Craig J. Goergen

Weldon School of Biomedical Engineering

Purdue University

Craig J. Goergen

Craig Goergen is an Assistant Professor of Biomedical Engineering at Purdue University in West Lafayette, Indiana and the Principal Investigator of the Cardiovascular Imaging Research Laboratory. His work combines advanced engineering, imaging, and biological approaches to study a variety of cardiac and vascular diseases.

With funding from the NIH, NSF, AHA, and the Gates Foundation, Dr. Goergen and his team are working to improve cardiovascular disease diagnosis, treatment, and prevention, ultimately providing patients with longer and more fulfilling lives. Dr. Goergen received a BS degree in biomedical engineering from Washington University in St. Louis and MS and PhD degrees in bioengineering from Stanford University. In graduate school, Dr. Goergen worked with the Biomedical Imaging Group at Genentech to study abdominal aortic aneurysm formation. His postdoctoral training in molecular optical imaging at Harvard Medical School focused on cardiac disease and left ventricular remodeling.

Dr. Goergen joined the faculty at Purdue University in December of 2012 and was named the recipient of the 2017 Biomedical Engineering Society Rita Schaffer Young Investigator Award.

Publications

Imagerie par résonance magnétique cardiaque

JoVE 10393

Source : Frederick W. Damen et Craig J. Goergen, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana

Dans cette vidéo, le champ élevé, la formation image de résonance magnétique de petit-bore (MRI) avec la surveillance physiologique est démontrée pour acquérir des boucles fermées de cine du système cardio-vasculaire murine. Cette procédure fournit une base pour évaluer la fonction gauche-ventriculaire, visualiser les réseaux vasculaires, et quantifier le mouvement des organes dus à la respiration. Les modalités comparables d'imagerie cardiovasculaire chez les petits animaux comprennent l'échographie à haute fréquence et la tomographie micro-calculée (TDM); cependant, chaque modalité est associée à des compromis qui devraient être pris en considération. Tandis que l'ultrason fournit la résolution spatiale et temporelle élevée, les artefacts d'imagerie sont communs. Par exemple, les tissus denses (c.-à-d. le sternum et les côtes) peuvent limiter la profondeur de pénétration de l'imagerie, et le signal hyperéchoïque à l'interface entre le gaz et le liquide (c.-à-d. la pleuréson entourant les poumons) peut brouiller le contraste dans les tissus voisins. Micro-CT en revanche ne souffre pas d'autant d'artefacts dans le plan, mais a une résolution temporelle plus faible et un contraste limité de tissus mous. En outre, le micro-CT utilise le rayonnement de rayon X et exige souvent l'utilisation des agents de contraste pour visualiser la vascularisation, qui sont connues pour causer des effets secondaires à des doses élevées comprenant des dommages de rayonnement et des dommages rénaux. L'IRM cardiovasculaire fournit un bon compromis entre ces techniques en niant la nécessité d'ioniser le rayonnement et en offrant à l'utilisateur la possibilité d'imager sans agents de contraste (bien que les agents de contraste soient souvent utilisés pour l'IRM).

Ces données ont été acquises avec une séquence d'IRM de Fast Low Angle SHot (FLASH) qui a été fermée hors des pics R dans le cycle cardiaque et les plateaux expiratoires dans la respiration. Ces événements physiologiques ont été surveillés par des électrodes sous-cutanées et un oreiller sensible à la pression qui a été fixé contre l'abdomen. Pour s'assurer que la souris était bien réchauffée, une sonde de température rectale a été insérée et utilisée pour contrôler la sortie d'un ventilateur de chauffage sans assurance-IRM. Une fois que l'animal a été inséré dans le forage du scanner IRM et que les séquences de navigation ont été exécutés pour confirmer le positionnement, les avions d'imagerie flash fermés ont été prescrits et les données acquises. Dans l'ensemble, l'IRM à champ élevé est un outil de recherche puissant qui peut fournir un contraste de tissu mou pour l'étude des modèles de maladies animales de petite taille.

