JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Enhanced Accumulation of Carbohydrate and Starch in Chlorella zofingiensis Induced by Nitrogen Starvation.
Appl. Biochem. Biotechnol.
PUBLISHED: 04-13-2014
Show Abstract
Hide Abstract
Though less attention has been paid to microalgae as a feedstock for bioethanol production, many microalgae seem to have this potential since they contain no lignin, minor hemicellulose, and abundant carbohydrate. The objective of this study was to investigate the effect of nitrogen starvation on carbohydrate and starch accumulation in green microalga Chlorella zofingiensis and assess the feasibility of using this microalga as a bioethanol feedstock. The results showed that the specific growth rate under nitrogen starvation (0.48 day(-1)) was much lower than that under nitrogen repletion (1.02 day(-1)). However, nitrogen starvation quickly induced the accumulation of carbohydrate, especially starch. After merely 1 day of nitrogen starvation, carbohydrate and starch increased 37 % and 4.7-fold, respectively. The highest carbohydrate content reached 66.9 % of dry weight (DW), and 66.7 % of this was starch. In order to obtain enough carbohydrate productivities for bioethanol production, two-stage cultivation strategy was implemented and found to be effective for enhancing biomass, carbohydrate, and starch simultaneously. The optimal biomass, carbohydrate, and starch productivities of C. zofingiensis were obtained after 5 days of cultivation, and their values were 699, 407, and 268 mg L(-1) day(-1), respectively.
Related JoVE Video
Optimization of fed-batch enzymatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production.
Bioresour. Technol.
PUBLISHED: 03-09-2014
Show Abstract
Hide Abstract
Fed-batch enzymatic hydrolysis process from alkali-pretreated sugarcane bagasse was investigated to increase solids loading, produce high-concentration fermentable sugar and finally to reduce the cost of the production process. The optimal initial solids loading, feeding time and quantities were examined. The hydrolysis system was initiated with 12% (w/v) solids loading in flasks, where 7% fresh solids were fed consecutively at 6h, 12h, 24h to get a final solids loading of 33%. All the requested cellulase loading (10 FPU/g substrate) was added completely at the beginning of hydrolysis reaction. After 120 h of hydrolysis, the maximal concentrations of cellobiose, glucose and xylose obtained were 9.376 g/L, 129.50 g/L, 56.03 g/L, respectively. The final total glucan conversion rate attained to 60% from this fed-batch process.
Related JoVE Video
Vaccine therapies for chronic hepatitis B: can we go further?
Front Med
PUBLISHED: 01-24-2014
Show Abstract
Hide Abstract
Chronic hepatitis B is a major health burden worldwide. In addition to the recent progress in antiviral treatment, therapeutic vaccination is a promising new strategy for the control of chronic hepatitis B. On the basis of the major specific and non-specific immune dysregulations and defects in chronic hepatitis B patients, this paper presents the peptide and protein-based, DNA-based, cell-based, and antigen-antibody-based therapeutic vaccines, which have undergone clinical trials. The advantages, disadvantages, and future perspectives for these therapeutic vaccines are discussed.
Related JoVE Video
Continuous anaerobic digestion of food waste and design of digester with lipid removal.
Environ Technol
PUBLISHED: 12-20-2013
Show Abstract
Hide Abstract
Separation of municipal solid waste has been implemented in many cities in China. As a major component of municipal solid waste, food waste can be treated by anaerobic digestion (AD) for energy production. To provide reference data for disposing of food waste through engineering applications, continuous AD was carried out under various organic loading rates (OLRs) at 27 +/- 2 degrees C in the laboratory. The anaerobic reactor was stable with pH 7.0-7.1, total volatile fatty acid (VFA) concentrations of 206-746 mg/L, and NH4+ -N concentrations of 525-1293 mg/L when the OLR was 1.118-5.588 kg volatile solids (VS)/m(3) x d. The maximum volumetric biogas production rate was 4.41 L/L x d when the OLR was increased to 5.588 kg VS/m(3) x d with a hydraulic retention time of 30 d. When the OLR was increased to 6.706 and 8.382 kg VS/m(3) x d, biogas production was seriously inhibited by VFAs, with maximum total VFA and propionate concentrations of 8738 mg/L and 2864 mg/L, respectively. Due to the incomplete degradation of lipids, the specific methane production rate of 353-488 L/kg VS accounted for 55.2-76.3% of the theoretical methane potential calculated based on the component composition. A retrofitted anaerobic digester with lipid removal was designed to improve the efficiency.
