JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Robust high-order superdirectivity of circular sensor arrays.
J. Acoust. Soc. Am.
PUBLISHED: 10-18-2014
Show Abstract
Hide Abstract
This paper presents a detailed study of the high-order superdirectivity of circular sensor arrays, which is aimed at completing the authors' recently proposed analytical superdirectivity model. From the limit expression of the maximum directivity factor, it is shown that the circular arrays possess good potential for directivity improvement. It is found that the sensitivity function used as a robustness measurement can also be accurately decomposed into a series of closed-form sensitivity functions of eigenbeams, similar to the optimal beampattern and its corresponding directivity factor. Moreover, the performance of eigenbeams can be regarded as an indicator of error sensitivity, and the robustness constraint parameters can be estimated easily. Two specific approaches are proposed for obtaining robust superdirectivity on the basis of robustness analyses, and their performance is demonstrated experimentally.
Related JoVE Video
Broadband pattern synthesis for circular sensor arrays.
J. Acoust. Soc. Am.
PUBLISHED: 08-07-2014
Show Abstract
Hide Abstract
The solutions of pattern synthesis are derived for circular sensor arrays based on the criterion of minimizing the mean square error between the desired and synthesized beampatterns. Specifically, the optimal weighting vector, the output beam, and the minimum mean square error are all expressed in closed-form exactly when the desired beampattern is properly formulated. These results provide a more effective and convenient scheme for designing practical frequency-invariant beamformers. Simulations and experimental results demonstrate the performance of the proposed approach.
Related JoVE Video
Unilateral versus bilateral pedicle screw fixation of minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF): a meta-analysis of randomized controlled trials.
BMC Surg
PUBLISHED: 07-09-2014
Show Abstract
Hide Abstract
A few studies focused on unilateral or bilateral pedicle screw (PS) fixation of minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) to treat lumbar degenerative diseases have been published. There is still debate over whether one method is superior to another. A systematic review and meta-analysis of randomized controlled trials (RCT) was performed to compare the efficacy of the two methods.
Related JoVE Video
Optimization of acoustic emitted field of transducer array for ultrasound imaging.
Biomed Mater Eng
PUBLISHED: 06-24-2014
Show Abstract
Hide Abstract
A method is proposed to calculate the weight vector of a transducer array for ultrasound imaging to obtain a low-sidelobe transmitting beam pattern based on the near-field response vector. An optimization problem is established, and the second-order cone (SOC) algorithm is used to solve the problem to obtain the weight vector. The optimized acoustic emitted field of the transducer array is then calculated using the Field II program by applying the obtained weight vector to the array. The simulation results with a 64-element 26 MHz linear phased array show that the proposed method can be used to control the sidelobe of the near-field transmitting beam pattern of the transducer array and achieve a low-sidelobe level. The near-field sound pressure distribution of the transducer array using the proposed method focuses much better than that using the standard delay and sum (DAS) beamforming method. The sound energy is more concentrated using the proposed method.
Related JoVE Video
Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome.
BMC Biotechnol.
PUBLISHED: 06-05-2013
Show Abstract
Hide Abstract
Phage-encoded serine integrases, such as ?C31 integrase, are widely used for genome engineering. Fifteen such integrases have been described but their utility for genome engineering has not been compared in uniform assays.
Related JoVE Video
Overexpression of hepatitis B x-interacting protein in HepG2 cells enhances tumor-induced angiogenesis.
Mol. Cell. Biochem.
PUBLISHED: 10-22-2011
Show Abstract
Hide Abstract
Hepatocellular carcinoma (HCC) is a common malignancy and a leading cause of cancer death worldwide. Hepatitis B x-interacting protein (HBXIP), a cofactor of survivin, was originally identified by binding with the C-terminus of the HBx and negatively regulated the activity of HBx. In this study, the effect of HBXIP on the hepatoma cells-induced angiogenesis was investigated. Proliferation and migration of human umbilical vein endothelial cells (HUVECs) were detected by MTT and transwell assay, respectively. Tube formation and chick chorioallantoic membrane model were used to observe the angiogenesis. Vascular endothelial growth factor activity was assayed using ELISA kits. Western blotting was performed to examine the protein expression. Our results indicated that overexpression of HBXIP increased HepG2 cell-induced endothelial cells migration, proliferation, and angiogenesis, which may be related to increasing phosphorylation of endothelial NO synthase in HUVECs. These results suggest that HBXIP may play an important role in tumorigenesis by enhancing angiogenesis in HCC.
Related JoVE Video
The effects of velvet antler polypeptides on the phenotype and related biological indicators of osteoarthritic rabbit chondrocytes.
Acta Biochim. Pol.
PUBLISHED: 05-12-2011
Show Abstract
Hide Abstract
To study the effects of velvet antler polypeptides (VAPs) on osteoarthritic chondrocytes (OCs) in rabbits.
Related JoVE Video
Use of a selective inhibitor to define the chemotherapeutic potential of the plasmodial hexose transporter in different stages of the parasites life cycle.
Antimicrob. Agents Chemother.
