JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Peroxisome Proliferator-Activated Receptor ? Regulates the Expression of Lipid Phosphate Phosphohydrolase 1 in Human Vascular Endothelial Cells.
PPAR Res
PUBLISHED: 04-01-2014
Show Abstract
Hide Abstract
Lipid phosphate phosphohydrolase 1 (LPP1), a membrane ectophosphohydrolase regulating the availability of bioactive lipid phosphates, plays important roles in cellular signaling and physiological processes such as angiogenesis and endothelial migration. However, the regulated expression of LPP1 remains largely unknown. Here, we aimed to examine a role of peroxisome proliferator-activated receptor ? (PPAR ? ) in the transcriptional control of LPP1 gene expression. In human umbilical vein endothelial cells (HUVECs), quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) demonstrated that activation of PPAR ? increased the mRNA level of LPP1. Chromatin immunoprecipitation assay showed that PPAR ? binds to the putative PPAR-responsive elements (PPREs) within the 5'-flanking region of the human LPP1 gene. Genomic fragment containing 1.7-kilobase of the promoter region was cloned by using PCR. The luciferase reporter assays demonstrated that overexpression of PPAR ? and rosiglitazone, a specific ligand for PPAR ? , could significantly upregulate the reporter activity. However, site-directed mutagenesis of the PPRE motif abolished the induction. In conclusion, our results demonstrated that PPAR ? transcriptionally activated the expression of LPP1 gene in ECs, suggesting a potential role of PPAR ? in the metabolism of phospholipids.
Related JoVE Video
ERK inhibition with PD184161 mitigates brain damage in a mouse model of stroke.
J Neural Transm
PUBLISHED: 11-07-2013
Show Abstract
Hide Abstract
Ischemic stroke is a leading cause of death. It has previously been shown that blocking activation of extracellular signal-regulated kinase (ERK) with the MEK inhibitor U0126 mitigates brain damage in rodent models of ischemic stroke. Here we show that the newer MEK inhibitor PD184161 reduces cell death and altered gene expression in cultured neurons and mice undergoing excitotoxicity, and has similar protective effects in a mouse model of stroke. This further supports ERK inhibition as a potential treatment for stroke.
Related JoVE Video
Functional outcomes following locking plate fixation of complex proximal humeral fractures.
Orthopedics
PUBLISHED: 06-11-2013
Show Abstract
Hide Abstract
The purpose of this study was to evaluate the functional outcome of patients with complex proximal humeral fractures fixated by locking plate technology. Eighty-nine patients (27 men, 62 women) older than 50 years with 3- and 4-part proximal humeral fractures were treated using locking plate fixation and followed up for more than 1 year. Functional outcomes were assessed by using the Disabilities of the Arm, Shoulder, and Hand (DASH) and Constant scores, and the complications were evaluated through physical and radiographic examinations. Mean DASH and Constant scores for all 89 patients were 19.6 and 66.6 points, respectively. No significant differences existed in the 2 scores between patients with 3- and 4-part fractures. Of the 71 patients without complications, 68 had an excellent functional outcome according to the DASH score, whereas 2 patients had an excellent outcome on the Constant score. For the 18 patients with complications, the functional outcomes were significantly poorer compared with patients without complications. According to the Constant score, all patients with complications were classified into a moderate or poor functional outcome, but the rate was 12% with the DASH score. In patients with 3- and 4-part proximal humeral fractures fixed with locking plate fixation, complications were the major cause of compromised functional outcomes. Based on these results, different conclusions would be reached when the functional outcome was assessed by using the DASH and Constant scores separately. Because the clinician-based Constant score may bias the results, patient-based assessments, such as the DASH score, are required for the evaluation of functional outcome after shoulder surgery.
Related JoVE Video
Significant sequelae after bacterial meningitis in Niger: a cohort study.
BMC Infect. Dis.
PUBLISHED: 05-15-2013
Show Abstract
Hide Abstract
Beside high mortality, acute bacterial meningitis may lead to a high frequency of neuropsychological sequelae. The Sahelian countries belonging to the meningitis belt experience approximately 50% of the meningitis cases occurring in the world. Studies in Africa have shown that N. meningitidis could cause hearing loss in up to 30% of the cases, exceeding sometimes measles. The situation is similar in Niger which experiences yearly meningitis epidemics and where rehabilitation wards are rare and hearing aids remain unaffordable. The aim of this study was to estimate the frequency of neuropsychological sequelae after acute bacterial meningitis in four of the eight regions of Niger.
