JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Bone Morphogenetic Protein (BMP) signaling in development and human diseases.
Genes Dis
PUBLISHED: 11-18-2014
Show Abstract
Hide Abstract
Bone Morphogenetic Proteins (BMPs) are a group of signaling molecules that belongs to the Transforming Growth Factor-? (TGF-?) superfamily of proteins. Initially discovered for their ability to induce bone formation, BMPs are now known to play crucial roles in all organ systems. BMPs are important in embryogenesis and development, and also in maintenance of adult tissue homeostasis. Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects, highlighting the essential functions of BMPs. In this review, we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development. A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling.
Related JoVE Video
Functional characteristics of reversibly immortalized hepatic progenitor cells derived from mouse embryonic liver.
Cell. Physiol. Biochem.
PUBLISHED: 08-11-2014
Show Abstract
Hide Abstract
Liver is a vital organ and retains its regeneration capability throughout adulthood, which requires contributions from different cell populations, including liver precursors and intrahepatic stem cells. To overcome the mortality of hepatic progenitors (iHPs) in vitro, we aim to establish reversibly immortalized hepatic progenitor cells from mouse embryonic liver.
Related JoVE Video
Reversibly Immortalized Mouse Articular Chondrocytes Acquire Long-Term Proliferative Capability while Retaining Chondrogenic Phenotype.
Cell Transplant
PUBLISHED: 05-08-2014
Show Abstract
Hide Abstract
Cartilage tissue engineering holds great promise for treating cartilaginous pathologies including degenerative disorders and traumatic injuries. Effective cartilage regeneration requires an optimal combination of biomaterial scaffolds, chondrogenic seed cells and biofactors. Obtaining sufficient chondrocytes remains a major challenge due to the limited proliferative capability of primary chondrocytes. Here, we investigate if reversibly immortalized mouse articular chondrocytes (iMACs) acquire long-term proliferative capability while retaining the chondrogenic phenotype. Primary mouse articular chondrocytes (MACs) can be efficiently immortalized with a retroviral vector expressing SV40 large T antigen flanked with Cre/loxP sites. iMACs exhibit long-term proliferation in culture, although the immortalization phenotype can be reversed by Cre recombinase. iMACs express the chondrocyte markers Col2a1 and aggrecan and produce chondroid matrix in micromass culture. iMACs form subcutaneous cartilaginous masses in athymic mice. Histologic analysis and chondroid matrix staining demonstrate that iMACs can survive, proliferate and produce chondroid matrix. The chondrogenic growth factor BMP2 promotes iMACs to produce more mature chondroid matrix resembling mature articular cartilage. Taken together, our results demonstrate that iMACs acquire long-term proliferative capability without losing the intrinsic chondrogenic features of MACs. Thus, iMACs provide a valuable cellular platform to optimize biomaterial scaffolds for cartilage regeneration, to identify biofactors that promote the proliferation and differentiation of chondrogenic progenitors and to elucidate the molecular mechanisms underlying chondrogenesis.
Related JoVE Video
Bone morphogenetic protein 2 inhibits the proliferation and growth of human colorectal cancer cells.
Oncol. Rep.
PUBLISHED: 04-15-2014
Show Abstract
Hide Abstract
Colorectal cancer (CRC) is one of the most deadly cancers worldwide. Significant progress has been made in understanding the molecular pathogenesis of CRC, which has led to successful early diagnosis, surgical intervention and combination chemotherapy. However, limited therapeutic options are available for metastatic and/or drug-resistant CRC. While the aberrantly activated Wnt/?-catenin pathway plays a critical initiating role in CRC development, disruption of the bone morphogenetic protein (BMP) pathway causes juvenile polyposis syndrome, suggesting that BMP signaling may play a role in CRC development. However, conflicting results have been reported concerning the possible roles of BMP signaling in sporadic colon cancer. Here, we investigated the effect of BMP2 on the proliferation, migration, invasiveness and tumor growth capability of human CRC cells. Using an adenovirus vector that overexpresses BMP2 and the piggyBac transposon-mediated stable BMP2 overexpression CRC line, we found that exogenous BMP2 effectively inhibited HCT116 cell proliferation and colony formation. BMP2 was shown to suppress colon cancer cell migration and invasiveness. Under a low serum culture condition, forced expression of BMP2 induced a significantly increased level of apoptosis in HCT116 cells. Using a xenograft tumor model, we found that forced expression of BMP2 in HCT116 cells suppressed tumor growth, accompanied by decreased cell proliferation activity. Taken together, our results strongly suggest that BMP2 plays an important inhibitory role in governing the proliferation and aggressive features of human CRC cells.