Related JoVE Video
Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis.
Bioresour. Technol.
PUBLISHED: 08-08-2013
Show Abstract
Hide Abstract
The aim of this research was to study the metabolic changes of starch and lipid biosynthesis in the microalga Chlorella zofingiensis under nitrogen starvation in comparison to nitrogen abundant condition. C. zonfingiensis showed a rapid growth and kept stable chlorophyll content when grown in nitrogen-replete medium, while a severe inhibition of cell growth and a sharp degradation of chlorophyll occurred under nitrogen depletion. Nitrogen-replete C. zonfingiensis cells possessed basal levels of starch and lipid. Upon nitrogen starvation, both starch and lipid increased greatly within cells, but starch synthesis preceded lipid accumulation. After 2days of stress condition, starch was partially degraded, possibly to support lipid synthesis. It was speculated that starch accumulation acted as a quick response to environmental stress, whereas lipid served as long-term energy storage. Additionally, C. zonfingiensis tends to lower the degree of unsaturation in response to nitrogen starvation which is desirable for biodiesel production.
Related JoVE Video
Cultivation of Chlorella vulgaris in Dairy Wastewater Pretreated by UV Irradiation and Sodium Hypochlorite.
Appl. Biochem. Biotechnol.
PUBLISHED: 05-29-2013
Show Abstract
Hide Abstract
There is potential in the utilization of microalgae for the purification of wastewater as well as recycling the resource in the wastewater to produce biodiesel. The large-scale cultivation of microalgae requires pretreatment of the wastewater to eliminate bacteria and protozoa. This procedure is costly and complex. In this study, two methods of pretreatment, UV irradiation, and sodium hypochlorite (NaClO), in various doses and concentrations, were tested in the dairy wastewater. Combining the efficiency of biodiesel production, we proposed to treat the dairy wastewater with NaClO in the concentration of 30 ppm. In this condition, The highest biomass productivity and lipid productivity of Chlorella vulgaris reached 0.450 g L(-1) day(-1) and 51 mg L(-1) day(-1) after a 4-day cultivation in the dairy wastewater, respectively.
Related JoVE Video
Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure.
Waste Manag
PUBLISHED: 05-12-2013
Show Abstract
Hide Abstract
In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37±1 °C) anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9-70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others.
Related JoVE Video
Pretreatment of sugarcane bagasse with liquid hot water and aqueous ammonia.
Bioresour. Technol.
PUBLISHED: 05-07-2013
Show Abstract
Hide Abstract
Low water consumption operation (LWCO) can reduce the usage of water and energy input for the liquid hot water (LHW) pretreatment of sugarcane bagasse (SB) but causes great negative effects on the saccharification rate of xylose and enzymatic digestibility (ED) of cellulose. Therefore, a combined pretreatment with LHW and aqueous ammonia (LHWAA) was developed. ED of glucan and xylan is enhanced greatly resulted from the removal of hemicellulose and lignin after the LHWAA pretreatment. However, the intriguing results of low lignin removal and ED value were observed at the high reaction temperature of 180°C for the second step pretreatment of AA. It was proposed that lignin or pseudo-lignin droplet redeposited on the surface of residual solids might play a crucial role in determining the ED, so it is indispensable to make the enzyme access to the cellulose by the step of post-treatment with ultrasonic washing or hot washing. Coupled with the process of post-treatment and enzymatic hydrolysis, a high hemicellulose derived sugars recovery of 75.5% and glucose recovery of 87% was obtained for LHWAA pretreatment.
Related JoVE Video
Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis.
Bioresour. Technol.
PUBLISHED: 04-13-2013
Show Abstract
Hide Abstract
Different pretreatment processes, including liquid hot water (LHW) pretreatment, sodium hydroxide (NaOH) pretreatment, and their combinative pretreatments, were conducted to improve the enzymatic digestibility and sugar recovery from sugarcane bagasse (SCB). LHW pretreatment solubilized over 82% of xylan and 42% of lignin, after which the SCB presented the poorest enzymatic digestibility. NaOH pretreatment could remove 78% of lignin and retain most of glucan. For combinative pretreatments, the sequence of two procedures had a significant effect on the chemical composition, substrate characteristic and the subsequent enzymatic hydrolysis process. LHW-NaOH pretreatment could solubilize over 92% of xylan and remove 76% of lignin, and the highest total sugar recovery of 73% was achieved after 72 h enzymatic hydrolysis. While NaOH-LHW pretreatment, which could remove nearly 84% of lignin, but only solubilize 71% of xylan, showed the highest enzymatic digestibility. The pretreatment efficiency was: NaOH-LHW>NaOH>LHW-NaOH>LHW.