Related JoVE Video
Prognostic factors affecting postmastectomy locoregional recurrence in patients with early breast cancer: are intrinsic subtypes effective?
World J Surg
PUBLISHED: 08-20-2011
Show Abstract
Hide Abstract
Many studies have investigated the association between the molecular subtypes of breast cancer and survival. The aim of this study was to identify the effects of intrinsic subtypes of breast cancer and the other clinicopathological factors on postmastectomy locoregional recurrence (LRR) in patients with early breast cancer.
Related JoVE Video
Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice.
PLoS ONE
PUBLISHED: 08-13-2011
Show Abstract
Hide Abstract
In Alzheimers disease (AD) brains, the microtubule-associated protein tau and amyloid-? (A?) deposit as intracellular neurofibrillary tangles (NFTs) and extracellular plaques, respectively. Tau deposits are furthermore found in a significant number of frontotemporal dementia cases. These diseases are characterized by progressive neurodegeneration, the loss of intellectual capabilities and behavioral changes. Unfortunately, the currently available therapies are limited to symptomatic relief. While active immunization against A? has shown efficacy in both various AD mouse models and patients with AD, immunization against pathogenic tau has only recently been shown to prevent pathology in young tau transgenic mice. However, if translated to humans, diagnosis and treatment would be routinely done when symptoms are overt, meaning that the histopathological changes have already progressed. Therefore, we used active immunization to target pathogenic tau in 4, 8, and 18 months-old P301L tau transgenic pR5 mice that have an onset of NFT pathology at 6 months of age. In all age groups, NFT pathology was significantly reduced in treated compared to control pR5 mice. Similarly, phosphorylation of tau at pathological sites was reduced. In addition, increased astrocytosis was found in the oldest treated group. Taken together, our data suggests that tau-targeted immunization slows the progression of NFT pathology in mice, with practical implications for human patients.
Related JoVE Video
Brief update on different roles of tau in neurodegeneration.
IUBMB Life
PUBLISHED: 06-24-2011
Show Abstract
Hide Abstract
Both Alzheimers disease (AD) and almost every second case of frontotemporal lobar degeneration (FTLD) are characterized by the deposition of hyperphosphorylated forms of the microtubule-associated protein tau in neurons and/or glia. This unifying pathology led to coining the umbrella term "tauopathies" for these conditions. While the deposition of tau ultimately results in the formation of typical histopathological lesions, such as the neurofibrillary tangles (NFTs) in AD, it is now well accepted that tau interferes with normal functions in neurons already before its deposition. Together with the identification of pathogenic mutations in the tau-encoding gene MAPT in FTLD and evidence from a rising number of in vivo animal models a central role of tau in neurodegeneration has emerged. Here, we review the role of pathological tau in axonal transport, mitochondrial respiration, and in mediating amyloid-? toxicity in AD. Furthermore, we review recent findings regarding the spreading of tau pathology throughout the brain as disease progresses.
Related JoVE Video
Cytoplasmic accumulation and aggregation of TDP-43 upon proteasome inhibition in cultured neurons.
PLoS ONE
PUBLISHED: 04-02-2011
Show Abstract
Hide Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are characterized by intraneuronal deposition of the nuclear TAR DNA-binding protein 43 (TDP-43) caused by unknown mechanisms. Here, we studied TDP-43 in primary neurons under different stress conditions and found that only proteasome inhibition by MG-132 or lactacystin could induce significant cytoplasmic accumulation of TDP-43, a histopathological hallmark in disease. This cytoplasmic accumulation was accompanied by phosphorylation, ubiquitination and aggregation of TDP-43, recapitulating major features of disease. Proteasome inhibition produced similar effects in both hippocampal and cortical neurons, as well as in immortalized motor neurons. To determine the contribution of TDP-43 to cell death, we reduced TDP-43 expression using small interfering RNA (siRNA), and found that reduced levels of TDP-43 dose-dependently rendered neurons more vulnerable to MG-132. Taken together, our data suggests a role for the proteasome in subcellular localization of TDP-43, and possibly in disease.