 Biomedical Engineering

Imagerie des anévrismes de l'aorte abdominale par fluorescence dans le proche infrarouge

JoVE 10394

Source: Arvin H. Soepriatna1, Kelsey A. Bullens2, et Craig J. Goergen1

1 Fois Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana

2 (en) Département de biochimie, Université de Purdue, Lafayette occidental, Indiana

L'imagerie par fluorescence proche infrarouge (NIRF) est une technique optique passionnante qui utilise des sondes fluorescentes pour visualiser des assemblages biomoléculaires complexes dans les tissus. L'imagerie NIRF présente de nombreux avantages par rapport aux méthodes d'imagerie conventionnelles pour l'imagerie non invasive des maladies. Contrairement à la tomographie calculée par émission de photons (SPECT) et à la tomographie par émission de positons (TEP), l'imagerie NIRF est rapide, à haut débit et n'implique pas de rayonnement ionisant. En outre, les développements récents dans l'ingénierie des sondes fluorescentes spécifiques à des cibles et activatables fournissent à NIRF une grande spécificité et sensibilité, ce qui en fait une modalité attrayante dans l'étude du cancer et des maladies cardiovasculaires. La procédure présentée est conçue pour démontrer les principes qui sous-tendent l'imagerie NIRF et la façon de mener des expériences in vivo et ex vivo chez de petits animaux afin d'étudier une variété de maladies. L'exemple spécifique montré ici emploie une sonde fluorescente activatable pour la matrice metalloproteinase-2 (MMP2) pour étudier son apprémonitable dans deux modèles différents de rongeurs des anévrismes aortiques abdominaux (AAA).

 Biomedical Engineering

Tomographie photoacoustique pour l'imagerie du sang et des lipides dans l'aorte infrarénale

JoVE 10395

Source: Gurneet S. Sangha et Craig J. Goergen, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana

La tomographie photoacoustique (PAT) est une modalité émergente de l'imagerie biomédicale qui utilise des ondes acoustiques générées par la lumière pour obtenir des informations de composition à partir de tissus. LE PAT peut être utilisé pour l'image du sang et des composants lipidiques, ce qui est utile pour une grande variété d'applications, y compris l'imagerie cardiovasculaire et tumorale. Les techniques d'imagerie actuellement utilisées ont des limites inhérentes qui limitent leur utilisation auprès des chercheurs et des médecins. Par exemple, les longs délais d'acquisition, les coûts élevés, l'utilisation de contrastes nocifs et l'invasivité minimale à élevée sont tous des facteurs qui limitent l'utilisation de diverses modalités en laboratoire et en clinique. À l'heure actuelle, les seules techniques d'imagerie comparables au PAT sont les techniques optiques émergentes. Mais ceux-ci ont également des inconvénients, tels que la profondeur limitée de pénétration et la nécessité d'agents de contraste exogènes. PAT fournit des informations significatives d'une manière rapide, non invasive, sans étiquette. Lorsqu'il est couplé avec l'échographie, PAT peut être utilisé pour obtenir des informations structurelles, hémodynamiques et compositionnelles à partir de tissus, complétant ainsi les techniques d'imagerie actuellement utilisées. Les avantages du PAT illustrent ses capacités à avoir un impact à la fois dans l'environnement préclinique et clinique.

 Biomedical Engineering

Imagerie combinée SPECT et CT pour visualiser la fonctionnalité cardiaque

JoVE 10396

Source: Alycia G. Berman, James A. Schaber, et Craig J. Goergen, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana

Ici, nous allons démontrer les principes fondamentaux de l'émission d'un seul photon par tomodensitométrie/ tomographie calculée (SPECT/CT) imagerie à l'aide de souris. La technique consiste à injecter un radionucléide dans une souris, l'imagerie de l'animal après qu'il est distribué dans tout le corps, puis la reconstruction des images produites pour créer un ensemble de données volumétriques. Ceci peut fournir l'information au sujet de l'anatomie, de la physiologie, et du métabolisme pour améliorer le diagnostic de la maladie et surveiller sa progression.