Related JoVE Video
Bone morphogenetic protein-9 effectively induces osteo/odontoblastic differentiation of the reversibly immortalized stem cells of dental apical papilla.
Stem Cells Dev.
PUBLISHED: 03-21-2014
Show Abstract
Hide Abstract
Dental pulp/dentin regeneration using dental stem cells combined with odontogenic factors may offer great promise to treat and/or prevent premature tooth loss. We previously demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most potent factors in inducing bone formation. Here, we investigate whether BMP9 can effectively induce odontogenic differentiation of the stem cells from mouse apical papilla (SCAPs). Using a reversible immortalization system expressing SV40 T flanked with Cre/loxP sites, we demonstrate that the SCAPs can be immortalized, resulting in immortalized SCAPs (iSCAPs) that express mesenchymal stem cell markers. BMP9 upregulates Runx2, Sox9, and PPAR?2 and odontoblastic markers, and induces alkaline phosphatase activity and matrix mineralization in the iSCAPs. Cre-mediated removal of SV40 T antigen decreases iSCAP proliferation. The in vivo stem cell implantation studies indicate that iSCAPs can differentiate into bone, cartilage, and, to lesser extent, adipocytes upon BMP9 stimulation. Our results demonstrate that the conditionally iSCAPs not only maintain long-term cell proliferation but also retain the ability to differentiate into multiple lineages, including osteo/odontoblastic differentiation. Thus, the reversibly iSCAPs may serve as an important tool to study SCAP biology and SCAP translational use in tooth engineering. Further, BMP9 may be explored as a novel and efficacious factor for odontogenic regeneration.
Related JoVE Video
Targeting BMP9-promoted human osteosarcoma growth by inactivation of notch signaling.
Curr Cancer Drug Targets
PUBLISHED: 02-02-2014
Show Abstract
Hide Abstract
Osteosarcoma (OS) is the most common primary malignancy of bone and is usually associated with poor prognosis due to its high incidence of metastasis and chemoresistance. Molecular pathogenesis of OS is poorly understood. We previously showed that OS cells are refractory to BMP9-induced osteogenesis and respond favorably to proliferation and tumor growth. Here we investigate if Notch signaling mediates the BMP9-promoted cell proliferation and tumor growth of human osteosarcoma (OS). We find that the expression of Notch1, Notch2, Notch3, DLL1, JAG1 and JAG2 is readily detected in most of the tested OS cell lines. BMP9-promoted OS cell proliferation, migration, and cell cycle S/G2 progression are effectively inhibited by a dominant-negative mutant of Notch1 (dnNotch1) or the ?-secretase inhibitor Compound E (ComE). Furthermore, BMP9-promoted tumor growth and osteolytic lesions in vivo are significantly inhibited by dnNotch1. BMP9 up-regulates the expression of Notch1, Notch3, DLL1, and JAG1 in OS cells. Accordingly, BMP9 stimulation induces a nuclear accumulation of NICD, which is blocked by ComE. Our results demonstrate that BMP9-promoted OS proliferation and tumor growth is at least in part mediated by Notch signaling, suggesting that osteogenic BMPs may function as upstream regulators of Notch signaling in OS tumorigenesis. Thus, pharmacologic intervention of Notch signaling may be explored as a new therapeutic strategy for human OS tumors.
