JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Design and recombination expression of a novel plectasin-derived peptide MP1106 and its properties against Staphylococcus aureus.
Appl. Microbiol. Biotechnol.
PUBLISHED: 08-04-2014
Show Abstract
Hide Abstract
A novel antimicrobial peptide MP1106 was designed based on the parental peptide plectasin with four mutational sites and a high level of expression in Pichia pastoris X-33 via the pPICZ?A plasmid was achieved. The concentration of total secreted protein in the fermented supernatant was 2.134 g/l (29 °C), and the concentration of recombinant MP1106 (rMP1106) reached 1,808 mg/l after a 120-h induction in a 5-l fermentor. The rMP1106 was purified using a cation-exchange column, and the yield was 831 mg/l with 94.68 % purity. The sample exhibited a narrow spectrum against some Gram-positive bacteria and strong antimicrobial activity against Staphylococcus aureus at low minimal inhibitory concentrations (MICs) of 0.014, 1.8, 0.45, and 0.91 ?M to S. aureus strains ATCC 25923, 29213, 6538, and 43300, respectively. Meanwhile, rMP1106 showed potent activity (0.03-1.8 ?M) against 20 clinical isolates of methicillin-resistant S. aureus (MRSA). In addition, rMP1106 exhibited a broad range of thermostability from 20 to 100 °C. The higher antimicrobial activity of rMP1106 was maintained in neutral and alkaline environments (pH 6, 8, and 10), and its activity was slightly reduced in acidic environments (pH 2 and 4). The rMP1106 was resistant to the digestion of pepsin, snailase, and proteinase K and was sensitive to trypsin. It exhibited hemolytic activity of only 1.16 % at a concentration of 512 ?g/ml and remained stable in human serum at 37 °C for 24 h. Furthermore, the activity of rMP1106 was minorly affected by 10 mM dithiothreitol and 20 % dimethylsulfoxide. Our results indicate that MP1106 can be produced on a large scale and has potential as a therapeutic drug against S. aureus.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.