Skip to content
Articles by Anna Falk in JoVE
-
Integration Freie Ableitung von human induzierten pluripotenten Stammzellen mit Laminin 521 Matrix
Elias Uhlin1, Ana Marin Navarro1,2, Harriet Rönnholm1, Kelly Day1, Malin Kele1, Anna Falk1
1Department of Neuroscience, Karolinska Institutet, 2Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet
Die robuste Ableitung von humanen induzierten pluripotenten Stammzellen (hiPS) wurde durch die Verwendung von nicht-integrierenden Sendai-Virus (SeV) -vektorvermittelten Umprogrammierung von dermalen Fibroblasten erreicht. HiPS-Zell-Aufrechterhaltung und Klon-Expansion wurde unter Verwendung von xeno-freien und chemisch definierten Kulturbedingungen mit rekombinantem humanem Laminin 521 (LN-521) -Matrix und Essential E8 (E8) Medium durchgeführt.
Other articles by Anna Falk on PubMed
-
-
-
Cross-talk Between the Notch and TGF-beta Signaling Pathways Mediated by Interaction of the Notch Intracellular Domain with Smad3
The Journal of Cell Biology.
Nov, 2003 |
Pubmed ID: 14638857 The Notch and transforming growth factor-beta (TGF-beta) signaling pathways play critical roles in the control of cell fate during metazoan development. However, mechanisms of cross-talk and signal integration between the two systems are unknown. Here, we demonstrate a functional synergism between Notch and TGF-beta signaling in the regulation of Hes-1, a direct target of the Notch pathway. Activation of TGF-beta signaling up-regulated Hes-1 expression in vitro and in vivo. This effect was abrogated in myogenic cells by a dominant-negative form of CSL, an essential DNA-binding component of the Notch pathway. TGF-beta regulated transcription from the Hes-1 promoter in a Notch-dependent manner, and the intracellular domain of Notch1 (NICD) cooperated synergistically with Smad3, an intracellular transducer of TGF-beta signals, to induce the activation of synthetic promoters containing multimerized CSL- or Smad3-binding sites. NICD and Smad3 were shown to interact directly, both in vitro and in cells, in a ligand-dependent manner, and Smad3 could be recruited to CSL-binding sites on DNA in the presence of CSL and NICD. These findings indicate that Notch and TGF-beta signals are integrated by direct protein-protein interactions between the signal-transducing intracellular elements from both pathways.
-
Functional Notch Signaling is Required for BMP4-induced Inhibition of Myogenic Differentiation
Development (Cambridge, England).
Dec, 2003 |
Pubmed ID: 14597575 The bone morphogenetic protein (BMP) and Notch signaling pathways are crucial for cellular differentiation. In many cases, the two pathways act similarly; for example, to inhibit myogenic differentiation. It is not known whether this inhibition is caused by distinct mechanisms or by an interplay between Notch and BMP signaling. Here we demonstrate that functional Notch signaling is required for BMP4-mediated block of differentiation of muscle stem cells, i.e. satellite cells and the myogenic cell line C2C12. Addition of BMP4 during induction of differentiation dramatically reduced the number of differentiated satellite and C2C12 cells. Differentiation was substantially restored in BMP4-treated cultures by blocking Notch signaling using either the gamma-secretase inhibitor L-685,458 or by introduction of a dominant-negative version of the Notch signal mediator CSL. BMP4 addition to C2C12 cells increased transcription of two immediate Notch responsive genes, Hes1 and Hey1, an effect that was abrogated by L-685,458. A 3 kb Hey1-promoter reporter construct was synergistically activated by the Notch 1 intracellular domain (Notch 1 ICD) and BMP4. The BMP4 mediator SMAD1 mimicked BMP activation of the Hey1 promoter. A synthetic Notch-responsive promoter containing no SMAD1 binding sites responded to SMAD1, indicating that DNA-binding activity of SMAD1 is not required for activation. Accordingly, Notch 1 ICD and SMAD1 interacted in binding experiments in vitro. Thus, the data presented here provide evidence for a direct interaction between the Notch and BMP signaling pathways, and indicate that Notch has a crucial role in the execution of certain aspects of BMP-mediated differentiation control.
-
-
-
-
-
-
Non-immortalized Human Neural Stem (NS) Cells As a Scalable Platform for Cellular Assays
Neurochemistry International.
