JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Phylogenomics resolves the timing and pattern of insect evolution.
Bernhard Misof, Shanlin Liu, Karen Meusemann, Ralph S Peters, Alexander Donath, Christoph Mayer, Paul B Frandsen, Jessica Ware, Tomáš Flouri, Rolf G Beutel, Oliver Niehuis, Malte Petersen, Fernando Izquierdo-Carrasco, Torsten Wappler, Jes Rust, Andre J Aberer, Ulrike Aspöck, Horst Aspöck, Daniela Bartel, Alexander Blanke, Simon Berger, Alexander Böhm, Thomas R Buckley, Brett Calcott, Junqing Chen, Frank Friedrich, Makiko Fukui, Mari Fujita, Carola Greve, Peter Grobe, Shengchang Gu, Ying Huang, Lars S Jermiin, Akito Y Kawahara, Lars Krogmann, Martin Kubiak, Robert Lanfear, Harald Letsch, Yiyuan Li, Zhenyu Li, Jiguang Li, Haorong Lu, Ryuichiro Machida, Yuta Mashimo, Pashalia Kapli, Duane D McKenna, Guanliang Meng, Yasutaka Nakagaki, José Luis Navarrete-Heredia, Michael Ott, Yanxiang Ou, Günther Pass, Lars Podsiadlowski, Hans Pohl, Björn M von Reumont, Kai Schütte, Kaoru Sekiya, Shota Shimizu, Adam Slipinski, Alexandros Stamatakis, Wenhui Song, Xu Su, Nikolaus U Szucsich, Meihua Tan, Xuemei Tan, Min Tang, Jingbo Tang, Gerald Timelthaler, Shigekazu Tomizuka, Michelle Trautwein, Xiaoli Tong, Toshiki Uchifune, Manfred G Walzl, Brian M Wiegmann, Jeanne Wilbrandt, Benjamin Wipfler, Thomas K F Wong, Qiong Wu, Gengxiong Wu, Yinlong Xie, Shenzhou Yang, Qing Yang, David K Yeates, Kazunori Yoshizawa, Qing Zhang, Rui Zhang, Wenwei Zhang, Yunhui Zhang, Jing Zhao, Chengran Zhou, Lili Zhou, Tanja Ziesmann, Shijie Zou, Yingrui Li, Xun Xu, Yong Zhang, Huanming Yang, Jian Wang, Jun Wang, Karl M Kjer, Xin Zhou.
Science
PUBLISHED: 11-06-2014
Show Abstract
Hide Abstract
Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.
Related JoVE Video
Comparative morphology of spermatozoa and reproductive systems of zorapteran species from different world regions (Insecta, Zoraptera).
Arthropod Struct Dev
PUBLISHED: 02-03-2014
Show Abstract
Hide Abstract
The male and female reproductive apparatus of Zorotypus magnicaudelli (Malaysia), Zorotypus huxleyi (Ecuador) and Zorotypus weidneri (Brazil) were examined and documented in detail. The genital apparatus and sperm of the three species show only minor differences. The testes are larger in Z. magnicaudelli. Z. huxleyi lacks the helical appendage in the accessory glands. A long cuticular flagellum is present in Z. magnicaudelli and in the previously studied Zorotypus caudelli like in several other species, whereas it is absent in Z. weidneri, Z. huxleyi, Zorotypus hubbardi, Zorotypus impolitus and Zorotypus guineensis. Characteristic features of the very similar sperm are the presence of: a) two dense arches above the axoneme; b) a 9 + 9+2 axoneme with detached subtubules A and B of doublets 1 and 6; c) the axonemal end degenerating with enlarging accessory tubules; d) accessory tubules with 17 protofilaments; e) three accessory bodies beneath the axoneme; and f) two mitochondrial derivatives of equal shape. The first characteristic (a) is unknown outside of Zoraptera and possibly autapomorphic. The sperm structure differs distinctly in Z. impolitus and Z. hubbardi, which produce giant sperm and possess a huge spermatheca. The presence of the same sperm type in species either provided with a sclerotized coiled flagellum in males or lacking this structure indicates that a different organization of the genital apparatus does not necessarily affect the sperm structure. The flagellum and its pouch has probably evolved within Zoraptera, but it cannot be excluded that it is a groundplan feature and was reduced several times. The fossil evidence and our findings suggest that distinct modifications in the genital apparatus occurred before the fragmentation of the Gondwanan landmass in the middle Cretaceous.