Related JoVE Video
Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment.
Water Res.
PUBLISHED: 01-26-2013
Show Abstract
Hide Abstract
An integrated approach, which combined freshwater microalgae Chlorella zofingiensis cultivation with piggery wastewater treatment, was investigated in the present study. The characteristics of algal growth, lipid and biodiesel production, and nutrient removal were examined by using tubular bubble column photobioreactors to cultivate C. zofingiensis in piggery wastewater with six different concentrations. Pollutants in piggery wastewater were efficiently removed among all the treatments. The specific growth rate and biomass productivity were different among all the cultures. As the initial nutrient concentration increased, the lipid content of C. zofingiensis decreased. The differences in lipid and biodiesel productivity of C. zofingiensis among all the treatments mainly resulted from the differences in biomass productivity. It is worthy of note that the diluted piggery wastewater with 1900 mg L(-1) COD provided an optimal nutrient concentration for C. zofingiensis cultivation, where the advantageous nutrient removal and the highest productivities of biomass, lipid and biodiesel were presented.
Related JoVE Video
Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production.
Bioresour. Technol.
PUBLISHED: 01-20-2013
Show Abstract
Hide Abstract
Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for simultaneous wastewater treatment and biodiesel production was tested. The cultivation of C. zofingiensis with autoclaved wastewater and NaClO-pretreated wastewater, cultivation of algae indoors and outdoors, and stability of semi-continuous feeding operation were examined. The results showed that C. zofingiensis cultivated in piggery wastewater pretreated by autoclaving and NaClO had no evident difference in the performance of nutrient removal, algal growth and biodiesel production. The outdoor cultivation experiments indicated that C. zofingiensis was able to adapt and grow well outdoors. The semi-continuous feeding operation by replacing 50% of algae culture with fresh wastewater every 1.5 days could provide a stable net biomass productivity of 1.314 g L(-1) day(-1). These findings in this study can prove that it is greatly possible to amplify the cultivation of C. zofingiensis in piggery wastewater for nutrient removal and biodiesel production.
Related JoVE Video
High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water.
Bioresour. Technol.
PUBLISHED: 11-08-2011
Show Abstract
Hide Abstract
A laboratory set-up was designed to carry out high consistency enzymatic saccharification of sweet sorghum bagasse (SSB) which was pretreated by liquid hot water (LHW). The effects of two impellers on enzymatic hydrolysis of SSB were investigated. Compared with the double-curved-blade impeller (DCBI), the plate-and-frame impeller (PFI) could improve glucose production by 10%. Tween80 and fed-batch hydrolysis method adopted in this study produced total sugar of 17.06 g/L more than batch hydrolysis and raised the substrate consistency to 30%. At the final substrate loading of 30%, the concentrations of cellobiose, glucose and xylose reached to 15.01 g/L, 88.95 g/L and 9.80 g/L, respectively, and the ethanol concentration reached to 43.36 g/L in the case of cellobiose and xylose were not fermented by Saccharomyces cerevisiae Y2034. This study is an attempt at improvement of enzyme hydrolyzing LHW-pretreated material at high consistency.
Related JoVE Video
Biogas production potential and kinetics of microwave and conventional thermal pretreatment of grass.
Appl. Biochem. Biotechnol.
PUBLISHED: 08-10-2011
Show Abstract
Hide Abstract
Pretreatment methods play an important role in the improvement of biogas production from the anaerobic digestion of energy grass. In this study, conventional thermal and microwave methods were performed on raw material, namely, Pennisetum hybrid, to analyze the effect of pretreatment on anaerobic digestion by the calculation of performance parameters using Logistic function, modified Gompertz equation, and transference function. Results indicated that thermal pretreatment improved the biogas production of Pennisetum hybrid, whereas microwave method had an adverse effect on the performance. All the models fit the experimental data with R (2)?>?0.980, and the Reaction Curve presented the best agreement in the fitting process. Conventional thermal pretreatment showed an increasing effect on maximum production rate and total methane produced, with an improvement of around 7% and 8%, respectively. With regard to microwave pretreatment, maximum production rate and total methane produced decreased by 18% and 12%, respectively.