En ce qui concerne les données recueillies, SPECT/CT fournit des informations similaires à la tomographie par émission de positrons (TEP)/CT. Cependant, les principes sous-jacents de ces deux techniques sont fondamentalement différents puisque le PET nécessite la détection de deux photons gamma, qui sont émis dans des directions opposées. En revanche, l'imagerie SPECT mesure directement le rayonnement via une caméra gamma. En conséquence, la formation image SPECT a une résolution spatiale inférieure à celle de la TEP. Cependant, il est également moins coûteux parce que les isotopes radioactifs SPECT sont plus facilement disponibles. Spect/ CT imaging fournit des informations métaboliques et anatomiques non invasives qui peuvent être utiles pour une grande variété d'applications.

 Biomedical Engineering

Imagerie par ultrasons à haute fréquence de l'aorte abdominale

JoVE 10397

Source: Amelia R. Adelsperger, Evan H. Phillips, et Craig J. Goergen, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana

Les systèmes d'échographie haute fréquence sont utilisés pour acquérir des images haute résolution. Ici, l'utilisation d'un système de pointe sera démontrée pour l'image de la morphologie et de l'hémodynamique des petites artères et veines pulsatiles trouvées chez les souris et les rats. L'échographie est une méthode relativement peu coûteuse, portative et polyvalente pour l'évaluation non invasive des vaisseaux chez l'homme ainsi que chez les grands et les petits animaux. Ce sont là plusieurs avantages clés que l'ultraound offre par rapport à d'autres techniques, telles que la tomographie calculée (CT), l'imagerie par résonance magnétique (IRM) et la tomographie par fluorescence proche infrarouge (NIRF). La tomodensitométrie nécessite un rayonnement ionisant et l'IRM peut être prohibitivement coûteuse et même peu pratique dans certains scénarios. NIRF, d'autre part, est limité par la profondeur de pénétration de la lumière nécessaire pour exciter les agents de contraste fluorescent.

L'échographie a des limites en termes de profondeur d'imagerie; cependant, ceci peut être surmonté en sacrifiant la résolution et en utilisant un transducteur de basse fréquence. Les gaz abdominaux et l'excès de poids corporel peuvent gravement diminuer la qualité de l'image. Dans le premier cas, la propagation des ondes sonores est limitée, tandis que dans ce dernier cas, elles sont atténuées par des tissus sus-susaires, tels que la graisse et le tissu conjonctif. Par conséquent, aucun contraste ou faible contraste ne peut être observé. Enfin, l'échographie est une technique très dépendante de l'utilisateur, exigeant de l'échographe qu'il se familiarise avec l'anatomie et qu'il puisse contourner des questions telles que l'apparition d'artefacts d'imagerie ou d'interférences acoustiques.

 Biomedical Engineering

Techniques de mesure non invasive de la pression artérielle

JoVE 10478

Source: Hamna J. Qureshi et Craig J. Goergen, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana

Ici, nous allons mettre en évidence les principales similitudes et les différences des techniques de mesure de la pression artérielle non invasive entre les humains et les rongeurs et examiner les principes d'ingénierie qui régissent la pression artérielle. Les principes qui régissent la technologie actuelle de manchette pour acquérir des pressions systoliques et diastoliques seront également discutés.

Les poignets disponibles dans le commerce qui se connectent aux appareils mobiles sont généralement compacts et portables, ce qui permet de prendre des mesures pratiquement n'importe où. Non invasif, menottes de tension artérielle portables sont particulièrement utiles pour les patients souffrant d'hypertension et d'autres problèmes cardiovasculaires qui nécessitent une surveillance attentive et la détection précoce de tout changement de la pression artérielle.