Related JoVE Video
Giant spermatozoa and a huge spermatheca: A case of coevolution of male and female reproductive organs in the ground louse Zorotypus impolitus (Insecta, Zoraptera).
Arthropod Struct Dev
PUBLISHED: 09-05-2013
Show Abstract
Hide Abstract
The male and female genital apparatus of the recently discovered ground louse Zorotypus impolitus were examined using light and electron microscopy. The rounded testes and a large seminal vesicle are connected with a complex of four accessory glands by a long tapering ejaculatory duct. Two accessory glands have the same whitish coloration, whereas the third one is pale blue, and the elongated and cylindrical fourth one translucent. The sperm are the largest known in Hexapoda, 3mm long and 3?m wide, with a volume of ca. 21,000?m(3); the ratio between the diameter of the axoneme and the width of the main body of the sperm ranges between 1:10 and 1:13. The exceptional width of the spermatozoa is due to an extreme enlargement of the mitochondrial derivatives and accessory bodies. A single sperm is contained in a small globular spermatophore (100?m). The highly unusual external transfer correlates with an atypical mating behavior. The male produces several to many spermatophores during the mating process. As in other zorapterans the ovaries are panoistic and the eggs bear two micropyles. An exceptionally large apical spermathecal receptacle is present; it is connected with the vagina by a long spermathecal duct, which varies structurally along its course. A correlation between the sperm size and the size of the spermatheca is likely. Ultrastructural features of different species support two strikingly different models of male and female reproductive apparatus in the small order Zoraptera. This is in stark contrast to the extreme uniformity of their external morphology. It is likely that sexual selection played a decisive role in the evolution of the reproductive system.
Related JoVE Video
Embryonic development of zoraptera with special reference to external morphology, and its phylogenetic implications (Insecta).
J. Morphol.
PUBLISHED: 07-04-2013
Show Abstract
Hide Abstract
The embryonic development of Zorotypus caudelli Karny (Zoraptera) is described with the main focus on its external features. A small heart-shaped embryo is formed on the dorsal side of the egg by the fusion of paired blastoderm regions with higher cellular density. The orientation of its anteroposterior axis is opposed to that of the egg. This unusual condition shows the potential autapomorphy of Zoraptera. The embryo extends along the egg surface and after reaching its full length, it migrates into the yolk. After developing there for a period of time, it reappears on the surface, accompanied by a reversion of its anteroposterior axis, finally taking its position on the ventral side of the egg. The definitive dorsal closure completes, and the prelarva hatches after perforating the chorion with very long egg tooth formed on the embryonic cuticle. Embryological data suggest the placement of Zoraptera among the "lower neopteran" or polyneopteran lineage: features supporting this are embryo formation by the fusion of paired regions with higher cellular density and blastokinesis accompanied by full elongation of the embryo on the egg surface. The extraordinarily long egg tooth has potential synapomorphy with Embioptera or Eukinolabia (= Embioptera + Phasmatodea). Together with the results from our previous studies on the egg structure, male reproductive system and spermatozoa, the close affinity of Zoraptera with Eukinolabia appears likely, that is, a clade Zoraptera + (Embioptera + Phasmatodea). J. Morphol. 000:000-000, 2013. © 2013 Wiley Periodicals, Inc.
Related JoVE Video
Egg structure of Zorotypus caudelli Karny (Insecta, Zoraptera, Zorotypidae).
Tissue Cell
PUBLISHED: 03-12-2011
Show Abstract
Hide Abstract
The structural features of eggs of Zorotypus caudelli Karny are described in detail. The egg is elliptic with long and short diameters of 0.6 and 0.3 mm respectively, and creamy white. The egg shows a honeycomb pattern on its surface, without any specialized structures for hatching such as an operculum or a hatching line. The fringe formed by a fibrillar substance secreted after the completion of the chorion encircles the lateral surface. The egg layer is composed of an exochorion, an endochorion, and a vitelline envelope. The exochorion and endochorion are electron-dense and homogeneous in structure. The exochorion shows a perforation of numerous branching aeropyles. The exo- and endochorion are connected by numerous small columnar structures derived from the latter. The vitelline envelope is very thin and more electron-dense than the chorion. A pair of micropyles is present at the equator on the dorsal side of the egg. Originating at the micropyle, the micropylar canal runs through the chorion obliquely. The structural features of the eggs of Zoraptera were compared with those of other polyneopteran and paraneopteran orders.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.