Sep, 2011 |
Pubmed ID: 21762743 The utilization of neural stem cells and their progeny in applications such as disease modelling, drug screening or safety assessment will require the development of robust methods for consistent, high quality uniform cell production. Previously, we described the generation of adherent, homogeneous, non-immortalized mouse and human neural stem cells derived from both brain tissue and pluripotent embryonic stem cells (Conti et al., 2005; Sun et al., 2008). In this study, we report the isolation or derivation of stable neurogenic human NS (hNS) lines from different regions of the 8-9 gestational week fetal human central nervous system (CNS) using new serum-free media formulations including animal component-free conditions. We generated more than 20 adherent hNS lines from whole brain, cortex, lobe, midbrain, hindbrain and spinal cord. We also compared the adherent hNS to some aspects of the human CNS-stem cells grown as neurospheres (hCNS-SCns), which were derived from prospectively isolated CD133(+)CD24(-/lo) cells from 16 to 20 gestational week fetal brain. We found, by RT-PCR and Taqman low-density array, that some of the regionally isolated lines maintained their regional identity along the anteroposterior axis. These NS cells exhibit the signature marker profile of neurogenic radial glia and maintain neurogenic and multipotential differentiation ability after extensive long-term expansion. Similarly, hCNS-SC can be expanded either as neurospheres or in extended adherent monolayer with a morphology and marker expression profile consistent with radial glia NS cells. We demonstrate that these lines can be efficiently genetically modified with standard nucleofection protocols for both protein overexpression and siRNA knockdown of exogenously expressed and endogenous genes exemplified with GFP and Nestin. To investigate the functional maturation of neuronal progeny derived from hNS we (a) performed Agilent whole genome microarray gene expression analysis from cultures undergoing neuronal differentiation for up to 32 days and found increased expression over time for a number of drugable target genes including neurotransmitter receptors and ion channels and (b) conducted a neuropharmacology study utilizing Fura-2 Ca(2+) imaging which revealed a clear shift from an initial glial reaction to carbachol to mature neuron-specific responses to glutamate and potassium after prolonged neuronal differentiation. Fully automated culture and scale-up of select hNS was achieved; cells supplied by the robot maintained the molecular profile of multipotent NS cells and performed faithfully in neuronal differentiation experiments. Here, we present validation and utility of a human neural lineage-restricted stem cell-based assay platform, including scale-up and automation, genetic engineering and functional characterization of differentiated progeny.
-
-
Treatment of a Mouse Model of Spinal Cord Injury by Transplantation of Human Induced Pluripotent Stem Cell-derived Long-term Self-renewing Neuroepithelial-like Stem Cells
Stem Cells (Dayton, Ohio).
Jun, 2012 |
Pubmed ID: 22419556 Because of their ability to self-renew, to differentiate into multiple lineages, and to migrate toward a damaged site, neural stem cells (NSCs), which can be derived from various sources such as fetal tissues and embryonic stem cells, are currently considered to be promising components of cell replacement strategies aimed at treating injuries of the central nervous system, including the spinal cord. Despite their efficiency in promoting functional recovery, these NSCs are not homogeneous and possess variable characteristics depending on their derivation protocols. The advent of induced pluripotent stem (iPS) cells has provided new prospects for regenerative medicine. We used a recently developed robust and stable protocol for the generation of long-term, self-renewing, neuroepithelial-like stem cells from human iPS cells (hiPS-lt-NES cells), which can provide a homogeneous and well-defined population of NSCs for standardized analysis. Here, we show that transplanted hiPS-lt-NES cells differentiate into neural lineages in the mouse model of spinal cord injury (SCI) and promote functional recovery of hind limb motor function. Furthermore, using two different neuronal tracers and ablation of the transplanted cells, we revealed that transplanted hiPS-lt-NES cell-derived neurons, together with the surviving endogenous neurons, contributed to restored motor function. Both types of neurons reconstructed the corticospinal tract by forming synaptic connections and integrating neuronal circuits. Our findings indicate that hiPS-lt-NES transplantation represents a promising avenue for effective cell-based treatment of SCI.
-
-
Stem Cells Expanded from the Human Embryonic Hindbrain Stably Retain Regional Specification and High Neurogenic Potency
The Journal of Neuroscience : the Official Journal of the Society for Neuroscience.
