JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Loss of miR-638 in vitro promotes cell invasion and a mesenchymal-like transition by influencing SOX2 expression in colorectal carcinoma cells.
Mol. Cancer
PUBLISHED: 05-19-2014
Show Abstract
Hide Abstract
Colorectal carcinoma (CRC) is a major cause of cancer mortality. The aberrant expression of several microRNAs is associated with CRC progression; however, the molecular mechanisms underlying this phenomenon are unclear.
Related JoVE Video
Quantitative analysis of APC promoter methylation in hepatocellular carcinoma and its prognostic implications.
Oncol Lett
PUBLISHED: 02-11-2014
Show Abstract
Hide Abstract
The present study aimed to quantitatively determine the aberrant methylation signal of the adenomatous polyposis coli (APC) gene in hepatocellular carcinoma (HCC), and to evaluate whether hypermethylation of the APC promoter could be a prognostic biomarker for HCC. Taqman probe-based quantitative methylation-specific polymerase chain reaction was performed to identify the APC promoter methylation levels in 57 HCC and corresponding non-tumorous liver tissues. In the present study, the methylation level of the APC promoter was upregulated by 4.51-fold in the HCC tissues compared with the non-cancerous tissues (P=0.0003). With regard to the clinicopathological data, the methylation level of the APC promoter in the HCC samples was higher in the patients with larger tumors when the cut-off was set at 4 cm (P=0.0008), and in the older patients when the cut-off was set at 60 years old (P=0.0438). However, the methylation status in the HCC samples appeared not to affect the overall patient survival rate (P=0.1684). The findings of the present study showed that APC promoter hypermethylation accumulates during the development of HCC, but that it may not be a promising prognostic biomarker for HCC.
Related JoVE Video
Hypermethylation leads to bone morphogenetic protein 6 downregulation in hepatocellular carcinoma.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
In the liver, bone morphogenetic protein 6 (BMP-6) maintains balanced iron metabolism. However, the mechanism that underlies greater BMP-6 expression in hepatocellular carcinoma (HCC) tissue than adjacent non-cancerous tissue is unclear. This study sought to investigate the epigenetic mechanisms of BMP-6 expression by analysing the relationship between the DNA methylation status of BMP-6 and the expression of BMP-6.
Related JoVE Video
A Novel EGFR Isoform Confers Increased Invasiveness to Cancer Cells.
Cancer Res.
PUBLISHED: 11-15-2013
Show Abstract
Hide Abstract
As a validated therapeutic target in several human cancers, the EGF receptor (EGFR) provides a focus to gain deeper insights into cancer pathophysiology. In this study, we report the identification of a naturally occurring and widely expressed EGFR isoform termed EGFRvA, which substitutes a Ser/Thr-rich peptide for part of the carboxyl-terminal regulatory domain of the receptor. Intriguingly, EGFRvA expression relates more closely to histopathologic grade and poor prognosis in patients with glioma. Ectopic expression of EGFRvA in cancer cells conferred a higher invasive capacity than EGFR in vitro and in vivo. Mechanistically, EGFRvA stimulated expression of STAT3, which upregulated heparin-binding EGF (HB-EGF). Reciprocally, HB-EGF stimulated phosphorylation of EGFRvA at Y845 along with STAT3, generating a positive feedback loop that may reinforce invasive function. The significance of EGFRvA expression was reinforced by findings that it is attenuated by miR-542-5p, a microRNA that is a known tumor suppressor. Taken together, our findings define this newfound EGFR isoform as a key theranostic molecule. Cancer Res; 73(23); 7056-67. ©2013 AACR.
Related JoVE Video
Quantitative analysis of RASSF1A promoter methylation in hepatocellular carcinoma and its prognostic implications.
Biochem. Biophys. Res. Commun.
PUBLISHED: 07-13-2013
Show Abstract
Hide Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is caused by the accumulation of genetic and epigenetic alterations in regulatory genes. In this study, we used methylight to detect the methylation status of the RASSF1A promoter in 87 paired HCC samples and analysed the relationship between methylation status and clinicopathological parameters, including prognosis after surgery. We found that the methylation level of the RASSF1A promoter in HCC tissues was significantly higher than that in the corresponding non-tumorous tissues (p<0.0001). Furthermore, the methylation level of the RASSF1A gene promoter in HCC samples was higher in patients with a tumor size ? 6cm (p=0.0149) and in patients younger than 50 years old (p=0.0175). However, hypermethylation of the RASSF1A promoter in HCC tissues did not affect the overall survival of patients (p=0.611). Thus, RASSF1A promoter hypermethylation may not be a useful biomarker for the prognosis of HCC.