Related JoVE Video
Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimers disease models.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 07-19-2010
Show Abstract
Hide Abstract
Alzheimers disease (AD) brains are characterized by amyloid-beta-containing plaques and hyperphosphorylated tau-containing neurofibrillary tangles (NFTs); however, in frontotemporal dementia, the tau pathology manifests in the absence of overt amyloid-beta plaques. Therapeutic strategies so far have primarily been targeting amyloid-beta, although those targeting tau are only slowly beginning to emerge. Here, we identify sodium selenate as a compound that reduces tau phosphorylation both in vitro and in vivo. Importantly, chronic oral treatment of two independent tau transgenic mouse strains with NFT pathology, P301L mutant pR5 and K369I mutant K3 mice, reduces tau hyperphosphorylation and completely abrogates NFT formation. Furthermore, treatment improves contextual memory and motor performance, and prevents neurodegeneration. As hyperphosphorylation of tau precedes NFT formation, the effect of selenate on tau phosphorylation was assessed in more detail, a process regulated by both kinases and phosphatases. A major phosphatase implicated in tau dephosphorylation is the serine/threonine-specific protein phosphatase 2A (PP2A) that is reduced in both levels and activity in the AD brain. We found that selenate stabilizes PP2A-tau complexes. Moreover, there was an absence of therapeutic effects in sodium selenate-treated tau transgenic mice that coexpress a dominant-negative mutant form of PP2A, suggesting a mediating role for PP2A. Taken together, sodium selenate mitigates tau pathology in several AD models, making it a promising lead compound for tau-targeted treatments of AD and related dementias.
Related JoVE Video
Dendritic function of tau mediates amyloid-beta toxicity in Alzheimers disease mouse models.
Cell
PUBLISHED: 04-06-2010
Show Abstract
Hide Abstract
Alzheimers disease (AD) is characterized by amyloid-beta (Abeta) and tau deposition in brain. It has emerged that Abeta toxicity is tau dependent, although mechanistically this link remains unclear. Here, we show that tau, known as axonal protein, has a dendritic function in postsynaptic targeting of the Src kinase Fyn, a substrate of which is the NMDA receptor (NR). Missorting of tau in transgenic mice expressing truncated tau (Deltatau) and absence of tau in tau(-/-) mice both disrupt postsynaptic targeting of Fyn. This uncouples NR-mediated excitotoxicity and hence mitigates Abeta toxicity. Deltatau expression and tau deficiency prevent memory deficits and improve survival in Abeta-forming APP23 mice, a model of AD. These deficits are also fully rescued with a peptide that uncouples the Fyn-mediated interaction of NR and PSD-95 in vivo. Our findings suggest that this dendritic role of tau confers Abeta toxicity at the postsynapse with direct implications for pathogenesis and treatment of AD.
Related JoVE Video
Neuronal microRNA deregulation in response to Alzheimers disease amyloid-beta.
PLoS ONE
PUBLISHED: 02-23-2010
Show Abstract
Hide Abstract
Normal brain development and function depends on microRNA (miRNA) networks to fine tune the balance between the transcriptome and proteome of the cell. These small non-coding RNA regulators are highly enriched in brain where they play key roles in neuronal development, plasticity and disease. In neurodegenerative disorders such as Alzheimers disease (AD), brain miRNA profiles are altered; thus miRNA dysfunction could be both a cause and a consequence of disease. Our study dissects the complexity of human AD pathology, and addresses the hypothesis that amyloid-beta (Abeta) itself, a known causative factor of AD, causes neuronal miRNA deregulation, which could contribute to the pathomechanisms of AD. We used sensitive TaqMan low density miRNA arrays (TLDA) on murine primary hippocampal cultures to show that about half of all miRNAs tested were down-regulated in response to Abeta peptides. Time-course assays of neuronal Abeta treatments show that Abeta is in fact a powerful regulator of miRNA levels as the response of certain mature miRNAs is extremely rapid. Bioinformatic analysis predicts that the deregulated miRNAs are likely to affect target genes present in prominent neuronal pathways known to be disrupted in AD. Remarkably, we also found that the miRNA deregulation in hippocampal cultures was paralleled in vivo by a deregulation in the hippocampus of Abeta42-depositing APP23 mice, at the onset of Abeta plaque formation. In addition, the miRNA deregulation in hippocampal cultures and APP23 hippocampus overlaps with those obtained in human AD studies. Taken together, our findings suggest that neuronal miRNA deregulation in response to an insult by Abeta may be an important factor contributing to the cascade of events leading to AD.
Related JoVE Video
Dissecting toxicity of tau and beta-amyloid.
Neurodegener Dis
PUBLISHED: 02-13-2010
Show Abstract
Hide Abstract
How beta-amyloid (Abeta) and tau exert toxicity in Alzheimers disease is only partly understood. Major questions include (1) which aggregation state of Abeta confers toxicity, (2) do amyloidogenic proteins have similar mechanisms of toxicity, and (3) does soluble tau interfere with cellular functions?