Related JoVE Video
The effect of metal salts on the decomposition of sweet sorghum bagasse in flow-through liquid hot water.
Bioresour. Technol.
PUBLISHED: 08-17-2010
Show Abstract
Hide Abstract
The impact of the metal salts NaCl, KCl, CaCl(2), MgCl(2), FeCl(3), FeCl(2), and CuCl(2), particularly the latter, on the decomposition of hemicellulose and lignin from sweet sorghum bagasse in liquid hot water pretreatment processing was studied in an attempt to enhance the recovery of sugars. Transition metal chlorides significantly enhanced the hemicellulose removal compared to the alkaline earth metal chlorides and alkaline metal chlorides, contributing to the formation of a saccharide-metal cation intermediate complex. FeCl(2) greatly increased xylose degradation and about 60% xylan was converted into non-saccharide products. In contrast, an excellent total and monomeric xylose recovery was obtained after the CuCl(2) pretreatment. Most of the lignin was deposited on the surface of the residual solid with droplet morphologies after this pretreatment, and about 20% was degraded into monomeric products. The total recovery of sugars from sweet sorghum bagasse with 0.1% CuCl(2) solution pretreatment and 48 h enzymatic digestibility, reached 90.4%, which is superior to the recovery using hot water pretreatment only.
Related JoVE Video
Artificial neural network-genetic algorithm based optimization for the immobilization of cellulase on the smart polymer Eudragit L-100.
Bioresour. Technol.
PUBLISHED: 01-12-2010
Show Abstract
Hide Abstract
Cellulase was covalently immobilized on a smart polymer, Eudragit L-100 by carbodiimide coupling. Using data of central composite design, response surface methodology (RSM) and artificial neural network (ANN) were developed to investigate the effect of pH, carbodiimide concentration, and coupling time on the activity yield of immobilized cellulase. Results showed simulation and prediction accuracy of ANN was apparently higher compared to RSM. The maximum activity yield obtained from RSM was 57.56% at pH 5.54, carbodiimide concentration 0.32%, and coupling time 3.03 h, where the experimental value was 60.87 + or - 4.79%. Using ANN as fitness function, a maximum activity yield of 69.83% was searched by genetic algorithm at pH 5.07, carbodiimide concentration 0.36%, and coupling time 4.10 h, where the experimental value was 66.75 + or - 5.21%. ANN gave a 9.7% increase of activity yield over RSM. After reusing immobilized cellulase for 5 cycles, the remaining productivity was over 50%.
Related JoVE Video
Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source.
Bioresour. Technol.
PUBLISHED: 01-07-2010
Show Abstract
Hide Abstract
Plackett-Burman and central composite designs were applied to optimize the medium for ethanol production by Clostridium autoethanogenum with CO as sole carbon source, and a medium containing (g/L): NaCl 1.0, KH(2)PO(4) 0.1, CaCl(2) 0.02, yeast extract 0.15, MgSO(4) 0.116, NH(4)Cl 1.694 and pH 4.74 was found optimal. The optimum ethanol yields predicted by response surface methodology (RSM) and an artificial neural network-genetic algorithm (ANN-GA) were 247.48 and 261.48mg/L, respectively. These values are similar to those obtained experimentally under the optimal conditions suggested by the statistical methods (254.26 and 259.64mg/L). The fitness of the ANN-GA model was higher than that of the RSM model. The yields obtained substantially exceed those previously reported (60-70mg/L) with this organism.
Related JoVE Video
Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WS-OFMSW).
Bioresour. Technol.
PUBLISHED: 08-24-2009
Show Abstract
Hide Abstract
An innovative municipal solid waste separation technology - water separation was developed in China recently. The purpose of this study was to evaluate the feasibility of anaerobic digestion from water sorted organic fraction of municipal solid waste (WS-OFMSW) to methane. A group of bench-scale (35 L) mesophilic (30 + or - 2 degrees Celsius) batch anaerobic digestions were carried out with three total solids in reactor (TSr = 16.0%, 13.5% and 11.0%). The biodegradability of WS-OFMSW with VS/TS of 61.6% was better than that of mechanically sorted OFMSW but still poor than that of source sorted OFMSW. No inhibitions of metal ions, volatile fatty acids and ammonia on anaerobic digestion were found. The reactors with TSr 16.0%, 13.5% and 11.0% achieved methane yield of 273, 283 and 314 L/kgVS and VS removal rate of 26.1%, 35.8% and 41.8%, respectively. The average methane content in biogas was about 66% for all reactors.