Related JoVE Video
A Simplified and Versatile System for the Simultaneous Expression of Multiple siRNAs in Mammalian Cells Using Gibson DNA Assembly.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
RNA interference (RNAi) denotes sequence-specific mRNA degradation induced by short interfering double-stranded RNA (siRNA) and has become a revolutionary tool for functional annotation of mammalian genes, as well as for development of novel therapeutics. The practical applications of RNAi are usually achieved by expressing short hairpin RNAs (shRNAs) or siRNAs in cells. However, a major technical challenge is to simultaneously express multiple siRNAs to silence one or more genes. We previously developed pSOS system, in which siRNA duplexes are made from oligo templates driven by opposing U6 and H1 promoters. While effective, it is not equipped to express multiple siRNAs in a single vector. Gibson DNA Assembly (GDA) is an in vitro recombination system that has the capacity to assemble multiple overlapping DNA molecules in a single isothermal step. Here, we developed a GDA-based pSOK assembly system for constructing single vectors that express multiple siRNA sites. The assembly fragments were generated by PCR amplifications from the U6-H1 template vector pB2B. GDA assembly specificity was conferred by the overlapping unique siRNA sequences of insert fragments. To prove the technical feasibility, we constructed pSOK vectors that contain four siRNA sites and three siRNA sites targeting human and mouse ?-catenin, respectively. The assembly reactions were efficient, and candidate clones were readily identified by PCR screening. Multiple ?-catenin siRNAs effectively silenced endogenous ?-catenin expression, inhibited Wnt3A-induced ?-catenin/Tcf4 reporter activity and expression of Wnt/?-catenin downstream genes. Silencing ?-catenin in mesenchymal stem cells inhibited Wnt3A-induced early osteogenic differentiation and significantly diminished synergistic osteogenic activity between BMP9 and Wnt3A in vitro and in vivo. These findings demonstrate that the GDA-based pSOK system has been proven simplistic, effective and versatile for simultaneous expression of multiple siRNAs. Thus, the reported pSOK system should be a valuable tool for gene function studies and development of novel therapeutics.
Related JoVE Video
The piggyBac transposon-mediated expression of SV40 T antigen efficiently immortalizes mouse embryonic fibroblasts (MEFs).
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Mouse embryonic fibroblasts (MEFs) are mesenchymal stem cell (MSC)-like multipotent progenitor cells and can undergo self-renewal and differentiate into to multiple lineages, including bone, cartilage and adipose. Primary MEFs have limited life span in culture, which thus hampers MEFs' basic research and translational applications. To overcome this challenge, we investigate if piggyBac transposon-mediated expression of SV40 T antigen can effectively immortalize mouse MEFs and that the immortalized MEFs can maintain long-term cell proliferation without compromising their multipotency. Using the piggyBac vector MPH86 which expresses SV40 T antigen flanked with flippase (FLP) recognition target (FRT) sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized. The immortalized MEFs (piMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by FLP recombinase. The piMEFs express most MEF markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages upon BMP9 stimulation in vitro. Stem cell implantation studies indicate that piMEFs can form bone, cartilage and adipose tissues upon BMP9 stimulation, whereas FLP-mediated removal of SV40 T antigen diminishes the ability of piMEFs to differentiate into these lineages, possibly due to the reduced expansion of progenitor populations. Our results demonstrate that piggyBac transposon-mediated expression of SV40 T can effectively immortalize MEFs and that the reversibly immortalized piMEFs not only maintain long-term cell proliferation but also retain their multipotency. Thus, the high transposition efficiency and the potential footprint-free natures may render piggyBac transposition an effective and safe strategy to immortalize progenitor cells isolated from limited tissue supplies, which is essential for basic and translational studies.
Related JoVE Video
Characterization of constitutive promoters for piggyBac transposon-mediated stable transgene expression in mesenchymal stem cells (MSCs).