PUBLISHED: 03-14-2011
Show Abstract
Hide Abstract
During blood infection, malarial parasites use D-glucose as their main energy source. The Plasmodium falciparum hexose transporter (PfHT), which mediates the uptake of D-glucose into parasites, is essential for survival of asexual blood-stage parasites. Recently, genetic studies in the rodent malaria model, Plasmodium berghei, found that the orthologous hexose transporter (PbHT) is expressed throughout the parasites development within the mosquito vector, in addition to being essential during intraerythrocytic development. Here, using a D-glucose-derived specific inhibitor of plasmodial hexose transporters, compound 3361, we have investigated the importance of D-glucose uptake during liver and transmission stages of P. berghei. Initially, we confirmed the expression of PbHT during liver stage development, using a green fluorescent protein (GFP) tagging strategy. Compound 3361 inhibited liver-stage parasite development, with a 50% inhibitory concentration (IC??) of 11 ?M. This process was insensitive to the external D-glucose concentration. In addition, compound 3361 inhibited ookinete development and microgametogenesis, with IC??s in the region of 250 ?M (the latter in a D-glucose-sensitive manner). Consistent with our findings for the effect of compound 3361 on vector parasite stages, 1 mM compound 3361 demonstrated transmission blocking activity. These data indicate that novel chemotherapeutic interventions that target PfHT may be active against liver and, to a lesser extent, transmission stages, in addition to blood stages.
Related JoVE Video
Targeted disruption of py235ebp-1: invasion of erythrocytes by Plasmodium yoelii using an alternative Py235 erythrocyte binding protein.
PLoS Pathog.
PUBLISHED: 01-10-2011
Show Abstract
Hide Abstract
Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene) that is recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile suggesting that the PY01185 gene product (designated PY235EBP-2) is able to fulfill the role of EBP-1 by serving as an invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365, PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host erythrocytes even in the presence of antibodies to one or more of the proteins and that this functional redundancy at the protein level gives the parasite phenotypic plasticity in the absence of differences in gene expression.
Related JoVE Video
Serine recombinases as tools for genome engineering.
Methods
PUBLISHED: 07-07-2010
Show Abstract
Hide Abstract
The serine recombinases differ mechanistically from the tyrosine recombinases and include proteins such as ?C31 integrase which, unlike Cre and Flp, promote unidirectional reactions. The serine recombinase family is large and includes many other proteins besides ?C31 integrase with the potential to be widely used in genome engineering. Here we review the details of the mechanism of the reactions promoted by the serine recombinases and discuss how these not only limit the utility of this class of recombinase but also creates opportunities for the engineering of new enzymes. We discuss the unanswered questions posed by genome engineering experiments in a variety of systems in which the serine recombinases have been used and finally describe more recently discovered serine recombinases that have the potential to be used in genome engineering.
Related JoVE Video
The Armadillo repeat protein PF16 is essential for flagellar structure and function in Plasmodium male gametes.
PLoS ONE
PUBLISHED: 07-01-2010
Show Abstract
Hide Abstract
Malaria, caused by the apicomplexan parasite Plasmodium, threatens 40% of the worlds population. Transmission between vertebrate and insect hosts depends on the sexual stages of the life-cycle. The male gamete of Plasmodium parasite is the only developmental stage that possesses a flagellum. Very little is known about the identity or function of proteins in the parasites flagellar biology. Here, we characterise a Plasmodium PF16 homologue using reverse genetics in the mouse malaria parasite Plasmodium berghei. PF16 is a conserved Armadillo-repeat protein that regulates flagellar structure and motility in organisms as diverse as green algae and mice. We show that P. berghei PF16 is expressed in the male gamete flagellum, where it plays a crucial role maintaining the correct microtubule structure in the central apparatus of the axoneme as studied by electron microscopy. Disruption of the PF16 gene results in abnormal flagellar movement and reduced fertility, but does not lead to complete sterility, unlike pf16 mutations in other organisms. Using homology modelling, bioinformatics analysis and complementation studies in Chlamydomonas, we show that some regions of the PF16 protein are highly conserved across all eukaryotes, whereas other regions may have species-specific functions. PF16 is the first ARM-repeat protein characterised in the malaria parasite genus Plasmodium and this study opens up a novel model for analysis of Plasmodium flagellar biology that may provide unique insights into an ancient organelle and suggest novel intervention strategies to control the malaria parasite.
Related JoVE Video
[Biocompatibility evaluation of nano TCP/gelatin/velvet antler polypeptide material].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
PUBLISHED: 06-12-2009
Show Abstract
Hide Abstract
To evaluate the biocompatibility of a new nano TCP/gelatin/velvet antler polypeptide material.
Related JoVE Video
Unsuccessful attempt at gene-editing by homologous recombination in the zebrafish germ line using the approach of "Rong and Golic".
Transgenic Res.
Show Abstract
Hide Abstract
We have investigated the practicality of implementing a strategy for site-specific editing by homologous recombination in zebrafish analogous to that developed by Rong and Golic (Rong and Golic in Genetics 157:1307-1312, 2001) in Drosophila melanogaster. We analysed approximately 7,300 offspring from 22 crosses and demonstrated successful excision of the gene editing construct but failed to detect either gene editing or the random integration of the intact editing construct subsequent to excision. The clustering of events in our data set demonstrates that the excision events are not occurring independently and emphasise that a promoter driving high level, tissue-specific transcription in meiotic cells is likely to be necessary if this general approach to site-specific editing by homologous recombination is to fulfil its potential.
Related JoVE Video
A putative homologue of CDC20/CDH1 in the malaria parasite is essential for male gamete development.
PLoS Pathog.
Show Abstract
Hide Abstract
Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the ?cdc20 mutant parasites were largely different from those observed in the ?map2 mutant. This suggests that CDC20 and MAP2 are both likely to play independent but vital roles in male gametogenesis.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.