
Mechanism-based screen establishes signalling framework for DNA damage-associated G1 checkpoint response.
PLoS ONE
Show Abstract
Hide Abstract
DNA damage activates checkpoint controls which block progression of cells through the division cycle. Several different checkpoints exist that control transit at different positions in the cell cycle. A role for checkpoint activation in providing resistance of cells to genotoxic anticancer therapy, including chemotherapy and ionizing radiation, is widely recognized. Although the core molecular functions that execute different damage activated checkpoints are known, the signals that control checkpoint activation are far from understood. We used a kinome-spanning RNA interference screen to delineate signalling required for radiation-mediated retinoblastoma protein activation, the recognized executor of G(1) checkpoint control. Our results corroborate the involvement of the p53 tumour suppressor (TP53) and its downstream targets p21(CIP1/WAF1) but infer lack of involvement of canonical double strand break (DSB) recognition known for its role in activating TP53 in damaged cells. Instead our results predict signalling involving the known TP53 phosphorylating kinase PRPK/TP53RK and the JNK/p38MAPK activating kinase STK4/MST1, both hitherto unrecognised for their contribution to DNA damage G1 checkpoint signalling. Our results further predict a network topology whereby induction of p21(CIP1/WAF1) is required but not sufficient to elicit checkpoint activation. Our experiments document a role of the kinases identified in radiation protection proposing their pharmacological inhibition as a potential strategy to increase radiation sensitivity in proliferating cancer cells.
Related JoVE Video
Mechanism-based screen for G1/S checkpoint activators identifies a selective activator of EIF2AK3/PERK signalling.
PLoS ONE
Show Abstract
Hide Abstract
Human cancers often contain genetic alterations that disable G1/S checkpoint control and loss of this checkpoint is thought to critically contribute to cancer generation by permitting inappropriate proliferation and distorting fate-driven cell cycle exit. The identification of cell permeable small molecules that activate the G1/S checkpoint may therefore represent a broadly applicable and clinically effective strategy for the treatment of cancer. Here we describe the identification of several novel small molecules that trigger G1/S checkpoint activation and characterise the mechanism of action for one, CCT020312, in detail. Transcriptional profiling by cDNA microarray combined with reverse genetics revealed phosphorylation of the eukaryotic initiation factor 2-alpha (EIF2A) through the eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3/PERK) as the mechanism of action of this compound. While EIF2AK3/PERK activation classically follows endoplasmic reticulum (ER) stress signalling that sets off a range of different cellular responses, CCT020312 does not trigger these other cellular responses but instead selectively elicits EIF2AK3/PERK signalling. Phosphorylation of EIF2A by EIF2A kinases is a known means to block protein translation and hence restriction point transit in G1, but further supports apoptosis in specific contexts. Significantly, EIF2AK3/PERK signalling has previously been linked to the resistance of cancer cells to multiple anticancer chemotherapeutic agents, including drugs that target the ubiquitin/proteasome pathway and taxanes. Consistent with such findings CCT020312 sensitizes cancer cells with defective taxane-induced EIF2A phosphorylation to paclitaxel treatment. Our work therefore identifies CCT020312 as a novel small molecule chemical tool for the selective activation of EIF2A-mediated translation control with utility for proof-of-concept applications in EIF2A-centered therapeutic approaches, and as a chemical starting point for pathway selective agent development. We demonstrate that consistent with its mode of action CCT020312 is capable of delivering potent, and EIF2AK3 selective, proliferation control and can act as a sensitizer to chemotherapy-associated stresses as elicited by taxanes.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.