JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Mesenchymal stem cells with modification of junctional adhesion molecule a induce hair formation.
Stem Cells Transl Med
PUBLISHED: 02-20-2014
Show Abstract
Hide Abstract
The junctional adhesion molecule A (JAM-A) has been shown to serve a crucial role in the proliferation, differentiation, and tube-like formation of epithelial cells during angiogenesis. The role of JAM-A in hair follicle (HF) regeneration has not yet been reported. In this study, we used human JAM-A-modified human mesenchymal stem cells (MSCs) to repair HF abnormalities in BALB/c nu/nu mice. The JAM-A gene and JAM-A short hairpin RNA were transfected into cultured human MSCs to generate the JAM-A overexpression MSCs (JAM-A(ov) MSCs) and JAM-A knockdown MSCs (JAM-A(kd) MSCs), respectively. These cells were injected intradermally into the skin of nude mice during the first telogen phase of the HF that occurs 21 days postnatally. We found that JAM-A(ov) MSCs migrated into the HF sheath and remodeled HF structure effectively. The HF abnormalities such as HF curve and HF zigzag were remodeled, and hair formation was improved 7 days following injection in both the JAM-A(ov) MSC and MSC groups, compared with the JAM-A(kd) MSC group or negative control group. Furthermore, the JAM-A(ov) MSC group showed enhanced hair formation in contrast to the MSC group, and the number of curved and zigzagged HFs was reduced by 80% (p < .05). These results indicated that JAM-A(ov) MSCs improved hair formation in nude mice through HF structure remodeling.
Related JoVE Video
Phosphorylation of Angiomotin by Lats1/2 Kinases Inhibits F-actin Binding, Cell Migration, and Angiogenesis.
J. Biol. Chem.
PUBLISHED: 10-08-2013
Show Abstract
Hide Abstract
The Hippo tumor suppressor pathway plays important roles in organ size control through Lats1/2 mediated phosphorylation of the YAP/TAZ transcription co-activators. However, YAP/TAZ independent functions of the Hippo pathway are largely unknown. Here we report a novel role of the Hippo pathway in angiogenesis. Angiomotin p130 isoform (AMOTp130) is phosphorylated on a conserved HXRXXS motif by Lats1/2 downstream of GPCR signaling. Phosphorylation disrupts AMOT interaction with F-actin and correlates with reduced F-actin stress fibers and focal adhesions. Furthermore, phosphorylation of AMOT by Lats1/2 inhibits endothelial cell migration in vitro and angiogenesis in zebrafish embryos in vivo. Thus AMOT is a direct substrate of Lats1/2 mediating functions of the Hippo pathway in endothelial cell migration and angiogenesis.
Related JoVE Video
Par-1 regulates tissue growth by influencing hippo phosphorylation status and hippo-salvador association.
PLoS Biol.
PUBLISHED: 08-01-2013
Show Abstract
Hide Abstract
The evolutionarily conserved Hippo (Hpo) signaling pathway plays a pivotal role in organ size control by balancing cell proliferation and cell death. Here, we reported the identification of Par-1 as a regulator of the Hpo signaling pathway using a gain-of-function EP screen in Drosophila melanogaster. Overexpression of Par-1 elevated Yorkie activity, resulting in increased Hpo target gene expression and tissue overgrowth, while loss of Par-1 diminished Hpo target gene expression and reduced organ size. We demonstrated that par-1 functioned downstream of fat and expanded and upstream of hpo and salvador (sav). In addition, we also found that Par-1 physically interacted with Hpo and Sav and regulated the phosphorylation of Hpo at Ser30 to restrict its activity. Par-1 also inhibited the association of Hpo and Sav, resulting in Sav dephosphorylation and destabilization. Furthermore, we provided evidence that Par-1-induced Hpo regulation is conserved in mammalian cells. Taken together, our findings identified Par-1 as a novel component of the Hpo signaling network.
Related JoVE Video
Integration of mechanical and chemical signals by YAP and TAZ transcription coactivators.