Related JoVE Video
The monoclonal antibody CH12 augments 5-fluorouracil-induced growth suppression of hepatocellular carcinoma xenografts expressing epidermal growth factor receptor variant III.
Cancer Lett.
PUBLISHED: 04-19-2013
Show Abstract
Hide Abstract
5-Fluorouracil (5-FU) is one of the most common chemotherapeutic agents used for the treatment of hepatocellular carcinoma (HCC). However, chemoresistance has precluded the use of 5-FU alone in clinical regimens. Combination therapies with 5-FU and other anticancer agents are considered to be a therapeutic option for patients with HCC. We previously reported that the expression of epidermal growth factor receptor variant III (EGFRvIII) can decrease the sensitivity of HCC cells to 5-FU. To overcome this problem, in this study, we elucidated the mechanism underlying EGFRvIII-mediated 5-FU resistance. We observed that EGFRvIII expression can induce miR-520d-3p downregulation and the ensuing upregulation of the transcription factor E2F-1 and the enzyme thymidylate synthase (TS), which may lead to drug resistance. Intriguingly, we found that CH12, a monoclonal antibody directed against EGFRvIII, and 5-FU together had an additive antitumor effect on EGFRvIII-positive HCC xenografts and significantly improved survival in all mice with established tumors when compared with either 5-FU or CH12 alone. Mechanistically, compared with 5-FU alone, the combination more noticeably downregulated EGFR phosphorylation and Akt phosphorylation as well as the expression of the apoptotic protector Bcl-xL and the cell cycle regulator cyclin D1. Additionally, the combination upregulated the expression of the cell cycle inhibitor p27 in in vivo treatment. More interestingly, CH12 treatment upregulated miR-520-3p and downregulated E2F-1 and TS at the mRNA and protein levels. Collectively, these observations suggest that the combination of 5-FU with mAb CH12 is a potential means of circumventing EGFRvIII-mediated 5-FU resistance in HCC.
Related JoVE Video
DNA methylation-mediated repression of miR-886-3p predicts poor outcome of human small cell lung cancer.
Cancer Res.
PUBLISHED: 04-16-2013
Show Abstract
Hide Abstract
Small cell lung cancer (SCLC) is one of the most aggressive types of cancer, yet the pathologic mechanisms underlying its devastating clinical outcome remain elusive. In this report, we surveyed 924 miRNA (miR) for their expressions in the formalin-fixed paraffin-embedded specimens from 42 patients with SCLC, and found that the downregulated miR-886-3p is closely correlated with the shorter survival of SCLC. This correlation was validated with another 40 cases. It was further discovered that loss of miR-886-3p expression was mediated by DNA hypermethylation of its promoter in both cultured SCLC cells and tumor samples. Moreover, miR-886-3p potently repressed cell proliferation, migration, and invasion of NCI-H446 cell in cell culture via suppression of the expression of its target genes: PLK1 and TGF-?1 at posttranscription levels. Forced upregulation of miR-886-3p greatly inhibited in vivo tumor growth, bone/muscle invasion, and lung metastasis of NCI-H446 cells. This newly identified miR-886-3p-PLK1/TGF-?1 nexus that modulates SCLC aggression suggests that both loss of miR-886-3p expression and hypermethylation of the miR-886 promoter are the promising indicators for poor outcome of as well as new therapeutic targets for SCLC.