Related JoVE Video
Experimental diabetes mellitus exacerbates tau pathology in a transgenic mouse model of Alzheimers disease.
PLoS ONE
PUBLISHED: 07-31-2009
Show Abstract
Hide Abstract
Diabetes mellitus (DM) is characterized by hyperglycemia caused by a lack of insulin, insulin resistance, or both. There is increasing evidence that insulin also plays a role in Alzheimers disease (AD) as it is involved in the metabolism of beta-amyloid (Abeta) and tau, two proteins that form Abeta plaques and neurofibrillary tangles (NFTs), respectively, the hallmark lesions in AD. Here, we examined the effects of experimental DM on a pre-existing tau pathology in the pR5 transgenic mouse strain that is characterized by NFTs. pR5 mice express P301L mutant human tau that is associated with dementia. Experimental DM was induced by administration of streptozotocin (STZ), which causes insulin deficiency. We determined phosphorylation of tau, using immunohistochemistry and Western blotting. Solubility of tau was determined upon extraction with sarkosyl and formic acid, and Gallyas silver staining was employed to reveal NFTs. Insulin depletion by STZ administration in six months-old non-transgenic mice causes increased tau phosphorylation, without its deposition or NFT formation. In contrast, in pR5 mice this results in massive deposition of hyperphosphorylated, insoluble tau. Furthermore, they develop a pronounced tau-histopathology, including NFTs at this early age, while the pathology in sham-treated pR5 mice is moderate. Whereas experimental DM did not result in deposition of hyperphosphorylated tau in non-transgenic mice, a predisposition to develop a tau pathology in young pR5 mice was both sufficient and necessary to exacerbate tau deposition and NFT formation. Hence, DM can accelerate onset and increase severity of disease in individuals with a predisposition to developing tau pathology.
Related JoVE Video
Phosphorylated Tau interacts with c-Jun N-terminal kinase-interacting protein 1 (JIP1) in Alzheimer disease.
J. Biol. Chem.
PUBLISHED: 06-02-2009
Show Abstract
Hide Abstract
In Alzheimer disease (AD) and frontotemporal dementia the microtubule-associated protein Tau becomes progressively hyperphosphorylated, eventually forming aggregates. However, how Tau dysfunction is associated with functional impairment is only partly understood, especially at early stages when Tau is mislocalized but has not yet formed aggregates. Impaired axonal transport has been proposed as a potential pathomechanism, based on cellular Tau models and Tau transgenic mice. We recently reported K369I mutant Tau transgenic K3 mice with axonal transport defects that suggested a cargo-selective impairment of kinesin-driven anterograde transport by Tau. Here, we show that kinesin motor complex formation is disturbed in the K3 mice. We show that under pathological conditions hyperphosphorylated Tau interacts with c-Jun N-terminal kinase- interacting protein 1 (JIP1), which is associated with the kinesin motor protein complex. As a result, transport of JIP1 into the axon is impaired, causing JIP1 to accumulate in the cell body. Because we found trapping of JIP1 and a pathological Tau/JIP1 interaction also in AD brain, this may have pathomechanistic implications in diseases with a Tau pathology. This is supported by JIP1 sequestration in the cell body of Tau-transfected primary neuronal cultures. The pathological Tau/JIP1 interaction requires phosphorylation of Tau, and Tau competes with the physiological binding of JIP1 to kinesin light chain. Because JIP1 is involved in regulating cargo binding to kinesin motors, our findings may, at least in part, explain how hyperphosphorylated Tau mediates impaired axonal transport in AD and frontotemporal dementia.
Related JoVE Video
Phosphorylation of soluble tau differs in Picks disease and Alzheimers disease brains.
J Neural Transm
PUBLISHED: 05-28-2009
Show Abstract
Hide Abstract
Frontotemporal lobar degeneration (FTLD) is a common cause of presenile dementia characterised by behavioural and language disturbances. Picks disease (PiD) is a subtype of FTLD, which presents with intraneuronal inclusions consisting of hyperphosphorylated tau protein aggregates. Although Alzheimers disease (AD) is also characterised by tau lesions, these are both histologically and biochemically distinct from the tau aggregates found in PiD. What determines the distinct characteristics of these tau lesions is unknown. As phosphorylated, soluble tau has been suggested to be the precursor of tau aggregates, we compared both the level and phosphorylation profile of tau in tissue extracts of AD and PiD brains to determine whether the differences in the tau lesions are reflected by differences in soluble tau. Levels of soluble tau were decreased in AD but not PiD. In addition, soluble tau was phosphorylated to a greater extent in AD than in PiD and displayed a different phosphorylation profile in the two disorders. Consistently, tau kinases were activated to different degrees in AD compared with PiD. Such differences in solubility and phosphorylation may contribute, at least in part, to the formation of distinct tau deposits, but may also have implications for the clinical differences between AD and PiD.