Jul, 2013 |
Pubmed ID: 23884946 Stem cell lines that faithfully maintain the regional identity and developmental potency of progenitors in the human brain would create new opportunities in developmental neurobiology and provide a resource for generating specialized human neurons. However, to date, neural progenitor cultures derived from the human brain have either been short-lived or exhibit restricted, predominantly glial, differentiation capacity. Pluripotent stem cells are an alternative source, but to ascertain definitively the identity and fidelity of cell types generated solely in vitro is problematic. Here, we show that hindbrain neuroepithelial stem (hbNES) cells can be derived and massively expanded from early human embryos (week 5-7, Carnegie stage 15-17). These cell lines are propagated in adherent culture in the presence of EGF and FGF2 and retain progenitor characteristics, including SOX1 expression, formation of rosette-like structures, and high neurogenic capacity. They generate GABAergic, glutamatergic and, at lower frequency, serotonergic neurons. Importantly, hbNES cells stably maintain hindbrain specification and generate upper rhombic lip derivatives on exposure to bone morphogenetic protein (BMP). When grafted into neonatal rat brain, they show potential for integration into cerebellar development and produce cerebellar granule-like cells, albeit at low frequency. hbNES cells offer a new system to study human cerebellar specification and development and to model diseases of the hindbrain. They also provide a benchmark for the production of similar long-term neuroepithelial-like stem cells (lt-NES) from pluripotent cell lines. To our knowledge, hbNES cells are the first demonstration of highly expandable neuroepithelial stem cells derived from the human embryo without genetic immortalization.
-
-
-
-
-
-
The Roots of Autism and ADHD Twin Study in Sweden (RATSS)
Twin Research and Human Genetics : the Official Journal of the International Society for Twin Studies.
Jun, 2014 |
Pubmed ID: 24735654 Neurodevelopmental disorders affect a substantial minority of the general population. Their origins are still largely unknown, but a complex interplay of genetic and environmental factors causing disturbances of the central nervous system's maturation and a variety of higher cognitive skills is presumed. Only limited research of rather small sample size and narrow scope has been conducted in neurodevelopmental disorders using a twin-differences design. The Roots of Autism and ADHD Twin Study in Sweden (RATSS) is an ongoing project targeting monozygotic twins discordant for categorical or dimensional autistic and inattentive/hyperactive-impulsive phenotypes as well as other neurodevelopmental disorders, and typically developing twin controls. Included pairs are 9 years of age or older, and comprehensively assessed for psychopathology, medical history, neuropsychology, and dysmorphology, as well as structural, functional, and molecular brain imaging. Specimens are collected for induced pluripotent (iPS) and neuroepithelial stem cells, genetic, gut bacteria, protein-/monoamine, and electron microscopy analyses. RATSS's objective is to generate a launch pad for novel surveys to understand the complexity of genotype-environment-phenotype interactions in autism spectrum disorder and attention-deficit hyperactivity disorder (ADHD). By October 2013, RATSS had collected data from 55 twin pairs, among them 10 monozygotic pairs discordant for autism spectrum disorder, seven for ADHD, and four for other neurodevelopmental disorders. This article describes the design, recruitment, data collection, measures, collected pairs' characteristics, as well as ongoing and planned analyses in RATSS. Potential gains of the study comprise the identification of environmentally mediated biomarkers, the emergence of candidates for drug development, translational modeling, and new leads for prevention of incapacitating outcomes.
-
Linking Cellulose Fiber Sediment Methyl Mercury Levels to Organic Matter Decay and Major Element Composition
Ambio.
Nov, 2014 |
Pubmed ID: 24420263 Methylation of mercury (Hg) to highly toxic methyl Hg (MeHg), a process known to occur when organic matter (OM) decomposition leads to anoxia, is considered a worldwide threat to aquatic ecosystems and human health. We measured temporal and spatial variations in sediment MeHg, total Hg (THg), and major elements in a freshwater lagoon in Sweden polluted with Hg-laden cellulose fibers. Fiber decomposition, confined to a narrow surface layer, resulted in loss of carbon (C), uptake of nitrogen (N), phosphorus (P), and sulfur (S), and increased MeHg levels. Notably, fiber decomposition and subsequent erosion of fiber residues will cause buried contaminants to gradually come closer to the sediment-water interface. At an adjacent site where decomposed fiber accumulated, there was a gain in C and a loss of S when MeHg increased. As evidenced by correlation patterns and vertical chemical profiles, reduced S may have fueled C-fixation and Hg methylation at this site.
-
-
-
A PBX1 Transcriptional Network Controls Dopaminergic Neuron Development and is Impaired in Parkinson's Disease
The EMBO Journal.