De même, des systèmes non invasifs de mesure de la pression artérielle sont également disponibles pour les rongeurs. Cette technologie est utilisée en laboratoire et est utile pour surveiller la santé animale tout au long d'une étude. Bien que la radiotélémétrie soit l'étalon-or de la mesure de la pression artérielle chez les rongeurs, cette technique est invasive et peut entraîner une mortalité animale si elle est mal faite. Les méthodes non invasives sont donc pratiques pour prendre des mesures chez les animaux car elles peuvent fournir des données précieuses sans avoir besoin d'implantation de l'appareil. Un système disponible dans le commerce sera utilisé pour démontrer comment la pression artérielle peut être mesurée chez l'homme en dehors d'un milieu clinique. Cette technique permet aux patients de surveiller leur propre tension artérielle périodiquement sans avoir à se rendre à une clinique chaque fois qu'ils veulent que ces mesures soient prises.

Les méthodes décrites ici tirent parti du flux sanguin à travers la queue du rongeur en utilisant des capteurs de pression et des menottes d'occlusion. Les menottes mobiles de tension artérielle pour les humains et les méthodes non invasives de manchette de queue pour des rongeurs tirent profit des principes hémodynamiques semblables pour acquérir des mesures de tension artérielle qui peuvent fournir des données utiles pour des utilisateurs, y compris des cliniciens, des chercheurs, et Patients.

 Biomedical Engineering

Simulations numériques de la dynamique des fluides du flux sanguin lors d'un anévrisme cérébral

JoVE 10479

Source: Joseph C. Muskat, Vitaliy L. Rayz, et Craig J. Goergen, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana

L'objectif de cette vidéo est de décrire les progrès récents des simulations de dynamique des fluides computationnels (CFD) basées sur la vascularisation spécifique au patient ou à l'animal. En l'espèce, des segmentations de navires en question ont été créées et, à l'aide d'une combinaison d'outils open source et commerciaux, une solution numérique à haute résolution a été déterminée dans un modèle d'écoulement. De nombreuses études ont démontré que les conditions hémodynamiques dans la vascularisation affectent le développement et la progression de l'athérosclérose, des anévrismes, et d'autres maladies périphériques d'artère ; en même temps, les mesures directes de la pression intraluminale, du stress de cisaillement de mur (WSS), et du temps de résidence de particule (PRT) sont difficiles à acquérir in vivo.

Le CFD permet d'évaluer ces variables de manière non invasive. En outre, le CFD est utilisé pour simuler des techniques chirurgicales, ce qui permet aux médecins de mieux faire preuve de prévoyance en ce qui concerne les conditions de débit postopératoire. Deux méthodes d'imagerie par résonance magnétique (IRM), d'angiographie par résonance magnétique (MRA) avec un temps de vol (TOF-MRA) ou un MRA amélioré par contraste (CE-MRA) et un contraste de phase (PC-MRI), nous permettent d'obtenir des géométries de navires et des champs de vitesse 3D résolus dans le temps. Respectivement. TOF-MRA est basé sur la suppression du signal à partir de tissu statique par des impulsions RF répétées qui sont appliquées sur le volume image. Un signal est obtenu à partir de spins insaturés se déplaçant dans le volume avec le sang qui coule. CE-MRA est une meilleure technique pour l'imagerie des navires avec des flux de recirculation complexes, car il utilise un agent de contraste, comme le gadolinium, pour augmenter le signal.