Related JoVE Video
EGFRvIII Mediates Hepatocellular Carcinoma Cell Invasion by Promoting S100 Calcium Binding Protein A11 Expression.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Epidermal growth factor receptor (EGFR) is frequently aberrantly expressed in cancer, and abnormal signalling downstream of this receptor contributes to tumour growth. EGFR variant III (EGFRvIII) is the most commonly altered form of EGFR and contains a truncated ligand-binding domain. Aberrant signalling downstream of this receptor contributes to tumour invasion. We previously reported that EGFRvIII can promote hepatocellular carcinoma (HCC) invasion. However, little is known concerning the mechanisms underlying EGFRvIII-mediated increases in cell motility and invasion in HCC. In this study, we observed that S100A11 was significantly upregulated in Huh-7 cells that overexpressed EGFRvIII. Moreover, S100A11 expression was elevated in HCC tissue samples (68.6%; 35/51), and this elevation was correlated with EGFRvIII expression (p?=?0.0020; n?=?20). Furthermore, the overexpression of S100A11 can promote HCC cell invasiveness, whereas siRNA against S100A11 can suppress the invasiveness of HCC cells stably transfected with EGFRvIII. Additionally, STAT3 inhibitors can block S100A11 expression and S100A11 promoter activity in HCC cells with stable overexpression of EGFRvIII. Furthermore, mutation in STATx binding sites could abolish the S1000A11 promoter activity stimulation by EGFRvIII. Taken together, the results demonstrate that the EGFRvIII-STAT3 pathway promotes cell migration and invasion by upregulating S100A11.
Related JoVE Video
Hypomethylation of the hsa-miR-191 locus causes high expression of hsa-mir-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma.
Neoplasia
PUBLISHED: 05-16-2011
Show Abstract
Hide Abstract
hsa-miR-191 is highly expressed in hepatocellular carcinoma (HCC), but the factors regulating this elevated expression are unknown. This study aimed to investigate the epigenetic mechanisms of increased hsa-miR-191 expression by analyzing the relationship between the DNA methylation status of hsa-miR-191 and miR-191 expression. Methylation-specific polymerase chain reaction (PCR), bisulfite sequencing PCR, Northern blot, and quantitative real-time PCR were performed to examine hsa-miR-191 methylation and expression levels. Western blot, transwell, and scratch assays were performed to examine the function and molecular mechanisms of hsa-miR-191. Approximately 58.9% of hsa-miR-191 expression was higher in HCC tissues than in adjacent noncancerous tissues; this high expression was associated with poor prognosis. The hypomethylation observed in some HCC cell lines and HCC tissues was correlated with the hsa-miR-191 expression level. This correlation was validated by treatment with the 5-aza-DAC demethylation agent. The level of hypomethylation was 63.0% in 73 clinical HCC tissue samples and was associated with increased (2.1-fold) hsa-miR-191 expression. The elevated expression of hsa-miR-191 in the SMMC-771 HCC cell line induced the cells to transition into mesenchymal-like cells; they exhibited characteristics such as loss of adhesion, down-regulation of epithelial cell markers, up-regulation of mesenchymal cell markers, and increased cell migration and invasion. Inhibiting hsa-miR-191 expression in the SMMC-7721 cell line reversed this process (as assessed by cell morphology and cell markers). Furthermore, hsa-miR-191 probably exerted its function by directly targeting TIMP metallopeptidase inhibitor 3 and inhibiting TIMP3 protein expression. Our results suggest that hsa-miR-191 locus hypomethylation causes an increase in hsa-miR-191 expression in HCC clinical tissues and that this expression induces HCC cells to transition into mesenchymal-like cells.
Related JoVE Video
Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality.
Nat. Biotechnol.
PUBLISHED: 03-14-2011
Show Abstract
Hide Abstract
The capacity of conventional breeding to simultaneously improve the yield and quality of cotton fiber is limited. The accumulation of the plant hormone indole-3-acetic acid (IAA) in cotton fiber initials prompted us to investigate the effects of genetically engineering increased IAA levels in the ovule epidermis. Targeted expression of the IAA biosynthetic gene iaaM, driven by the promoter of the petunia MADS box gene Floral Binding protein 7 (FBP7), increased IAA levels in the epidermis of cotton ovules at the fiber initiation stage. This substantially increased the number of lint fibers, an effect that was confirmed in a 4-year field trial. The lint percentage of the transgenic cotton, an important component of fiber yield, was consistently higher in our transgenic plants than in nontransgenic controls, resulting in a >15% increase in lint yield. Fiber fineness was also notably improved.