Related JoVE Video
Primary support cultures of hippocampal and substantia nigra neurons.
Nat Protoc
PUBLISHED: 01-10-2009
Show Abstract
Hide Abstract
Primary cultures of rat and murine hippocampal neurons are widely used to reveal cellular mechanisms in neurobiology. Their use is limited, as culturing at low density is often not possible or is dependent on sophisticated methods. Here we present a novel method for culturing embryonic (E16.5) murine hippocampal neurons, using a spatially separated ring of cortical neurons for neurotrophic support. This method allows long-term cultures at a very low cell density, and therefore, the study of single embryo preparations and isolated neurons. This method has been adopted for neurons from the substantia nigra (E16.5), with support from a ring of striatal neurons.
Related JoVE Video
Predicting the distribution of the Asian tapir in Peninsular Malaysia using maximum entropy modeling.
Integr Zool
Show Abstract
Hide Abstract
In 2008, the IUCN threat status of the Asian tapir (Tapirus indicus) was reclassified from vulnerable to endangered. The latest distribution map from the IUCN Red List suggests that the tapirs native range is becoming increasingly fragmented in Peninsular Malaysia, but distribution data collected by local researchers suggest a more extensive geographical range. Here, we compile a database of 1261 tapir occurrence records within Peninsular Malaysia, and demonstrate that this species, indeed, has a much broader geographical range than the IUCN range map suggests. However, extreme spatial and temporal bias in these records limits their utility for conservation planning. Therefore, we used maximum entropy (MaxEnt) modeling to elucidate the potential extent of the Asian tapirs occurrence in Peninsular Malaysia while accounting for bias in existing distribution data. Our MaxEnt model predicted that the Asian tapir has a wider geographic range than our fine-scale data and the IUCN range map both suggest. Approximately 37% of Peninsular Malaysia contains potentially suitable tapir habitats. Our results justify a revision to the Asian tapirs extent of occurrence in the IUCN Red List. Furthermore, our modeling demonstrated that selectively logged forests encompass 45% of potentially suitable tapir habitats, underscoring the importance of these habitats for the conservation of this species in Peninsular Malaysia.
Related JoVE Video
Tau-mediated nuclear depletion and cytoplasmic accumulation of SFPQ in Alzheimers and Picks disease.
PLoS ONE
Show Abstract
Hide Abstract
Tau dysfunction characterizes neurodegenerative diseases such as Alzheimers disease (AD) and frontotemporal lobar degeneration (FTLD). Here, we performed an unbiased SAGE (serial analysis of gene expression) of differentially expressed mRNAs in the amygdala of transgenic pR5 mice that express human tau carrying the P301L mutation previously identified in familial cases of FTLD. SAGE identified 29 deregulated transcripts including Sfpq that encodes a nuclear factor implicated in the splicing and regulation of gene expression. To assess the relevance for human disease we analyzed brains from AD, Picks disease (PiD, a form of FTLD), and control cases. Strikingly, in AD and PiD, both dementias with a tau pathology, affected brain areas showed a virtually complete nuclear depletion of SFPQ in both neurons and astrocytes, along with cytoplasmic accumulation. Accordingly, neurons harboring either AD tangles or Pick bodies were also depleted of SFPQ. Immunoblot analysis of human entorhinal cortex samples revealed reduced SFPQ levels with advanced Braak stages suggesting that the SFPQ pathology may progress together with the tau pathology in AD. To determine a causal role for tau, we stably expressed both wild-type and P301L human tau in human SH-SY5Y neuroblastoma cells, an established cell culture model of tau pathology. The cells were differentiated by two independent methods, mitomycin C-mediated cell cycle arrest or neuronal differentiation with retinoic acid. Confocal microscopy revealed that SFPQ was confined to nuclei in non-transfected wild-type cells, whereas in wild-type and P301L tau over-expressing cells, irrespective of the differentiation method, it formed aggregates in the cytoplasm, suggesting that pathogenic tau drives SFPQ pathology in post-mitotic cells. Our findings add SFPQ to a growing list of transcription factors with an altered nucleo-cytoplasmic distribution under neurodegenerative conditions.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.