Sep, 2016 |
Pubmed ID: 27354364 Pre-B-cell leukemia homeobox (PBX) transcription factors are known to regulate organogenesis, but their molecular targets and function in midbrain dopaminergic neurons (mDAn) as well as their role in neurodegenerative diseases are unknown. Here, we show that PBX1 controls a novel transcriptional network required for mDAn specification and survival, which is sufficient to generate mDAn from human stem cells. Mechanistically, PBX1 plays a dual role in transcription by directly repressing or activating genes, such as Onecut2 to inhibit lateral fates during embryogenesis, Pitx3 to promote mDAn development, and Nfe2l1 to protect from oxidative stress. Notably, PBX1 and NFE2L1 levels are severely reduced in dopaminergic neurons of the substantia nigra of Parkinson's disease (PD) patients and decreased NFE2L1 levels increases damage by oxidative stress in human midbrain cells. Thus, our results reveal novel roles for PBX1 and its transcriptional network in mDAn development and PD, opening the door for new therapeutic interventions.
-
-
Low-Pressure Cobalt-Catalyzed Enantioselective Hydrovinylation of Vinylarenes
Chemistry (Weinheim an Der Bergstrasse, Germany).
May, 2016 |
Pubmed ID: 26998912 An efficient and practical protocol for the enantioselective cobalt-catalyzed hydrovinylation of vinylarenes with ethylene at low (1.2 bar) pressure has been developed. As precatalysts, stable [L2 CoCl2 ] complexes are employed that are activated in situ with Et2 AlCl. A modular chiral TADDOL-derived phosphine-phosphite ligand was identified that allows the conversion of a broad spectrum of substrates, including heterocyclic vinylarenes and vinylferrocene, to smoothly afford the branched products with up to 99 % ee and virtually complete regioselectivity. Even polar functional groups, such as OH, NH2 , CN, and CO2 R, are tolerated.
-
Glucocorticoids Alter Neuronal Differentiation of Human Neuroepithelial-like Cells by Inducing Long-lasting Changes in the Reactive Oxygen Species Balance
Neuropharmacology.
Aug, 2016 |
Pubmed ID: 26992751 Prenatal exposure to excess glucocorticoid has been shown to have adverse effects on the developing nervous system that may lead to alterations of fetal and adult neurogenesis, resulting in behavioral changes. In addition, an imbalance of the redox state, with an increased susceptibility to oxidative stress, has been observed in rodent neural stem cells exposed to the synthetic glucocorticoid analog dexamethasone (Dex). In the present study, we used the induced pluripotent stem cells (IPSC)-derived lt-NES AF22 cell line, representative of the neuroepithelial stage in central nervous system development, to investigate the heritable effects of Dex on reactive oxygen species (ROS) balance and its impact on neuronal differentiation. By analysing gene expression in daughter cells that were never directly exposed to Dex, we could observe a downregulation of four key antioxidant enzymes, namely Catalase, superoxide dismutase 1, superoxide dismutase 2 and glutathione peroxidase7, along with an increased intracellular ROS concentration. The imbalance in the intracellular REDOX state was associated to a significant downregulation of major neuronal markers and a concomitant increase of glial cells. Interestingly, upon treatment with the antioxidant N-acetyl-cysteine (NAC), the misexpression of both neuronal and glial markers analyzed was recovered. These novel findings point to the increased ROS concentration playing a direct role in the heritable alterations of the differentiation potential induced by Dex exposure. Moreover, the data support the hypothesis that early insults may have detrimental long-lasting consequences on neurogenesis. Based on the positive effects exerted by NAC, it is conceivable that therapeutic strategies including antioxidants may be effective in the treatment of neuropsychiatric disorders that have been associated to increased ROS and impaired neurogenesis.
-
-
TRIM28 Controls a Gene Regulatory Network Based on Endogenous Retroviruses in Human Neural Progenitor Cells
Cell Reports.
Jan, 2017 |
Pubmed ID: 28052240 Endogenous retroviruses (ERVs), which make up 8% of the human genome, have been proposed to participate in the control of gene regulatory networks. In this study, we find a region- and developmental stage-specific expression pattern of ERVs in the developing human brain, which is linked to a transcriptional network based on ERVs. We demonstrate that almost 10,000, primarily primate-specific, ERVs act as docking platforms for the co-repressor protein TRIM28 in human neural progenitor cells, which results in the establishment of local heterochromatin. Thereby, TRIM28 represses ERVs and consequently regulates the expression of neighboring genes. These results uncover a gene regulatory network based on ERVs that participates in control of gene expression of protein-coding transcripts important for brain development.
Get cutting-edge science videos from JoVE sent straight to your inbox every month.