Cell Biosci
PUBLISHED: 06-14-2013
Show Abstract
Hide Abstract
YAP and TAZ are transcription coactivators and effectors of the Hippo pathway, which play a key role in organ size control. Through interaction with transcription factors such as TEADs, they activate gene transcription and thus promote cell proliferation, inhibit apoptosis, and regulate cell differentiation. Dysregulation of YAP/TAZ was found to correlate with human cancers. The oncogenic roles of these proteins were also demonstrated in animal models. The growth promoting activity of YAP/TAZ is limited by the Hippo tumor suppressor pathway through phosphorylation-induced cytoplasmic retention and destabilization. Recently, it was found that YAP and TAZ mediate responses to several extracellular signals including mechanical stress, GPCR signaling, and the Wnt signaling pathway. All these growth-regulating signals play important roles in normal development and cancer. In this review, we would like to discuss the function of YAP and TAZ as effectors of these physiological signals.
Related JoVE Video
Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal.
Dev. Cell
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
The embryonic stem cell (ESC) transcriptional and epigenetic networks are controlled by a multilayer regulatory circuitry, including core transcription factors (TFs), posttranscriptional modifier microRNAs (miRNAs), and some other regulators. However, the role of large intergenic noncoding RNAs (lincRNAs) in this regulatory circuitry and their underlying mechanism remains undefined. Here, we demonstrate that a lincRNA, linc-RoR, may function as a key competing endogenous RNA to link the network of miRNAs and core TFs, e.g., Oct4, Sox2, and Nanog. We show that linc-RoR shares miRNA-response elements with these core TFs and that linc-RoR prevents these core TFs from miRNA-mediated suppression in self-renewing human ESC. We suggest that linc-RoR forms a feedback loop with core TFs and miRNAs to regulate ESC maintenance and differentiation. These results may provide insights into the functional interactions of the components of genetic networks during development and may lead to new therapies for many diseases.
Related JoVE Video
MicroRNA-181 regulates CARM1 and histone arginine methylation to promote differentiation of human embryonic stem cells.
PLoS ONE
PUBLISHED: 01-03-2013
Show Abstract
Hide Abstract
As a novel epigenetic mechanism, histone H3 methylation at R17 and R26, which is mainly catalyzed by coactivator-associated protein arginine methyltransferase 1 (CARM1), has been reported to modulate the transcription of key pluripotency factors and to regulate pluripotency in mouse embryos and mouse embryonic stem cells (mESCs) in previous studies. However, the role of CARM1 in human embryonic stem cells (hESCs) and the regulatory mechanism that controls CARM1 expression during ESCs differentiation are presently unknown. Here, we demonstrate that CARM1 plays an active role in the resistance to differentiation in hESCs by regulating pluripotency genes in response to BMP4. In a functional screen, we identified the miR-181 family as a regulator of CARM1 that is induced during ESC differentiation and show that endogenous miR-181c represses the expression of CARM1. Depletion of CARM1 or enforced expression of miR-181c inhibits the expression of pluripotency genes and induces differentiation independent of BMP4, whereas overexpression of CARM1 or miR-181c inhibitor elevates Nanog and impedes differentiation. Furthermore, expression of CARM1 rescue constructs inhibits the effect of miR-181c overexpression in promoting differentiation. Taken together, our findings demonstrate the importance of a miR-181c-CARM1 pathway in regulating the differentiation of hESCs.
Related JoVE Video
hMSCs possess the potential to differentiate into DP cells in vivo and in vitro.
Cell Biol Int Rep (2010)
Show Abstract
Hide Abstract
DP (dermal papilla) is a mesenchyme-derived structure situated at the base of the HF (hair follicle) that plays an important role in embryonic hair morphogenesis and maintenance of the hair growth cycle. hMSCs (human mesenchymal stem cells) have gained widespread attention in the field of tissue engineering, but not much is known about the differentiation of hMSCs into DP cells. hMSCs involved in HF formation were examined in our previous study. Here, we have explored the differentiation potential of hMSCs into DP cells by co-culturing hMSCs with DP cells, which proved to be the case. During the differentiation process, the expression of versican, CD133, SCF (stem cell factor), ET-1 (endothelin-1) and bFGF (basic fibroblast growth factor) increased. Compared with hMSCs alone, the aggregate number clearly increased when co-cultured with DP cells. The expression in vivo of HLA-I (human leucocyte antigen class I) was confined to DP of the newly formed HF. The data suggest that hMSCs possess the potential to differentiate into DP cells in vivo and in vitro.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.