Related JoVE Video
Hypermethylated SFRP1, but none of other nine genes "informative" for western countries, is valuable for bladder cancer detection in Mainland China.
J. Cancer Res. Clin. Oncol.
PUBLISHED: 04-14-2009
Show Abstract
Hide Abstract
A 11-gene set by methylation-specific PCR in urine sediments for sensitive/specific detection of bladder cancer has been identified previously. In this study, we have evaluated 10 DNA methylation biomarkers that have been reported informative in western countries for bladder cancer diagnosis for a better set.
Related JoVE Video
RASSF1A, APC, ESR1, ABCB1 and HOXC9, but not p16INK4A, DAPK1, PTEN and MT1G genes were frequently methylated in the stage I non-small cell lung cancer in China.
J. Cancer Res. Clin. Oncol.
PUBLISHED: 03-18-2009
Show Abstract
Hide Abstract
To identify the DNA methylation biomarkers for the detection of the stage I non-small cell lung cancer (NSCLC).
Related JoVE Video
Crucial roles of MZF-1 in the transcriptional regulation of apomorphine-induced modulation of FGF-2 expression in astrocytic cultures.
J. Neurochem.
PUBLISHED: 02-07-2009
Show Abstract
Hide Abstract
Apomorphine (APO), a potent D1/D2 dopamine receptor agonist, is used as an anti-parkinsonian drug. It stimulates the synthesis and release of multiple trophic factors in mesencephalic and striatal neurons, preventing the loss of dopaminergic neurons in vitro. Furthermore, APO enhances the biosynthesis and release of FGF-2 by activating dopamine receptors in striatal astrocytes, where cAMP/PKA and PKC/MAPK signalling cascades mediate this process. We investigate the effects of APO on the fibroblast growth factor-2 (FGF-2) promoter and its regulation in astrocytes and identify the transcription factor and cis element underlying these effects. In screening for cis-acting elements over the entire region of the FGF-2 promoter stimulated by APO in the astrocytes, a sequence located in the -785/-745 region was found to serve as the cis element. This element was recognized by the human myeloid zinc finger protein 1 (MZF-1) transcription factor. Introducing human MZF-1 plasmid and human MZF-1-specific siRNA has different effects on the FGF-2 promoter. Furthermore, it increases FGF-2 protein expression in HeLa cells and primary astrocytes, indicating that APO stimulates the FGF-2 promoter via the MZF-1 transcription factor. These data suggest that APO can enhance the biosynthesis and release of FGF-2 through the activation of the MZF-1 transcription factor in striatal astrocytes.
Related JoVE Video
A promoter-swap strategy between the AtALMT and AtMATE genes increased Arabidopsis aluminum resistance and improved carbon-use efficiency for aluminum resistance.
Plant J.
Show Abstract
Hide Abstract
The primary mechanism of Arabidopsis aluminum (Al) resistance is based on root Al exclusion, resulting from Al-activated root exudation of the Al(3+) -chelating organic acids, malate and citrate. Root malate exudation is the major contributor to Arabidopsis Al resistance, and is conferred by expression of AtALMT1, which encodes the root malate transporter. Root citrate exudation plays a smaller but still significant role in Arabidopsis Al resistance, and is conferred by expression of AtMATE, which encodes the root citrate transporter. In this study, we demonstrate that levels of Al-activated root organic acid exudation are closely correlated with expression of the organic acid transporter genes AtALMT1 and AtMATE. We also found that the AtALMT1 promoter confers a significantly higher level of gene expression than the AtMATE promoter. Analysis of AtALMT1 and AtMATE tissue- and cell-specific expression based on stable expression of promoter-reporter gene constructs showed that the two genes are expressed in complementary root regions: AtALMT1 is expressed in the root apices, while AtMATE is expressed in the mature portions of the roots. As citrate is a much more effective chelator of Al(3+) than malate, we used a promoter-swap strategy to test whether root tip-localized expression of the AtMATE coding region driven by the stronger AtALMT1 promoter (AtALMT1(P)::AtMATE) resulted in increased Arabidopsis Al resistance. Our results indicate that expression of AtALMT1(P)::AtMATE not only significantly increased Al resistance of the transgenic plants, but also enhanced carbon-use efficiency for Al resistance.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.