Séparément, PC-MRI utilise des gradients bipolaires pour générer des décalages de phase qui sont proportionnels à la vitesse d'un fluide, fournissant ainsi des distributions de vitesse résolues dans le temps. Tandis que PC-MRI est capable de fournir des vitesses de flux sanguin, la précision de cette méthode est affectée par la résolution spatiotemporal limitée et la gamme dynamique de vitesse. CFD fournit une résolution supérieure et peut évaluer la gamme de vitesses des jets à grande vitesse à la recirculation lente des tourbillons observés dans les vaisseaux sanguins malades. Ainsi, même si la fiabilité du CFD dépend des hypothèses de modélisation, elle ouvre la possibilité d'une représentation complète et de haute qualité des champs d'écoulement spécifiques aux patients, qui peuvent guider le diagnostic et le traitement.

 Biomedical Engineering

Cartographie quantitative de la déformation d'un anévrisme de l'aorte abdominale

JoVE 10480

Source: Hannah L. Cebull1, Arvin H. Soepriatna1, John J. Boyle2 et Craig J. Goergen1

1 Fois Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana

2 (en) Génie mécanique et science des matériaux, Université de Washington à St. Louis, St Louis, Missouri

Le comportement mécanique des tissus mous, tels que les vaisseaux sanguins, la peau, les tendons et d'autres organes, sont fortement influencés par leur composition d'élastine et de collagène, qui fournissent élasticité et force. L'orientation des fibres de ces protéines dépend du type de tissu mou et peut aller d'une seule direction préférée à des réseaux maillés complexes, qui peuvent devenir altérés dans les tissus malades. Par conséquent, les tissus mous se comportent souvent anisotropically au niveau cellulaire et d'organe, créant un besoin pour la caractérisation tridimensionnelle. Il est important de développer une méthode d'estimation fiable des champs de souches dans des tissus ou des structures biologiques complexes pour caractériser et comprendre mécaniquement la maladie. La souche représente la façon dont les tissus mous se déforment relativement au fil du temps, et il peut être décrit mathématiquement à travers diverses estimations.

L'acquisition de données d'image au fil du temps permet d'estimer la déformation et la tension. Cependant, toutes les modalités d'imagerie médicale contiennent une certaine quantité de bruit, ce qui augmente la difficulté d'estimer avec précision la souche in vivo. La technique décrite ici permet de surmonter ces problèmes avec succès en utilisant une méthode d'estimation de déformation directe (DDE) pour calculer spatialement différents champs de souches 3D à partir de données d'image volumétriques.

Les méthodes actuelles d'estimation des souches comprennent la corrélation d'image numérique (DIC) et la corrélation numérique du volume. Malheureusement, DIC ne peut estimer avec précision la souche d'un avion 2D, limitant gravement l'application de cette méthode. Bien qu'utiles, les méthodes 2D telles que le DIC ont de la difficulté à quantifier la souche dans les régions qui subissent une déformation 3D. C'est parce que le mouvement hors plan crée des erreurs de déformation. La corrélation numérique du volume est une méthode plus applicable qui divise les données de volume initiale en régions et trouve la région la plus similaire du volume déformé, réduisant ainsi l'erreur hors plan. Cependant, cette méthode s'avère sensible au bruit et nécessite des hypothèses sur les propriétés mécaniques du matériau.

La technique démontrée ici élimine ces problèmes en utilisant une méthode DDE, ce qui la rend très utile dans l'analyse des données d'imagerie médicale. En outre, il est robuste à souche élevée ou localisée. Ici, nous décrivons l'acquisition de données d'échographie 4D fermées et volumétriques, sa conversion en format analysable, et l'utilisation d'un code Matlab personnalisé pour estimer la déformation 3D et les souches green-Lagrange correspondantes, un paramètre qui décrit mieux les grandes déformations. Le tenseur de souche Green-Lagrange est mis en œuvre dans de nombreuses méthodes d'estimation des souches 3D, car il permet de calculer F à partir d'un Least Squares Fit (LSF) des déplacements. L'équation ci-dessous représente le tenseur de souche Green-Lagrange, E, où F et moi représentons respectivement le gradient de déformation et le tenseur d'identité de deuxième ordre.

Equation 1(1)

 Biomedical Engineering