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Multipotent mesenchymal stem cells (MSCs) can undergo self-renewal and give rise to multi-lineages under given differentiation cues. It is frequently desirable to achieve a stable and high level of transgene expression in MSCs in order to elucidate possible molecular mechanisms through which MSC self-renewal and lineage commitment are regulated. Retroviral or lentiviral vector-mediated gene expression in MSCs usually decreases over time. Here, we choose to use the piggyBac transposon system and conduct a systematic comparison of six commonly-used constitutive promoters for their abilities to drive RFP or firefly luciferase expression in somatic HEK-293 cells and MSC iMEF cells. The analyzed promoters include three viral promoters (CMV, CMV-IVS, and SV40), one housekeeping gene promoter (UbC), and two composite promoters of viral and housekeeping gene promoters (hEFH and CAG-hEFH). CMV-derived promoters are shown to drive the highest transgene expression in HEK-293 cells, which is however significantly reduced in MSCs. Conversely, the composite promoter hEFH exhibits the highest transgene expression in MSCs whereas its promoter activity is modest in HEK-293 cells. The reduced transgene expression driven by CMV promoters in MSCs may be at least in part caused by DNA methylation, or to a lesser extent histone deacetlyation. However, the hEFH promoter is not significantly affected by these epigenetic modifications. Taken together, our results demonstrate that the hEFH composite promoter may be an ideal promoter to drive long-term and high level transgene expression using the piggyBac transposon vector in progenitor cells such as MSCs.
Related JoVE Video
Adenovirus-mediated efficient gene transfer into cultured three-dimensional organoids.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Three-dimensional organoids have been recently established from various tissue-specific progenitors (such as intestinal stem cells), induced pluripotent stem cells, or embryonic stem cells. These cultured self-sustaining stem cell-based organoids may become valuable systems to study the roles of tissue-specific stem cells in tissue genesis and disease development. It is thus conceivable that effective genetic manipulations in such organoids may allow us to reconstruct disease processes and/or develop novel therapeutics. Recombinant adenoviruses are one of the most commonly used viral vectors for in vitro and in vivo gene deliveries. In this study, we investigate if adenoviruses can be used to effectively deliver transgenes into the cultured "mini-gut" organoids derived from intestinal stem cells. Using adenoviral vectors that express fluorescent proteins, we demonstrate that adenoviruses can effectively deliver transgenes into the cultured 3-D "mini-gut" organoids. The transgene expression can last at least 10 days in the cultured organoids. As a proof-of-principle experiment, we demonstrate that adenovirus-mediated noggin expression effectively support the survival and self-renewal of mini-gut organoids, while adenovirus-mediated expression of BMP4 inhibits the self-sustainability and proliferation of the organoids. Thus, our results strongly suggest that adenovirus vectors can be explored as effective gene delivery vehicles to introduce genetic manipulations in 3-D organoids.
Related JoVE Video
Adenovirus-mediated gene transfer in mesenchymal stem cells can be significantly enhanced by the cationic polymer polybrene.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitors, which can undergo self-renewal and give rise to multi-lineages. A great deal of attentions have been paid to their potential use in regenerative medicine as potential therapeutic genes can be introduced into MSCs. Genetic manipulations in MSCs requires effective gene deliveries. Recombinant adenoviruses are widely used gene transfer vectors. We have found that although MSCs can be infected in vitro by adenoviruses, high virus titers are needed to achieve high efficiency. Here, we investigate if the commonly-used cationic polymer Polybrene can potentiate adenovirus-mediated transgene delivery into MSCs, such as C2C12 cells and iMEFs. Using the AdRFP adenovirus, we find that AdRFP transduction efficiency is significantly increased by Polybrene in a dose-dependent fashion peaking at 8 ?g/ml in C2C12 and iMEFs cells. Quantitative luciferase assay reveals that Polybrene significantly enhances AdFLuc-mediated luciferase activity in C2C12 and iMEFs at as low as 4 ?g/ml and 2 ?g/ml, respectively. FACS analysis indicates that Polybrene (at 4 ?g/ml) increases the percentage of RFP-positive cells by approximately 430 folds in AdRFP-transduced iMEFs, suggesting Polybrene may increase adenovirus infection efficiency. Furthermore, Polybrene can enhance AdBMP9-induced osteogenic differentiation of MSCs as early osteogenic marker alkaline phosphatase activity can be increased more than 73 folds by Polybrene (4 ?g/ml) in AdBMP9-transduced iMEFs. No cytotoxicity was observed in C2C12 and iMEFs at Polybrene up to 40 ?g/ml, which is about 10-fold higher than the effective concentration required to enhance adenovirus transduction in MSCs. Taken together, our results demonstrate that Polybrene should be routinely used as a safe, effective and inexpensive augmenting agent for adenovirus-mediated gene transfer in MSCs, as well as other types of mammalian cells.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.