Related JoVE Video
Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose.
Bioresour. Technol.
PUBLISHED: 08-06-2009
Show Abstract
Hide Abstract
A two-step liquid hot water pretreatment (TSLHW) was developed with the objective of achieving complete saccharification of both hemicellulose and cellulose of Eucalyptus grandis, thereby avoiding the problems associated with the use of strong acid catalysts. The first step of the pretreatment was studied in the temperature range 180-200 degrees C, and the highest yield of total xylose achieved was 86.4% after 20 min at 180 degrees C. The second-step of the pretreatment was studied in the temperature range 180-240 degrees C and for lengths of time of 0-60 min. The conversion rate of glucan was more sensitive to temperature than time. The optimum reaction conditions for the second step of the pretreatment with minimal degradation of sugars were 200 degrees C for 20 min. the total sugar recovery from E. grandis with the optimized pretreatment and 72 h enzymatic digestion, reached 96.63%, which is superior to the recovery from a single-step pretreatment with hot water or dilute acid.
Related JoVE Video
Low potential detection of glutamate based on the electrocatalytic oxidation of NADH at thionine/single-walled carbon nanotubes composite modified electrode.
Biosens Bioelectron
PUBLISHED: 05-27-2009
Show Abstract
Hide Abstract
A glutamate biosensor based on the electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH), which was generated by the enzymatic reaction, was developed via employing a single-walled carbon nanotubes/thionine (Th-SWNTs) nanocomposite as a mediator and an enzyme immobilization matrix. The biosensor, which was fabricated by immobilizing glutamate dehydrogenase (GlDH) on the surface of Th-SWNTs, exhibited a rapid response (ca. 5s), a low detection limit (0.1 microM), a wide and useful linear range (0.5-400 microM), high sensitivity (137.3+/-15.7) microA mM(-1)cm(-2), higher biological affinity, as well as good stability and repeatability. In addition, the common interfering species, such as ascorbic acid, uric acid, and 4-acetamidophenol, did not cause any interference due to the use of a low operating potential (190 mV vs. NHE). The biosensor can be used to quantify the concentration of glutamate in the physiological level. The Th-SWNTs system represents a simple and effective approach to the integration of dehydrogenase and electrodes, which can provide analytical access to a large group of enzymes for wide range of bioelectrochemical applications including biosensors and biofuel cells.
Related JoVE Video
Kinetic study of hydrolysis of xylan and agricultural wastes with hot liquid water.
Biotechnol. Adv.
PUBLISHED: 01-20-2009
Show Abstract
Hide Abstract
We investigated the kinetics of hot liquid water (HLW) hydrolysis over a 60-min period using a self-designed setup. The reaction was performed within the range 160-220 degrees C, under reaction conditions of 4.0 MPa, a 1:20 solid:liquid ratio (g/mL), at 500 rpm stirring speed. Xylan was chosen as a model compound for hemicelluloses, and two kinds of agricultural wastes-rice straw and palm shell-were used as typical feedstocks representative of herbaceous and woody biomasses, respectively. The hydrolysis reactions for the three kinds of materials followed a first-order sequential kinetic model, and the hydrolysis activation energies were 65.58 kJ/mol for xylan, 68.76 kJ/mol for rice straw, and 95.19 kJ/mol for palm shell. The activation energies of sugar degradation were 147.21 kJ/mol for xylan, 47.08 kJ/mol for rice straw and 79.74 kJ/mol for palm shell. These differences may be due to differences in the composition and construction of the three kinds of materials. In order to reduce the decomposition of sugars, the hydrolysis time of biomasses such as rice straw and palm shell should be strictly controlled.
Related JoVE Video
Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes.
Bioresour. Technol.
Show Abstract
Hide Abstract
Liquid hot water (LHW), dilute hydrochloric acid (HCl) and dilute sodium hydroxide (NaOH) were applied to sugarcane bagasse (SB). Application of the same analytical methods and material balance approaches facilitated meaningful comparisons of glucose and xylose yields from combined pretreatment and enzymatic hydrolysis. All pretreatments enhanced sugar recovery from pretreatment and subsequent enzymatic hydrolysis substantially compared to untreated sugarcane bagasse. Adding Tween80 in the enzymatic hydrolysis process increased the conversion level of glucan/xylan by 0.3-fold, especially for the low pH pretreatment where more lignin was left in the solids. The total sugar recovery from sugarcane bagasse with the coupled operations of pretreatment and 72 h enzymatic digestion reached 71.6% for LHW process, 76.6% for HCl pretreatment and 77.3% for NaOH pretreatment. Different structural changes at the plant tissue, cellular, and cell wall levels might be responsible for the different enzymatic digestibility. Furthermore, a combined LHW and aqueous ammonia pretreatment was proposed to reduce energy input and enhance the sugar recovery.
Related JoVE Video
Cultivation of Chlorella zofingiensis in bench-scale outdoor ponds by regulation of pH using dairy wastewater in winter, South China.
Bioresour. Technol.
Show Abstract
Hide Abstract
Cultivation of Chlorella zofingiensis and nutrients removal in dairy wastewater were investigated in bench-scale outdoor ponds in winter, South China. The impacts of the two types of pH regulations, 5 ? 6% CO(2) and acetic acid (HAc) on this process were studied. After 6 days cultivation, the removal rates of total nitrogen (TN) and orthophosphate (PO(4)(3-)) using CO(2) regulation were better than those using HAc. The removal rates of PO(4)(3-) and TN were 97.5% and 51.7%, respectively using CO(2) regulation; 79.6% (TN) and 42.0% (PO(4)(3-)) were obtained using HAc regulation. Higher biomass, protein, sugar content, and stable pH control were found using CO(2) regulation. However, significantly higher lipid content (31.8%) was observed using HAc regulation. The dominant differences of fatty acids were the content of C18:1 and C18:3. The growth characteristics and environmental conditions especially during the typical logarithmic phase were also analyzed.
Related JoVE Video
Hydrolysis of sweet sorghum bagasse and eucalyptus wood chips with liquid hot water.
Bioresour. Technol.
Show Abstract
Hide Abstract
The chemical composition, hydrolysis products, and kinetics during liquid hot water pretreatment of sweet sorghum bagasse (SSB) and eucalyptus wood chips (EWC) were investigated. Under optimal conditions, a total xylose recovery of 79.6% and 55.6% for SSB and of 74.9% and 84.4% for EWC was achieved after pretreatments in a step-change flow rate reactor (184 °C, 20 ml/min, 8 min, and 10 ml/min, 10 min) and batch stirred reactor (184 °C, 5%w/v, 18 min), respectively. More than 90% of the xylose was recovered as oligomers from SSB, independent of the type of reactor employed. The activation energies of xylan decomposition of SSB in the step-change flow rate reactor was 6.5-fold greater than that of EWC in the batch stirred reactor due to accumulation of acidic products. These findings show that sugar recovery is dependent on the reactor configuration for specific substrates.
Related JoVE Video
Decomposition behavior of hemicellulose and lignin in the step-change flow rate liquid hot water.
Appl. Biochem. Biotechnol.
Show Abstract
Hide Abstract
Hemicellulose and lignin are the main factors limiting accessibility of hydrolytic enzymes besides the crystallinity of cellulose. The decomposition behavior of hemicellulose and lignin in the step-change flow rate hot water system was investigated. Xylan removal increased from 64.53% for batch system (solid concentration 4.25% w/v, 18 min, 184°C) to 83.78% at high flow rates of 30 ml/min for 8 min, and then 10 ml/min for 10 min. Most of them (80-90%) were recovered as oligosaccharide. It was hypothesized that the flowing water could enhance the mass transfer to improve the sugars recovery. In addition, the solubilization mechanism of lignin in the liquid hot water was proposed according to the results of Fourier transform-infrared spectroscopy and scanning electron microscopy of the water-insoluble fraction and gas chromatography-mass spectrometry of the water-soluble fraction. It was proposed that lignin in the liquid hot water first migrated out of the cell wall in the form of molten bodies, and then flushed out of the reactor. A small quantity of them was further degraded into monomeric products such as vanillin, syringe aldehyde, coniferyl aldehyde, ferulic acid, and p-hydroxy-cinnamic acid. All of these observations would provide important information for the downstream processing, such as purification and concentration of sugars and the enzymatic digestion of residual solid.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.